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ABSTRACT

With the development of smart education, gaining insights into students’ understanding during 
the learning process is crucial in teaching. However, traditional knowledge tracking methods face 
challenges in capturing the intricate relationships between problems and knowledge points, as well 
as students’ temporal learning changes. Therefore, we design a knowledge tracking model based on 
a graph temporal fusion network. Firstly, we construct the structure of the question and knowledge 
skill graph. Then, we design a knowledge graph encoder layer to capture the complex relationships 
between questions and knowledge skills. Next, we apply a sequential information extraction layer 
to dynamically model the outputs of each layer in the upper network over time, capturing students’ 
knowledge changes at different time steps. Finally, we use a dynamic attention aggregation network to 
learn node information at different levels and time sequences. Experimental results on three datasets 
demonstrate the effectiveness of our method.
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In the modern educational environment (Park & Kwon, 2023), there is a growing demand for 
personalized learning and intelligent-assisted education. Understanding students’ mastery levels during 
the learning process is crucial for providing tailored educational support. Traditional assessment 
methods often struggle to accurately capture students’ learning processes. KT, as an assessment method 
based on student behavior, offers a more comprehensive understanding of students’ comprehension 
levels by analyzing their learning activities.

KT involves predicting a student’s mastery of specific concepts based on their learning activity 
history. This not only provides targeted teaching recommendations for educators but also offers 
personalized learning paths for students. In the past, KT models primarily utilized Bayesian network 
methods. However, with the widespread adoption of DL techniques, KT methods based on DL have 
become increasingly prevalent.
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Corbett and Anderson (2005) first introduce the incorporation of Bayesian Knowledge Tracing 
into intelligent teaching. The core of this approach is based on an HMM probabilistic model with a 
focus on time-series data. It tracks and analyzes the probability of students mastering a knowledge 
point at the next time step. Agarwal et al. (2020) propose the MS-BKT to address issues in the BKT 
model, such as the constant learning rate and only two knowledge states. The MS-BKT model extends 
the knowledge states to 21, offering a more effective assessment of students’ learning states. In recent 
years, DL methods, known for their powerful feature extraction capabilities and the ability to operate 
without the need for manually-labeled data, have garnered widespread attention among researchers. 
Piech et al. (2015) introduce the DKT model. Although this method effectively alleviates many issues 
associated with traditional BKT models, the lack of interpretability and the absence of learned features 
in the input and output mechanisms of DL models constrain the practical application of KT models in 
teaching. Following the remarkable success of GNN in various fields, Nakagawa et al. (2019) introduce 
the GKT based on GNN (Zhou et al., 2018). It formulates a conceptual graph structure, treating the 
KT task as a node-level classification problem. Nevertheless, it inadequately incorporates information 
about the learner’s evolving states across different time steps. Pandey & Srivastava (2020) propose 
RKT, incorporating a context-aware self-attention network layer that integrates exercise relationship 
character and student performance data. In general, many methods can construct graph structures 
or use attention networks to learn students’ learning state information effectively. However, these 
methods tend to capture students’ learning states from a singular perspective, such as using GCN or 
attention networks to learn high-order relationships between problems and knowledge points. This 
limitation makes it challenging to capture the complex relationships between problems and knowledge 
points effectively. Additionally, there is a scarcity of research considering the evolving information 
about students’ learning states over time.

Based on this, we design the KT Model based on GTFN. Firstly, we construct the structure of the 
question and knowledge skill graph. Then, we employ the GAT to capture the complex relationships 
between problems and knowledge points (Velickovic et al., 2017; Yang et al., 2023). A sequential 
dynamic modeling approach is introduced, utilizing the GRU to perform temporal dynamic modeling 
on the output of the multi-layered GAT network (Han et al., 2022), effectively capturing changes in 
students’ knowledge at different time steps. Finally, a Dynamic Attention Aggregation Network is 
proposed, using the GAT network output as the query matrix for the attention network, effectively 
integrating node information at different levels and time sequences. To summarize, our principal 
contributions can be outlined as follows:

1. 	 Graph Temporal Fusion Method: We utilize the GAT to capture the complex relationships 
between problems and knowledge points. This enhances effective understanding of students’ 
learning processes.

2. 	 Temporal Dynamic Modeling: We employ a multi-layered GRU network for sequential dynamic 
modeling of GAT network outputs. This captures changes in students’ knowledge at different 
time steps, strengthening the model’s capability for temporal dynamic modeling of learning 
trajectories.

3. 	 Dynamic Attention Aggregation Network: We introduce a dynamic attention mechanism that 
comprehensively considers GAT and GRU network outputs, integrating node information at 
different levels and time sequences. This improves the model’s adaptability to the complexity 
of students’ learning trajectories.

The remaining sections of this paper are organized as follows: We introduce related work; define 
the problem; present the DTFN model; cover experiments and evaluations; discuss the findings; and 
summarize the entire document.
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Related Work

KT Models Based on Bayesian
Based on the BKT (Corbett & Anderson, 2005), which is a commonly used approach in establishing 
models for student learning sequences, an HMM is employed to treat a student’s knowledge state 
as a latent variable. Nevertheless, this methodology is oriented around KCs, where KC serves as a 
universal term encompassing knowledge points, concepts, skills, or items. Consequently, all students 
share a common set of parameters for a given KC, leading to a situation in which students at an 
intermediate or higher proficiency level persistently receive a substantial volume of recommended 
exercises, even after mastering a specific KC. This, in turn, necessitates the completion of redundant 
practice questions. To address this issue, many scholars are extending the BKT model from different 
perspectives to enhance its practicality and accuracy. Pardos and Heffernan (2010) propose a learning 
model whereby different students have different initial background knowledge probabilities, enabling 
more accurate estimates of when a student masters a KC.

As most of the extended BKT models are based on HMM, they assume a constant learning rate 
after answering questions, making it difficult to balance recent and historical exercise data for students, 
which is not in line with the objective reality. Agarwal et al. (2020) propose the MS-BKT model, 
replacing the fixed learning rate with a recent rate weight based on a student’s overall situation. This 
method captures the student’s progress through data rather than attempting to assume continuous 
learning. The model extends the knowledge states from the typical two states to 21 states, steadily 
updating estimates over time. This better captures the complexity of correct and incorrect sequences. 
Overall, Bayesian network-based methods have relatively simple model constructions but possess 
powerful interpretability.

Knowledge Tracing Models Based on DL
Following the advancement of DL technology, an increasing number of DL models have been 
thoroughly researched and introduced into KT tasks. Piech et al. (2015) propose the DKT method, 
which is the first to apply DL to KT tasks. It captures more complex student knowledge states 
without the need for explicit encoding of the knowledge domain. Su et al. (2021) introduce 
TC-MIRT, constructing time-enhanced and concept-enhanced network components. This 
enables the model to perform trend predictions and generate interpretable parameters within 
each specific knowledge domain. Therefore, Minn et al. (2018) propose DKT-DSC, combining 
k-means clustering with Euclidean distance. By considering students’ abilities and practice skill 
personalized input vectors, DKT-DSC captures the evolution of student capabilities over time, 
periodically and dynamically assigning students to different groups with similar abilities. Lasheng 
(2020) introduces the SAEN model, which integrates heterogeneous features of students with 
relevant information on forgetting behaviors.

Due to the DKT model representing the mastery of students over KC with hidden states, it cannot 
provide detailed output regarding students’ mastery levels for each KC. Yang S. et al. (2020) combine 
the forgetting curve theory, which posits that human memory declines over time, and propose the CKT 
model. This model uses LSTM to capture long-term features and leverages 3D Conv to enhance the 
short-term effects of recent exercises, effectively modeling the forgetting curve in students’ learning 
processes. Nakagawa et al. (2019), for the first time, apply GNN to KT, proposing the GKT method. 
This method enhances prediction accuracy without relying on any additional information. However, 
this method only uses KC as input, overlooking issues such as multiple KCs and the impact between 
exercises. Yang Y. et al. (2020) introduce the GIKT model, utilizing GCN networks to aggregate 
exercise-KC embedding features learned from high-order relationships. It directly incorporates exercise 
embeddings with corresponding answer embeddings as inputs for the KT model.
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Although GCN performs well in aggregating neighborhood features on graph structures, it 
treats each node feature equally when aggregating neighborhood features, which is unfair. Ghosh 
et al. (2020) propose the AKT model, which uses a novel monotonic attention network to connect 
learners’ future answers to assessment questions with their past answers. This approach captures 
individual differences under the same question concept without the need for excessive parameters. 
However, the attention layers are shallow, making it challenging to learn relationships between features 
effectively. Tu et al. (2023) introduce DGKT to address two major shortcomings in knowledge tracing 
research. It proposes static embeddings and dynamic embeddings, representing stable attributes 
and time-varying properties of students, questions, and concepts respectively, and utilizes graph 
self-supervised learning to enrich static embeddings of questions and concepts. To consider the 
varying importance of different questions for students, Liu et al. (2022) introduce QDEKT, which 
comprehensively considers the difficulty of questions and knowledge concepts. They incorporate 
students’ real and predicted responses to assess students’ knowledge acquisition capabilities and 
dynamically update their knowledge states. Introducing additional features can effectively enhance 
predictive capabilities. Yang et al. (2022) propose SHDKT, introducing skill concurrency graphs and a 
hierarchical skill representation module to explore sequential and co-occurrence relationships between 
skills. They supplement students’ corresponding information into the question and knowledge skill 
graphs using a multi-layer GNN network to learn hierarchical representations of skills, where each 
layer represents a skill level. Extracting information representations at different levels has a certain 
effect. However, it does not account for the dynamic changes in students’ learning states. Cui et al. 
(2024) propose DGEKT, which establishes a dual graph structure of student learning interactions, 
capturing exercise-concept associations and interaction transitions. Additionally, it introduces online 
knowledge distillation to form a stronger ensemble teacher model, enhancing modeling capability.

In summary, current approaches vary in their proposals, some suggesting the use of graph 
algorithms to learn node feature information from the structures of question and knowledge skill 
graphs, while others augment features to better represent students’ learning states. However, few 
methods consider incorporating the evolving learning state information of students while utilizing 
graph-based algorithms. Considering this, we propose the GTFN method. Firstly, it constructs a 
graph of questions and knowledge skills, then employs a GAT to learn node feature representations 
from the graph. Utilizing a GRU network capable of capturing students’ learning states, it captures 
students’ knowledge changes at different time steps across multiple GAT network layers, achieving 
temporal dynamic modeling of learning trajectories. Overall, the model effectively captures both 
node feature information within the graph and the changing information of students’ learning states.

Preliminary

Symbol Annotations
See Tables 1 and 2.

Knowledge Tracing

Consider a time series representing a student’s learning process S q a q a q a
t t

= ( ) ( ) … ( ){ }1 1 2 2
, , , , , , , 

where q
t
 is the t -th question, and a

t
 is the student’s response to the question (binary value). The 

objective of KT is to predict the student’s responseP a S
t+( )1

 to a given question q
t+1  at the t + 1  

time step.
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Question and Knowledge Skill Graph

Assuming there is a set of questions Q q q q
M

= …{ }1 2
, , ,  and a set of knowledge points 

K k k k
N

= …{ }1 2
, , , , we construct a graph G V E= ( , )  where the node set V  includes questions or 

knowledge points. The edge set E  represents the relationships between questions and knowledge 
points, which can be determined based on the correlation or dependency between questions and 
knowledge points.

Method

Overview of the GTFN Model
The KT Model based on GTFN comprises several components. As shown in Figure 1, by constructing 
a graph structure for questions and knowledge points, the model then utilizes a Knowledge Graph 
Encoder layer to introduce GAT to capture the intricate relationships. Subsequently, in the Sequential 
Information Integrator layer, a multi-layer GRU is employed to model the temporal evolution of 
knowledge dynamically, capturing changes in a student’s understanding at different time steps. Finally, 
through the Dynamic Attention Aggregation Network, the model effectively integrates the outputs of 
GAT and GRU, considering node information at different levels and time sequences.

Table 1. Symbol Annotations for the GTFN Model

Names Details

q
t

The t -th question

a
t Accuracy of student responses to questions

Q Set of Questions

K Set of Knowledge Points

G Question-Knowledge Graph

h
v Initial Feature Representation of Node v

e
ij
l

Attention Weight Coefficients

h
i
l+1 Representation of Node i

a
ij
l k, Attention Coefficients for the k -th Subspace

h
v

GRUl GRU Processing on GAT Layer l Output

h
v
final

The Final Node Representation
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Knowledge Graph Encoder
The GAT is a type of GNN network designed specifically to handle complex relationships between 
nodes in a graph structure. In KT tasks, there may be various types of associations between questions 
and knowledge points, and this network can effectively capture these intricate relationships through 
an adaptive attention mechanism.

For each node v VÎ , the Embedding method is employed to obtain the initial feature 
representationh

v
 (Cui et al., 2017). For each layer l , the attention weight coefficients e

ij
l , attention 

coefficients a
ij
l , and the weighted aggregation features h

i
l+1  for the neighboring nodes of node i  are 

computed as follows:

e h h
ij
l l l

i
l l

j
l= ( )( )LeakyReLU a W W 	 (1)

Table 2. The Table of Abbreviations

Abbr. Full Name

AKT Attentive Knowledge Tracing

BKT Bayesian Knowledge Tracing Model

CKT Convolutional Knowledge Tracing

DAAN Dynamic Attention Aggregation Network

DKT-DSC DKT With Dynamic Student Classification

DL Deep Learning

DGKT A Graph-Based Dynamic Interactive Knowledge Tracing Method

DGEKT A Dual Graph Ensemble Learning Method for Knowledge Tracing

GAT Graph Attention Network

GCN Graph Convolutional Networks

GIKT Graph-Based Interaction Model for Knowledge Tracing

GKT Graph Knowledge Tracing Model

GKT Graph Knowledge Tracing

GNN Graph Neural Networks

GRU Gated Recurrent Unit

GTFN Knowledge Tracing Model based on Graph Temporal Fusion Networks

HMM Hidden Markov Model

KCs Knowledge Components

KT Knowledge Tracing

MS-BKT Multistate-Bayesian Knowledge Tracing Model

QDEKT Knowledge Tracing with Multi-Feature Fusion and Question Difficulty

RKT Relation Knowledge Tracing

SAEN Stacked Auto-Encoder Network

TC-MIRT Time-And-Concept Enhanced Deep MIRT
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a
ij
l ij

l

k
ik
l

e

e
i

=
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( )∑

exp

exp
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h h
i
l

ij
l

j

l
j
l

i

+

∈

= ( )










∑1 σ α


W 	 (3)

where 
i
 represents the set of adjacent nodes for node i , and s  is the activation function.

Subsequently, a multi-head attention network is employed to compute multiple sets of attention 
weights in parallel. Finally, these sets are concatenated together:

h h
i
l

k
K

ij
l k

j

l k
j
l

i

+
=

∈

= ( )










∑1
1
σ α , ,



W 	 (4)

where a
ij
l k,  is the attention coefficient for the k -th subspace.

Figure 1. Overall Framework of the GTFN Model
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Sequential Information Integrator
GRU is a type of RNN structure suitable for sequential data, effectively capturing temporal information 
within input sequences. As the output of each layer in the GAT network can be considered as the 
evolution of node information at different time steps, this method is employed to model these dynamics. 
By processing the network outputs at each layer, GTFN can dynamically learn representations of 
nodes at different hierarchical levels. The gating mechanism assists the model in selectively updating 
and forgetting information.

The output [ , ,..., ]h h h
v v v

L1 2  of each layer l  in the GAT network serves as the input sequence for 
the GRU, whereL is the layer number. Subsequently, the GRU network is used to process the input 
sequences for each node, resulting in the output h

v

GRUl  for each layer’s information:

h GRU h h h
v

GRU

v v v
Ll = ([ , ,..., ])1 2 	 (5)

Dynamic Attention Aggregation Network
To adjust the focus of attention dynamically based on the specific context of questions and knowledge 
points, a dynamic and flexible attention mechanism is designed. This helps improve the model’s 
generalization, allowing it to perform well on various combinations of questions and knowledge points.

By using the output of the last layer of the GAT network as the query matrix, the model can 
globally attend to the features of nodes in the graph structure. This aids in better understanding of 
the importance of nodes throughout the entire graph. The key-value matrix of the attention network 
is formed by the multi-layer outputs of the GRU network, as it provides information about nodes at 
different levels. This includes features from different abstract levels, ranging from lower to higher 
layers. Concatenating these matrices enables the model to consider information from different 
hierarchical levels comprehensively:

Q W h
v

Q
v
L= 	 (6)

h h h h
v
GRU

v

GRU

v

GRU

v

GRUL= [ , ,..., ]1 2 	 (7)

K W h
v

K
v
GRU= 	 (8)

V W h
v

V
v
GRU= 	 (9)

where WQ  and WK  represent weight coefficients, respectively.
Finally, by calculating the attention weights a

v
 between node v  and other nodes, a weighted 

aggregation is applied to the key-value matrix, resulting in the ultimate representation of node v :

a
v v v

TQ K= softmax( ) 	 (10)
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h V
v
final

vi vii
=∑ a . 	 (11)

Fully Connected Layer
The node representations aggregated through the attention network are fed into the SoftMax method, 
yielding the prediction result p :

p W h bt final t= +softmax( ) 	 (12)

Optimization
The objective is to minimize the difference between the predicted probability distribution and the 
actual probability distribution, hence the utilization of the cross-entropy loss function (Li et al., 2020). 
This loss measure penalizes larger disparities, guiding the iterative adjustment of model parameters 
during training.

 = − + − −∑( log ( )log( ))y p y p
t i i i

t

1 1 	 (13)

Algorithm 1. GTFN

1: Initialize:
Weights, bias, graph G
Begin: 
2: For epoch in ep do
3: Get the embedding vectors h

v

4: Capture the intricate relationships h
i
l

5: Capture the temporal information h
v
GRU

6: Capture learning state information h
v
final

7: Obtain prediction results p
i

8: Update parameters 
9: End For

Experiment

We compare GTFN with other methods on three public datasets to assess prediction performance 
and answer three questions:

1. 	 How does the performance of the GTFN method compare to state-of-the-art methods?
2. 	 What is the impact of key model designs of GTFN on experimental results?
3. 	 How does the setting of hyperparameters affect the experimental results?

Dataset

ASSIST20122: This dataset is similarly collected from the platform utilized for ASSIST2009. It has 
undergone processing procedures identical to those applied to the ASSIST2009 dataset.
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Bridge Algebra20063: The dataset, known as Bridge to Algebra 2006-2007, originates from the KDD 
Cup 2010 EDM challenge. It is derived from algebra courses offered on the Cognitive Algebra 
Tutor System.

In our experiments, we exclusively utilize sequences with a length exceeding 3, as shorter 
sequences lack meaningfulness. Each dataset is partitioned such that 80% of all sequences constitute 
the training set, while the remaining 20% form the test set.

Evaluation
In the KT task, we simultaneously use accuracy (ACC) and the area under the curve (AUC) (Nahler, 
2009) to evaluate GTFN. This comprehensively assesses the model’s overall ability to predict whether 
students can master specific knowledge points at a given time point. The combined use of these two 
metrics helps us gain deeper insights into the model’s performance in the KT task, guiding better 
model improvement and optimization.

Baselines
DKT
DKT utilizes RNN to model students’ knowledge states. However, it only constructs the graph structure 
using question nodes, without considering other effective features (Piech et al., 2015).

GKT
This is a KT model based on GNN, transforming knowledge states into a graph structure for predicting 
student performance (Nakagawa et al., 2019). At each time step, GKT updates the states by aggregating 
the states of neighboring nodes, while also updating the states of those neighboring nodes.

AKT
This KT network integrates attention mechanisms to simulate learners’ past performance by 
constructing context-aware representations of questions and answers (Ghosh et al., 2020). However, 
its attention network has a shallow layer structure.

GIKT
This utilizes a GCN network to aggregate exercise-KC embedded features learned from high-order 
relationships (Yang Y. et al., 2020). It directly combines exercise embeddings with the corresponding 
answer embeddings as inputs to the KT model. However, this method does not take timing issues 
into consideration.

Table 3. Datasets

ASSIST2009 ASSIST2012 Algebra2006

#students 3,043 28758 1,087

#questions 18,267 52,136 132,473

#Concepts 117 256 543

#Records 265,734 2,459,962 1,736,867

Note. ASSIST20091: The dataset is sourced from the Assessment’s online education platform, extensively utilized for knowledge tracking. This educa-
tional system aids students in problem-solving and enhancing their learning capabilities. Data lacking concept records were excluded from this dataset.
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QDEKT
This model comprehensively considers both question difficulty and knowledge concept difficulty 
(Liu et al., 2022). It integrates both actual and predicted student responses to evaluate the student’s 
knowledge acquisition ability and dynamically update the student’s knowledge state. Additionally, 
the incorporation of additional features has been observed to greatly enhance predictive capabilities.

SHDKT
This introduces the concurrent skill graph and hierarchical skill representation module to explore the 
sequence and co-occurrence relationships between skills (Yang et al., 2022). Additionally, it introduces 
a problem representation module, learning explicit and implicit representations of problems through 
interaction with information related to the problems.

Experiment Setup
When implementing all comparative methods, we employ the TensorFlow framework. The embedding 
dimensions for both skills and questions are set to 100, and during the training process, all embedding 
matrices undergo random initialization and continuous updates. In the knowledge graph encoding 
layer, we set the maximum aggregation layer l of the GAT network to 3. Additionally, we utilize the 
Dropout with a retention probability of 0.8 (Zarafshani et al., 2016). Parameters are optimized using 
the Adam with a learning rate of 0.001, and the mini-batch size is set to 32 (Reyad et al., 2023). Other 
hyperparameters are chosen through multiple experiments, including the number of layers in GAT 
and the quantity of subspaces in multi-head attention.

Compared to the Baseline Models
To address the first question, a comparison was conducted between the proposed GTFN model and 
existing methods on different datasets, evaluating the performance of each model based on AUC 
and ACC values.

As shown in Table 4, on the three datasets, GIKT, which utilizes a graph structure, performs 
better than AKT, which employs an attention structure. The reason is that a graph structure often 
enables a deeper correlation of information features between nodes, whereas attention structures 
are constrained by the depth of the attention layers. The QDEKT model proves to be effective, as 
it introduces difficulty features of questions, alleviating the issue of treating different questions 
equally importantly for students. Additionally, it utilizes a sequence neural network to model student 
learning states, contributing to its superior performance. The SHDKT method extensively explores 

Table 4. Results

Methods
ASSIST2009 ASSIST2012 Algebra2006

AUC ACC AUC ACC AUC ACC

DKT 0.718 0.707 0.714 0.702 0.726 0.713

GKT 0.735 0.736 0.742 0.747 0.751 0.742

AKT 0.785 0.763 0.776 0.772 0.758 0.754

GIKT 0.781 0.767 0.773 0.771 0.764 0.761

QDEKT 0.786 0.772 0.778 0.769 0.782 0.776

SHDKT 0.792 0.784 0.781 0.778 0.793 0.780

GTFN 0.801 0.795 0.796 0.791 0.807 0.789



International Journal of Data Warehousing and Mining
Volume 20 • Issue 1

12

relationships between nodes in the skill graph, incorporating a hierarchical structure to capture high-
order relationships between skills at different levels. Consequently, it achieves better results.

From this, constructing a graph structure and utilizing sequence neural network algorithms, as well 
as a multi-layered structure, can effectively improve predictive performance. Hence, the effectiveness 
of GTFN is more pronounced. The reason is that it not only constructs a graph structure for the 
relationship between questions and knowledge skills but also effectively employs a multi-layered GAT 
network. This network, when aggregating neighboring nodes, assigns different weights to different 
nodes. This means that the contributions of different neighbors can be treated differentially, unlike the 
GCN that treat neighboring nodes equally. The benefit is that it can better handle the heterogeneity 
between nodes, where different nodes may have different contributions to the task. Additionally, the 
adaptive selection of weights for neighboring nodes allows the model to be more flexible in learning 
tasks. Furthermore, GTFN introduces a GRU network, enabling dynamic modeling of student 
learning states over time, which helps to capture changes in students’ knowledge at different time 
steps. Finally, using the last layer of the GAT network as the query matrix for attention allows the 
attention network to focus on the importance of nodes globally, so that it is not just limited to local 
neighbor information. Therefore, the performance of GTFN is superior to other baseline models.

Ablation Study
To address the second question, a series of ablation experiments are conducted to analyze the 
performance contributions of various parts of the model, as well as the relative importance of each 
component.

The Impact of the GRU Network Component
To explore the impact of the GRU method, w/o GRU denotes without using this method. This 
approach, as an RNN structure suitable for sequential data, effectively captures changes in student 
knowledge at different time steps. Through its gating mechanism, it aids in forgetting or retaining 
previous information, especially important learning contexts at historical time steps.

As depicted in Figure 2, removing this component significantly decreases the predictive 
performance of the model. This reduction may be attributed to the potential loss of adaptability 
to the temporal dynamics of students’ learning trajectories, thereby diminishing the model’s 
sensitivity to changes in students’ knowledge states at different time points. The GRU, with its 
gating mechanism, efficiently captures and memorizes the historical information of students, 
and its removal makes it challenging to handle the impact of previous learning stages effectively. 

Figure 2. The Impact of the GRU Network Component
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Hence, preserving the GRU network is crucial for a comprehensive understanding of the temporal 
changes in students’ learning states.

The Impact of Dynamic Attention Aggregation Network (DAAN)
To explore the impact of the DAAN on the experiment, w/o DAAN indicates the removal of the 
Dynamic Attention Aggregation Network. In fact, this network component consists of the last layer of 
the GAT network and the attention network, using the last layer as the query matrix for the attention 
network. As shown in Figure 3, GTFN with this component performs better because this design 
allows it to adjust its attention to different parts of the graph at each time step effectively, adapting to 
changes in students’ learning states. This dynamic, graph-based attention mechanism helps the model 
better understand the complex relationships between problems and knowledge points, enhancing 
adaptability to the dynamic nature of students’ learning trajectories.

However, if this design is removed, the model loses its ability to model students’ learning states 
dynamically. Using the last layer’s node representations as the query matrix enables the model to 
consider information from the entire graph comprehensively. Removing this design causes the model 
to rely more on local information, making it ineffective in capturing the correlations in different parts 
of the graph and, consequently, affecting the accurate prediction of students’ learning states.

Hyperparameter Analysis
To address the third question, we explored the impact of certain hyperparameters of GTFN on the 
experiments.

The Impact of GAT Network Layer Depth
To explore the impact of GAT network layer depth, we set the number of layers to To [1, 2, 3, 4, 
5]. The selection of GAT network layers involves understanding the complexity of student learning 
trajectories and the generalization ability of the model.

As shown in Figure 4, GTFN performs best when the depth is 3. First, the layer depth of the 
GAT network affects the modeling ability of complex relationships between problems and knowledge 
points. Increasing the number of layers helps to better understand the information in the graph structure 
but also introduces additional computational overhead. This not only captures students’ answers to 
questions but also considers students’ learning history and correlations between knowledge points.

Figure 3. The Impact of DAAN
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The Influence of the Number of Subspaces
We set the number of subspaces to [4,6,8,10]. As shown in Figure 5, as the number of subspaces 
increases, the model effect is better, and the effect weakens when it exceeds 8. The number of 
subspaces in the multi-head attention network is a crucial parameter influencing the model’s ability 
to capture complex relationships between questions and knowledge points. Each attention head can 
be considered a subspace with its own weight allocation mechanism, allowing it to focus on different 
aspects of the data simultaneously. A smaller number of subspaces may be limited when dealing 
with complex relationships, while a larger number can increase computational complexity and even 
lead to overfitting.

Figure 4. The Impact of GAT Network Layer Depth

Figure 5. The Impact of the Number of Subspaces
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Discussion

Advantages
We proposed a KT model based on Graph Temporal Fusion Networks, effectively leveraging the GAT 
network to capture the intricate relationships between questions and knowledge points successfully. 
This enhancement allows the model to grasp the node correlations more efficiently in learning tasks, 
improving the understanding of questions and knowledge points. The introduction of the GRU network 
enables dynamic modeling of students’ learning states over time, aiding in better capturing changes 
in students’ knowledge at different time steps and enhancing adaptability to the dynamic nature of 
students’ learning trajectories. Finally, using an attention network to aggregate node representations, 
we successfully integrated information from different levels.

Limitations
However, the GTFN model still has limitations. The use of multi-head attention networks in the GAT 
layer increases algorithmic complexity. In future research, we plan to resolve and improve this aspect. 
Additionally, there are other features that could be explored for KT tasks, such as textual information. 
In our upcoming work, we will explore these directions for further enhancement.

Conclusion

We proposed a GTFN approach, leveraging GAT networks to capture the intricate relationships between 
questions and knowledge points. We introduced GRU networks for dynamic temporal modeling of 
student learning states and employed an attention network to aggregate node representations, enhancing 
adaptability to student learning trajectories. However, the use of multi-head attention networks may 
result in increased algorithmic complexity. In the next phase of our work, we plan to address and 
improve this aspect while exploring other available features such as textual information.
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