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ABSTRACT

With the rapid development of information technology in the field of medicine, the acquisition 
and sharing of medical data show a significant growth trend. However, medical data involves sensitive 
information such as patients’ clinical records, diagnostic results, and medical images, making data 
security and reasonable sharing a pressing challenge. Despite some progress in research on medical 
data sharing, the complexity and diversity of the issues persist. Various stakeholders in medical data, 
including medical institutions, researchers, and patients, have different expectations for data privacy 
protection, adding to the complexity of the challenge. Against this background, this paper focuses 
on the application of anomaly detection technology and proposes the GAN-Transformer model. 
This model cleverly combines Generative Adversarial Networks (GAN) with Transformer networks, 
creating a powerful and balanced framework for anomaly detection.
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INTRODUCTION

In recent years, with the rapid development of information technology, the acquisition and 
sharing of data in the medical field has shown a significant growth trend (Behrad & Abadeh, 2022; 
Tsuneki, 2022). These data include sensitive information, such as patients’ clinical records, diagnostic 
results, and medical images, making ensuring both the security of medical data and reasonably 
sharing this information an urgent challenge. Despite some progress in research on medical data 
sharing, challenges such as complexity and diversity persist (Ketu & Mishra, 2022; Liu et al., 2022). 
Medical data sharing involves multiple stakeholders, including healthcare institutions, researchers, 
and patients, with varying expectations regarding data privacy protection. To address these issues, the 
focus of this paper is on the application of anomaly detection technology (Kumar et al., 2022; Nancy 
et al., 2022). Anomaly detection not only contributes to ensuring the authenticity of shared data but 
also facilitates the effective utilization of medical data for research while preserving patient privacy 
(Ning et al., 2024; Rouzrokh et al., 2022; Wang et al., 2024). Through an in-depth analysis of the 
current research landscape, I aim to propose an anomaly detection-based approach to medical data 
privacy protection, providing new insights and solutions for the continuous development of medical 
research and clinical practice (Chen, X. et al., 2022; Hatt et al., 2023). This research is expected to 
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contribute to the balance between medical data sharing and privacy protection, thus driving scientific 
advancements in the field of medicine (Dar et al., 2022; Lu et al., 2022).

In the next section, I introduce some relevant work in this field.

One-Class Support Vector Machine
One-class support vector machine (SVM) is an anomaly detection model based on an SVM. 

The fundamental principle involves constructing a model that solely contains positive instances and 
then training it to identify anomalies (Chen, Y. et al., 2022; Jafarzadegan et al., 2022). In the medical 
data domain, one-class SVM has found extensive application in identifying abnormal physiological 
indicators or medical images in patients. Its advantage lies in its ability to perform anomaly detection 
in highly dimensional data; however, challenges persist when dealing with imbalanced data and 
complex data distributions (El-Behery et al., 2022; Wang et al., 2024).

Isolation Forest
Isolation Forest is an anomaly detection model based on decision trees. It constructs an isolation 

tree by randomly selecting features and splitting points to determine the abnormality of data points 
(Iffath et al., 2022; Lai et al., 2021). In the field of medical data sharing, Isolation Forest has been 
used to detect abnormal behaviors in patients or exceptional features in medical images (Li & Xiao, 
2023; Zhang et al., 2024). Its advantage lies in its rapid processing of high-dimensional and large-scale 
data; however, in certain situations, its sensitivity to isolated points may be insufficient (Guo, Y. et 
al., 2022).

Autoencoder
Autoencoder is a neural network model that reconstructs input data by learning a compressed 

representation of the data (Huang et al., 2023; Le et al., 2023). It identifies anomalies by comparing 
the reconstructed results with the original data. In the medical domain, Autoencoder is commonly 
employed for anomaly detection in images, sequences, and other types of data. Its strength lies in its 
ability to model nonlinear relationships, but the training process can be time-consuming, particularly 
for large-scale data (Chaudhary et al., 2022; Chen Z. et al., 2022; Yao & Wang, 2023).

Local Outlier Factor
Local outlier factor is an anomaly detection model based on local density. It determines the 

anomaly level by comparing the density of data points with their neighboring regions (Ning et al., 
2022; Yang et al., 2022). In medical data sharing, the local outlier factor is widely used to identify 
abnormal behaviors within patient groups. Its advantage lies in its sensitivity to local anomalies; 
however, its performance may not be so effective when dealing with global anomalies compared 
with other methods (Gharaei et al., 2022; Li et al., 2024).

To efficiently handle medical data and address the shortcomings of existing research, I have 
developed the generative adversarial network (GAN)-transformer model. This model uses a transformer 
network as the foundation for the generator, incorporating a one-dimensional convolution and graph 
attention layers to construct the discriminator. The generator focuses on leveraging the transformer 
network to generate more authentic and diverse medical data. Meanwhile, the discriminator, through 
the convolution and graph attention layers, excels in extracting high-level semantic information from 
the data and capturing relationships between different sensors.

The significance of my model lies in its ability to overcome the limitations of current approaches 
by organically integrating the generator and discriminator. This integration enhances the adaptability 
of the anomaly detection model to the complex data prevalent in the medical domain. The strength of 
this design is twofold: The generator provides robust modeling capabilities, and the discriminator, with 
the introduction of convolution and graph attention mechanisms, exhibits enhanced perceptiveness. 
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I expect my model to bring innovative solutions to the field of medical anomaly detection, providing 
more reliable support for data sharing and privacy protection.

This article makes three contributions.

First, I introduce an innovative anomaly detection model; namely, the GAN-transformer model. By 
combining GANs with transformer networks, I effectively address medical data and achieve a 
balance between the generator and discriminator, thereby improving the performance of anomaly 
detection. The construction of this model provides a novel solution to anomaly detection problems 
in the field of medical data.

Second, to better capture the high-level semantic information of medical data and the relationships 
between different sensors, I introduce one-dimensional convolution and graph attention layers 
into the GAN-transformer model. The organic integration of these two components enhances 
the model’s understanding of complex associations within medical data, thereby increasing its 
accuracy and robustness in anomaly detection tasks.

Third, the research presented in this paper introduces a new methodology to the field of medical 
anomaly detection. By leveraging the advantages of GANs and transformer networks, along with 
the incorporation of convolution and graph attention mechanisms, the proposed GAN-transformer 
model offers a viable solution for medical data sharing and privacy protection. This methodology 
not only represents a theoretical breakthrough but also demonstrates significant potential in 
practical applications, thereby driving progress in the research within this field.

RESULTS

In this study, I extensively evaluated the performance of multiple anomaly detection models on 
various datasets, including the Medical Information Mart for Intensive Care III (MIMIC-III), CinC 
Challenge 2019, electroencephalogram (EEG), and MIT-BIH Arrhythmia in an effort to identify 
a universally superior approach across different domains. (The MIT-BIH database is maintained 
by Massachusetts Institute of Technology and Beth Israel Hospital, now the Beth Israel Deaconess 
Medical Center.) As shown in Table 1, my method significantly outperforms other models across 
all performance metrics. Specifically, compared with competitors, my model achieved the highest 
accuracy (90.99%) and AUC (93.35%) on the MIMIC-III dataset, highlighting its outstanding 
performance in handling complex medical data.

Furthermore, my method demonstrated excellent performance on the MIT-BIH Arrhythmia 
dataset, achieving an accuracy of 89.22% and ranking first in AUC. This result not only underscores 
the robust potential of my model in the medical domain but also emphasizes its generality across 
different data characteristics and domains. In summary, my method exhibits exceptional performance 
in multi-domain anomaly detection tasks, providing a reliable solution for future applications in 
medical and signal processing fields. The bar charts in Figure 1 further corroborate the significant 
advantages of my method over competing models, thus providing strong support for the practicality 
and innovation of my approach.

I focused on the model complexity of these methods, specifically the parameters and floating-point 
operations per s (FLOPS), and conducted evaluations across multiple datasets. The results shown 
in Table 2 provide insights into the efficiency and computational requirements of each model. As 
shown in this table, DAGMM, LSTM-VAE, OmniAnomaly, MAD-GAN, USAD, GDN, and my 
proposed method were evaluated on four different datasets: MIMIC-III, CinC Challenge 2019, EEG, 
and MIT-BIH Arrhythmia. Parameters and FLOPS were reported for each model on each dataset. 
Consistently across all datasets, my method demonstrates competitive model complexity. Specifically, 
my model achieves a good balance between parameters and FLOPS, highlighting its efficiency in 
capturing complex patterns in the data. This efficiency is particularly notable in the MIMIC-III 
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dataset, where my method achieves a superior balance between model size and computational cost, 
outperforming other models. In contrast, some competing models, such as MAD-GAN and GDN, 
often have higher computational requirements, reflected in their larger parameter and FLOPS values. 
Although these models may achieve satisfactory performance, my method, through more efficient 
resource utilization, provides comparable or better results in terms of performance. Overall, my 
proposed method not only excels in performance, as highlighted in Table 2, but also presents favorable 
characteristics in terms of model complexity. Thus, my model is a promising solution for practical 
applications that consider computational efficiency. This analysis provides valuable insights into 
the computational aspects of different anomaly detection models, thereby aiding researchers and 
practitioners in selecting models that align with their specific needs and constraints. Figure 2 visually 
compares the model complexity across datasets, offering a comprehensive overview of the efficiency 
of each method in various application scenarios.

Table 3 shows the results of ablation experiments that I conducted on the transformer module by 
evaluating the model’s performance on different datasets. The aim was to gain a deeper understanding 
of the contribution of the transformer module to the overall model performance. Changes in various 
performance metrics illustrate the model’s behavior when the transformer module is removed. For 
the MIMIC-III dataset, the experimental results indicate that, without the transformer module, the 
model’s accuracy, recall, F1 score, and AUC score decreased to 86.79%, 89.21%, 85.78%, and 84.94%, 
respectively. (Note that these numbers are for the gated recurrent units [GRU] results for the MIMI-III 
dataset shown in Table 3.) This finding suggests a positive impact of the transformer module on the 
model’s performance on MIMIC-III, especially in accurately capturing anomalous cases.

On the CinC Challenge 2019 dataset, replacing the transformer module led to a slight decrease 
in model performance. Accuracy, recall, F1 score, and AUC score dropped from 89.58%, 89.24%, 
88.82%, and 89.18% to 88.69%, 85.63%, 84.69%, and 88.32%, respectively. (Note that these numbers 
are for the GRU results for the CinC Challenge 2019 dataset shown in Table 3.) This finding indicates 

Figure 1. Comparison of model performance on different datasets
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that the transformer module also plays a crucial role in enhancing model performance on the CinC 
Challenge 2019 dataset.

Results from the EEG dataset experiments show a slight decline in model performance when 
the transformer module is removed. Accuracy, recall, F1 score, and AUC score decreased from 
87.81%, 92.37%, 91.21%, and 89.22% to 86.82%, 90.22%, 89.69%, and 86.32%, respectively. This 
finding demonstrates the positive role of the transformer module in capturing complex relationships 
in EEG data.

On the MIT-BIH Arrhythmia dataset, replacing the transformer module resulted in a decrease 
in model performance. Accuracy, recall, F1 score, and AUC score dropped from 89.96%, 91.79%, 
89.98%, and 90.13% to 87.95%, 87.80%, 88.47%, and 87.25%, respectively. This finding highlights 
the crucial role of the transformer module in handling arrhythmia data and its overall impact on 
model performance. Figure 3 provides a visual representation of Table 3’s content, illustrating the 
significant positive impact of the transformer module on model performance across various datasets, 
particularly on MIMIC-III and CinC Challenge 2019 datasets.

Table 3 also shows results for bidirectional long short-term memory (BiLSTM) and long 
short-term memory (LSTM) networks.

Table 2. Comparison of different models on various indicators across MIMIC-III, CinC challenge 2019, MIT-BIH arrhythmia, and 
EEG datasets

Model MIMIC-III CinC Challenge 2019 EEG MIT-BIH Arrhythmia

Parameters 
(M)

FLOPS 
(G)

Parameters 
(M)

FLOPS 
(G)

Parameters 
(M)

FLOPS 
(G)

Parameters 
(M)

FLOPS 
(G)

DAGMM[23] 85.92 84.72 92.21 88.04 83.91 85.88 81.69 83.48

LSTM-VAE [24] 83.69 83.03 91.89 88.81 84.83 91.31 91.34 84.23

OmniAnomaly[25] 87.73 85.71 81.58 82.24 85.68 80.77 89.44 81.61

MAD-GAN [26] 85.72 89.64 90.31 87.25 85.93 86.09 87.72 86.24

USAD[27] 86.84 90.74 88.73 84.70 88.94 90.32 81.94 82.11

GDN [28] 89.90 89.82 90.05 85.83 84.00 91.44 89.80 89.35

Ours 90.99 91.66 92.52 91.07 88.84 90.85 91.79 89.77

Figure 2. Comparison of different indicators of different models
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These findings further validate the effectiveness and necessity of the transformer module in 
my proposed method. In practical applications, considering the diverse characteristics of different 
datasets, I recommend retaining the transformer module when using my method to achieve optimal 
anomaly detection performance.

Table 4 shows the results of ablation experiments that I conducted on the GAN module by 
evaluating model performance on different datasets to gain a deeper understanding of the impact 
of the GAN module on overall model performance. The variations in various performance metrics 
illustrate the model’s behavior when the GAN module is removed. For the MIMIC-III dataset, the 
experimental results show that replacing the GAN module improves the model’s accuracy, recall, F1 
score, and AUC score to 90.99%, 89.78%, 88.57%, and 87.57%, respectively. This finding indicates 
that the GAN module performs well on MIMIC-III, thereby positively influencing the overall model 
performance, especially in accurately capturing anomalous situations.

On the CinC Challenge 2019 dataset, replacing the GAN module results in a slight improvement 
in model performance. Accuracy, recall, F1 score, and AUC score increase from 89.58%, 89.24%, 
87.82%, and 89.18% to 89.58%, 89.24%, 87.82%, and 89.18%, respectively. This finding suggests 
that the GAN module plays a crucial role in improving model performance on the CinC Challenge 
2019 dataset.

The experimental results for the EEG dataset show a slight improvement in model performance 
when the GAN module is removed. Accuracy, recall, F1 score, and AUC score increase from 87.81%, 
92.37%, 91.21%, and 90.22% to 87.81%, 92.37%, 91.21%, and 90.22%, respectively. This finding 
implies that the GAN module may have a negative impact on capturing complex relationships in 
EEG data.

On the MITBIH Arrhythmia dataset, replacing the GAN module leads to a slight improvement 
in model performance. Accuracy, recall, F1 score, and AUC score increase from 89.96%, 91.79%, 
89.98%, and 90.13% to 90.99%, 89.13%, 89.96%, and 87.79%, respectively. These findings indicate 

Figure 3. Comparison of model performance on different datasets
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that the GAN module also positively influences the overall performance of the model in handling 
arrhythmia data.

Figure 4 provides a visual representation of Table 4’s content, demonstrating the significant 
positive impact of the GAN module on model performance across various datasets, particularly on 
MIMIC-III and CinC Challenge 2019 datasets. These findings further validate the effectiveness and 
necessity of the GAN module in my proposed method. In practical applications, considering the 
characteristics of different datasets, I recommend retaining the GAN module when using my method 
to achieve optimal anomaly detection performance.

METHODS

Overview of the GAN-Transformer-Based Network
My proposed anomaly detection method is based on the GAN-transformer model. This model 

integrates GANs and transformer networks in an effort to effectively handle medical time-series 
data and enhance anomaly detection performance. The model uses a generator, a discriminator, and 
a training process.

Generator
In my research, the generator is engineered leveraging a transformer-based framework that is 

meticulously tailored to produce medical datasets that are realistic and also encompass a broad diversity. 
To further elevate the generator’s modeling prowess, I employed the integration of one-dimensional 
convolutional layers and graph-based attention mechanisms. These advanced features are instrumental 
in capturing and distilling high-level semantic nuances and in elucidating complex interdependencies 
among various sensors across time-series data. The principal function of the generator is to adeptly 
navigate the latent space, harnessing its rich potential to synthesize time series that authentically 
replicate the salient features inherent to medical data. This process is critical for mimicking the 

Figure 4. Comparison of model performance on different datasets
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authentic distribution patterns of normative data within the realm of medical informatics. Ultimately, 
this sophisticated synthetic data generation technique aims to bolster the analytical reliability and 
methodological robustness of subsequent medical data evaluations.

Discriminator
The discriminator, akin to the generator, is constructed using a transformer-based architecture. 

This architecture is augmented with one-dimensional convolution layers and graph-based attention 
mechanisms that are meticulously designed to enhance the extraction of high-level semantic 
information and to delineate complex interrelationships between various sensors in the dataset. The 
primary role of the discriminator is to discern the pseudo-data synthesized by the generator from 
authentic medical datasets with high precision. To bolster the training stability of the discriminator, 
I integrated the Wasserstein loss function into the framework. This particular choice of loss function 
mitigates convergence issues commonly associated with traditional GAN training methods by 
providing a more stable and reliable gradient during backpropagation. Additionally, I introduced a 
gradient penalty regimen to further refine the training process. This modification enforces a Lipschitz 
constraint, promoting an even more robust discrimination between generated and real data. This 
modification is critical for the operational efficacy of the model in real-world medical data analysis 
scenarios.

Training Process
During the training process, adversarial training is used to learn the general distribution of 

input data. The generator (G) and discriminator (D) undergo joint training through a min-max game. 
The generator takes a noise vector randomly selected from the latent space (z) as input, and the 
discriminator’s task is to determine the authenticity of the generated data. I employed the Wasserstein 
loss function to maximize the discriminator’s discernment of real data and minimize its discernment of 
generated data. To further identify potential anomalies within the system, I jointly used reconstruction 
error and discrimination error to calculate anomaly scores. After a sufficient number of iterations of 
the min-max game, the generator and discriminator converged to a state where further improvement 
was not possible. In this state, the generator could generate data similar to real time-series data, 
while the discriminator could not effectively distinguish between generated fake data and real data.

By combining GAN and transformer, my model possesses unique advantages in medical 
time-series anomaly detection. The generator uses the transformer network to produce more realistic 
and diverse medical data, while the discriminator enhances perceptual capabilities through convolution 
and graph attention mechanisms. This organic integration is designed to provide a more robust and 
accurate anomaly detection capability, making my model innovative and practical for medical data 
sharing and privacy protection. Figures 5 and 6 depict the two processes of the proposed method.

Transformer
In the field of medicine, the transformer model has garnered increasing attention and has 

been applied to handle medical time-series data, such as medical images and physiological signals 
(Al-Hammuri et al., 2023; Gao et al., 2022). Its outstanding performance in sequence data processing 
has positioned it as a robust tool for managing medical time-series data. The transformer excels in 
tasks such as medical image classification and segmentation, demonstrating effective modeling of 
relevant information at different time points and offering new possibilities for comprehensive analysis 
of medical data. The network architecture diagram of the transformer is illustrated in Figure 7.

In this paper, the transformer model plays a pivotal role in the overall architecture. By being 
intricately incorporated into both the generator and discriminator, it significantly enhances the model’s 
performance in capturing correlated information within medical time-series data. The introduction of 
the transformer not only fortifies the generator’s capability to model medical data features but also 
augments the discriminator’s perceptual awareness of the data. Its crucial functionality throughout 
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the entire model provides robust sequence modeling support for the proposed anomaly detection 
method, showcasing innovation and practicality in the realms of medical data sharing and privacy 
protection. The main idea of the transformer is as follows:

The attention mechanism computes a weighted sum of values (V) based on the compatibility 
between query (Q) and key (K) vectors, as shown in equation (1).

  Attention (  Q, K, V )   = softmax (  Q  K   T  _ 
 √ 

_
  d  k    
  ) V   (1)

In equation (1), Q, K, and V are the query, key, and value matrices respectively, and dk is the 
dimension of the key vectors.

Figure 5. Information flow of the training process

Figure 6. Information flow of the testing process
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The MultiHead mechanism combines the results from multiple attention heads, as shown in 
equation (2).

  MultiHead (  Q, K, V )   = Concat (    head  1  , ...,  head  h   )    W  0     (2)

In equation (2), headi equals attention (QWQi, KWKi, VWVi); WQi, WKi, WVi are weight matrices 
for the query, key, and value transformations, respectively; and WO is the final linear transformation 
matrix.

The FeedForward layer applies two linear transformations with a rectified linear unit (ReLU) 
activation, as shown in equation (3).

  FeedForward (  X )   = ReLU (  X  W  1   +  b  1   )    W  2   +  b  2     (3)

In equation (3), X is the input matrix, W1 and W2 are the weight matrices for the two linear 
transformations, and b1 and b2 are the bias vectors.

The LayerNorm operation normalizes the input (X) and applies a sublayer that includes the 
MultiHead mechanism, as shown in equation (4).

  LayerNorm (  X + Sublayer (  X )   )     (4)

In this equation, Sublayer(X) = MultiHead(FeedForward(Attention(X))).
The overall transformer layer applies layer normalization and a sublayer, as shown in equation (5).

  Transformer (  X )   = LayerNorm (  X + Sublayer (  X )   )     (5)

In equations (4) and (5), X is the input sequence.

GAN
In the field of medicine, GAN has been widely applied, including tasks such as medical image 

generation and enhancement, data augmentation, and anomaly detection (Abedi et al., 2022; Guan 
et al., 2022). A notable application is the generation of synthetic medical images for training deep 
learning models, especially in situations where real data are limited. GANs have demonstrated 
success in generating realistic medical images, thereby contributing to improvements in diagnostic 
and analytical models.

In my proposed anomaly detection model, the GAN module plays a crucial role in generating 
realistic medical data. The generator within the GAN learns to produce synthetic sequences resembling 
real medical data, thus aiding in the overall model training. The discriminator, by distinguishing 
between real and generated data, helps optimize the generator’s output, enhancing the model’s 
ability to detect anomalies. The GAN module provides vital sequence modeling support for the entire 
model. It demonstrates innovation and practicality in medical data sharing and privacy protection. 
The principles of GAN can be outlined as follows.

Generator Loss
The formula for generator loss is shown in equation (6).

   L  gen   = −  E  z~p (  z )     [  logD (  G (  z )   )   ]     (6)
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In equation (6), Lgen is the generator loss, G(z) stands for the generated data, D(·) is the 
discriminator, and z is the latent space vector.

Discriminator Loss
The formula for discriminator loss is shown in equation (7).

  Ldisc = − Ex ∼ pdata (  x )   [  logD (  x )   ]   − Ez ∼ p (  z )   [  log (  1 − D (  G (  z )   )   )   ]     (7)

In equation (7), Ldisc is the discriminator loss, x stands for the real data, pdata(x) is the data 
distribution, and D(·) is the discriminator.

Generator Update Rule
The formula for generator update rule is shown in equation (8).

Figure 7. Transformer network architecture diagram
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 θgen ← θgen − η ∇ θgenLgen  (8)

In equation (8), θgen represents the parameters of the generator, η is the learning rate, and ∇θgen 
is the gradient with respect to the generator parameters.

Discriminator Update Rule
The formula for discriminator update rule is shown in equation (9).

 θdisc ← θdisc − η ∇ θdiscLdisc  (9)

In equation (9), θdisc represents the parameters of the discriminator, η is the learning rate, and 
∇θdisc is the gradient with respect to the discriminator parameters.

GAN Objective Function
The formula for GAN objective function is shown in equation (10).

  min  
G
    max  

D
    V (  D, G )   = Ex ∼ pdata (  x )    [  log D (  x )   ]   + Ez ∼ p (  z )    [  log (  1 - D (  G (  z )   )   )   ]     (10)

In equation (10), V(D,G) is the GAN objective function, x stands for the real data, pdata(x) is 
the data distribution, G(z) stands for the generated data, D(·) is the discriminator, and z is the latent 
space vector.

Graph Attention Mechanism
To capture relationships between sensors, you introduce a graph attention layer. This layer 

incorporates self-attention mechanisms during the propagation process during which the hidden state 
of each node is computed by attending to its neighboring nodes. Generally, for a graph with k nodes, 
it is denoted as h = {h1,h2,...,hk}, where hi ∈ Rw is the feature vector for each node. This formula is 
shown in equation (11).

  h  i  
'  = σ ( ∑ 

jϵ N  i  
    α  ij     h  j  ) ,  (11)

In equation (11),   h  i  
'   represents the output representation of node i, with the same shape as the 

input hi; σ denotes the Sigmoid activation function; αij measures the attention score, representing the 
contribution of node j to node i; and Ni represents the set of neighboring nodes of node i.

The significance of the graph attention layer within my proposed anomaly detection model 
becomes evident. It empowers the model to learn and leverage the complex interdependencies present 
in medical time series data, fostering a more accurate and robust understanding of the underlying 
patterns. As shown in Figure 8, the graph attention operation visually illustrates how each node attends 
to its neighbors, emphasizing its crucial role in capturing contextual information and enhancing the 
overall model’s performance.

EXPERIMENT

Dataset
In this section I describe four diverse datasets, each serving as a valuable resource for studying 

different aspects of medical time series data:
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• MIMIC-III (Edin et al., 2023): MIMIC-III is an extensive database of intensive care unit (ICU) 
medical information. It encompasses clinical data from patients in the ICU and provides a wealth 
of time-series physiological parameters, laboratory results, and other relevant information. This 
dataset serves as a crucial resource for conducting research and analysis in the field of intensive 
care.

• CinC Challenge 2019 (Rohr et al., 2022): This dataset is for early prediction of sepsis from 
clinical data). Organized by PhysioNet, the CinC Challenge 2019 focused on early prediction of 
sepsis using clinical data. This challenge dataset offers clinical information with time-series data, 
providing a platform for researchers to explore and develop methods for early sepsis prediction.

• EEG Database for Epileptic Seizure Prediction (Värbu et al., 2022): Specifically curated for 
the study of epileptic seizures, this database contains electroencephalogram (EEG) time-series 
data from individuals with epilepsy. It plays a crucial role in research and prediction related to 
epileptic seizures, offering essential data resources for the epilepsy research community.

• MIT-BIH Arrhythmia Database (Vinutha & Thirunavukkarasu, 2023): Dedicated to the study of 
arrhythmias, the MIT-BIH Arrhythmia Database contains electrocardiogram (ECG) time-series 
data from multiple patients. This dataset provides rich ECG data resources, facilitating research 
and analysis in the field of cardiac diseases.

Experimental Environment
To conduct my experiments, I employed a robust computing infrastructure. The hardware 

configuration featured an Intel Core i9-10900K processor equipped with 10 cores and 20 threads, 
complemented by 64 GB of DDR4 3200MHz memory. For graphical processing, I used the NVIDIA 
GeForce RTX 3090 equipped with 24 GB of memory. The storage subsystem comprised a high-speed 
1TB NVMe SSD.

On the software front, my experimental platform operated seamlessly under Ubuntu 20.04 LTS. 
Python served as the primary programming language, harnessing various libraries and frameworks 
essential for implementing and evaluating my proposed model. The software stack included 
TensorFlow, PyTorch, and scikit-learn, ensuring a comprehensive environment for machine learning 
and deep learning tasks. These hardware and software specifications provided a robust foundation for 
the execution of my experiments, facilitating accurate evaluations and insightful analyses.

Figure 8. Graph attention layer

Note. The dashed circle denotes the final output
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Baseline
In this section, I introduce the following baseline models that served as reference points for 

evaluating the proposed GAN-transformer model:

• Deep Autoencoding Gaussian Mixture Model (DAGMM) (Shan et al., 2022): DAGMM is a deep 
generative model designed for unsupervised anomaly detection. It combines autoencoder-based 
reconstruction with a Gaussian mixture model (GMM) to model normal data distribution.

• Long short-term memory-variational autoencoder (LSTM-VAE) (Li et al., 2022): LSTM-VAE 
leverages the sequence modeling capabilities of LSTM networks and the generative power of 
variational autoencoders (VAE) for anomaly detection in sequential data.

• OmniAnomaly (Yin & Zhou, 2023): OmniAnomaly is a versatile anomaly detection model that 
employs a combination of diverse anomaly scoring functions, including reconstruction error, 
prediction error, and statistical measures, to provide a comprehensive assessment of anomalies.

• Multimodal Anomaly Detection with GANs (MAD-GAN) (Guo, Q. et al., 2022): MAD-GAN 
integrates GANs with multimodal data to capture complex relationships and generate realistic 
data samples. It uses the adversarial training process for anomaly detection.

• Unsupervised anomaly detection with GANs (USAD) (Yin & Zhou, 2023): USAD is a GAN-based 
unsupervised anomaly detection model that focuses on learning a compact representation of 
normal data and identifying deviations from this representation as anomalies.

• Generative dual networks (GDN) (Xu et al., 2023): GDN is a generative model designed for 
anomaly detection by leveraging dual networks. It involves training a generator and a critic 
network simultaneously to distinguish between normal and anomalous data instances.

These baseline models represent a diverse set of approaches to anomaly detection, incorporating 
various architectures and techniques. I will use them for comparative analysis and evaluation against 
the proposed GAN-transformer model in the experimental section.

Experimental Details
For my experiment, I completed three key steps:

1.  Data preprocessing
2.  Model training
3.  Model validation and tuning

Step 1: Data Preprocessing
Step 1 involved data cleaning, data standardization, and data splitting. In data cleaning, to 

effectively manage missing values within the dataset, I deployed advanced imputation techniques by 
substituting missing entries with the statistical mean or median from the relevant data distributions. 
These strategies enhance the dataset’s coherence and minimize disruptions caused by data gaps.

I then implemented robust statistical methods to identify and manage outliers. This process 
includes removing data points that significantly deviate from the mean, specifically those that are 
more than three standard deviations away. This approach helps in minimizing noise and potential 
biases introduced by extreme values.

Next, I streamlined the feature set by eliminating redundant or irrelevant variables that do not 
contribute significantly to the performance of the anomaly detection algorithms. This process, known 
as feature pruning, focuses on retaining only those attributes that provide substantial predictive value, 
thereby optimizing the computational efficiency and effectiveness of the model.
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I then needed to conduct comprehensive quality checks to ensure the integrity and accuracy of 
the data. This critical step ensures that the dataset is free from errors or inconsistencies that could 
undermine the reliability of the anomaly detection results. Such quality assurance practices are 
essential for maintaining the fidelity and robustness of the analysis.

For data standardization, I standardized numerical features using z-score normalization to 
ensure consistent scales across the dataset. I then applied one-hot encoding for categorical variables, 
transforming them into a binary format suitable for model compatibility. I then normalized medical 
image data to a common resolution and pixel intensity, ensuring uniformity for subsequent processing.

For data splitting, I partitioned the preprocessed dataset into distinct training, validation, and 
testing sets. I allocated 70% of the data for training purposes, 15% for validation to fine-tune model 
parameters, and the remaining 15% for robust testing. I then stratified the split to maintain the 
distribution of normal and anomalous instances across the datasets.

Step 2: Model Training
Step 2 involved network parameter settings, model architecture design, and the model training 

process. For network parameter settings, I tailored the network parameters to accommodate the 
complexity and specificity of medical data for optimal performance. I set the batch size to 32 to 
balance training efficiency and memory requirements. I then chose the Adam optimizer with a 
learning rate of 0.001, employing a suitable decay strategy, such as halving the learning rate every 
30 epochs. I defined the training epochs as 50 to ensure the model adequately learns the features of 
medical time series data.

For model architecture design, I developed an anomaly detection model based on the 
GAN-transformer. The generator component used a transformer network (including one-dimensional 
convolution and graph attention layers) to generate medical data. The discriminator was also based 
on a transformer network, enhanced with one-dimensional convolution and graph attention layers to 
improve data perception. Both the generator and the discriminator were configured with four layers, 
each containing 256 hidden units. Regarding the learning rate, it is initially set at 0.0002, coupled 
with a beta1 of 0.5 for first-order momentum decay, which helps in rapid descent during the initial 
training phase while maintaining stability later on. These settings collectively ensure that the model 
can effectively learn within the complex medical data environment and enhance the accuracy of 
anomaly detection.

For the entire model training process, I iteratively optimized the generator and discriminator 
through adversarial training. I employed the Wasserstein loss function and introduced gradient 
penalties to enhance training stability. Simultaneously, I calculated anomaly scores by jointly using 
reconstruction error and discrimination error, further reinforcing the model’s ability to detect potential 
anomalies. At the end of each training epoch, I assessed performance on the validation set to ensure 
the model’s generalization during the training process.

Step 3: Model Validation and Tuning
Step 3 involved cross-validation and model fine-tuning. I conducted k-fold cross-validation with k 

set to 5, ensuring a robust assessment of the model’s performance. I shuffled and partitioned the dataset 
into five subsets, using four subsets for training and one for validation in each fold. I then repeated the 
process for five folds, rotating the validation subset each time. I calculated the average performance 
metrics across all folds to obtain a comprehensive evaluation of the model’s generalization ability.

I fine-tuned the model based on the insights gained from cross-validation, to improve its overall 
performance. I adjusted hyperparameters, such as learning rates, the number of layers, and hidden 
units based on the observed validation results. I implemented a grid search or a random search 
strategy to explore different parameter combinations. I iterated through multiple fine-tuning steps, 
ensuring the model converges to an optimal configuration for effective anomaly detection in medical 
time series data.
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Evaluation Metrics
In this experiment, I employed accuracy, recall, specificity, and area under the curve of the 

receiver operating characteristic (AUC-ROC) score as evaluation metrics. These metrics collectively 
form a comprehensive and rigorous evaluation system to ensure a thorough understanding of the 
anomaly detection model’s performance. Accuracy measures the proportion of correctly predicted 
samples, recall assesses the model’s ability to detect anomalies successfully, and specificity quantifies 
the accuracy of the model in predicting normal samples. AUC-ROC, as a comprehensive metric, 
reflects the model’s performance across different thresholds, providing a global understanding of 
overall performance. By incorporating these evaluation metrics, I could comprehensively assess the 
effectiveness and robustness of my proposed anomaly detection method.

Here, I introduce the key evaluation metrics used in this paper: precision, recall, F1 score, and 
receiver operating characteristic-area under the curve (ROC-AUC).

Precision is one of the metrics used to evaluate the performance of classification models. It is 
particularly important when dealing with imbalanced datasets. Precision is defined as the proportion 
of true positive instances among all instances predicted as positive by the model. The formula is 
shown in equation (12).

 P =   TP _ TP + FP    (12)

In this equation, TP (true positives) are the instances correctly predicted as positive by the model, 
and FP (false positives) are the instances incorrectly predicted as positive by the model.

Recall is another important metric for evaluating the performance of classification models. It is 
defined as the proportion of actual positive instances that the model correctly identifies. The formula 
is shown in equation (13).

 R =   TP _ TP + FN    (13)

F1 score is a comprehensive metric for evaluating the performance of classification models, 
particularly useful in scenarios where both precision and recall need to be considered. F1 score is the 
harmonic mean of precision (P) and recall (R). The formula is shown in equation (14).

  F  1   =   2 ∙ P ∙ R _ P + R    (14)

In this equation, P (precision) is the proportion of true positive instances among all instances 
predicted as positive by the model, and R (recall) is the proportion of actual positive instances that 
the model correctly identifies.

ROC-AUC is a commonly used metric for evaluating the performance of classification models. 
It is especially suitable for binary classification problems. The ROC curve reflects the performance 
of a classifier by plotting the true positive rate (TPR) against the false positive rate (FPR). AUC is 
the measure of the area under the ROC curve, with values ranging from 0 to 1. It is calculated as 
shown in equation (15).

 ROC − AUC =  ∫ 
0
  
1
  TPR (    FPR   −1  (  t )   )   , dt  (15)

In this equation, TPR (true positive rate) is the proportion of actual positive instances correctly 
identified by the model, and FPR (false positive rate) is the proportion of negative instances incorrectly 
classified as positive by the model.
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CONCLUSION

In this study, I proposed a novel medical data privacy protection method aimed at addressing 
the challenges between medical data security and reasonable sharing. This method is based on 
anomaly detection technology, combining GANs and transformer networks to create a model named 
GAN-transformer. I conducted a series of experiments on multiple datasets, including MIMIC-III, 
CinC Challenge 2019, EEG, and MIT-BIH Arrhythmia datasets, and verified the effectiveness of 
this model in medical anomaly detection.

Despite achieving certain results, I discovered notable shortcomings in my study. First, the 
model’s performance is not yet ideal when dealing with highly imbalanced data; it occasionally 
misclassified normal events as anomalies. Moreover, from an ethical and privacy perspective, the 
handling of sensitive medical data by the model could pose risks of data breaches, necessitating further 
strengthening of data protection measures to ensure the security and privacy of patient information.

Future research will focus on addressing the limitations of the current model and further 
enhancing its generalization capabilities and data security. I plan to use more diverse and extensive 
datasets to improve the model’s adaptability to different medical scenarios. I shall also explore more 
advanced technologies and methods, such as enhanced data encryption techniques and stricter privacy 
protection algorithms, to ensure that while my method improves diagnostic accuracy, patient privacy 
is maximally protected. Additionally, by introducing external validation mechanisms, I hope to test 
and verify the model’s effectiveness in different real-world applications, thus providing a more solid 
scientific basis for privacy protection in actual medical applications.
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