
DOI: 10.4018/IJCINI.344424

International Journal of Cognitive Informatics and Natural Intelligence
Volume 18 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Distributed and Fair Beacon Power and 
Beaconing Rate Adaptation Based on Game 
Theoretic Approach for Connected Vehicles
Mohamed Ouaskou, Information Processing and Decision Support Laboratory, University Sultan Moulay Slimane, Beni 
Mellal, Morocco

Hamid Garmani, Information Processing and Decision Support Laboratory, University Sultan Moulay Slimane, Beni 
Mellal, Morocco*

 https://orcid.org/0000-0002-7294-6722

Mohamed Baslam, Information Processing and Decision Support Laboratory, University Sultan Moulay Slimane, Beni 
Mellal, Morocco

ABSTRACT

In vehicular ad hoc networks, vehicles regularly transmit information through beacons to raise 
awareness among nearby vehicles about their presence. However, as the number of beacons 
increases, the wireless channel becomes congested, resulting in packet collisions and the loss of 
numerous beacons. This paper addresses the challenge of optimizing joint beaconing power and 
rate in VANETs. A joint utility-based beacon power and rate game is formulated, treated both as a 
non-cooperative and a cooperative game. To compute the desired equilibrium, three distributed and 
iterative algorithms (Best Response Algorithm, Cooperative Bargaining Algorithm) are introduced. 
These algorithms simultaneously update the optimal values of beaconing power and rate for each 
vehicle in each step. Extensive simulations showcase the convergence of the proposed algorithm 
to equilibrium and offer insights into how variations in game parameters may affect the game’s 
outcome. The results demonstrate that the Cooperative Bargaining Algorithm is the most efficient 
in converging to equilibrium.

Keywords
Beacon Power, Beacon Rate, Cooperative Game, Game Theory, Nash Bargaining Solution, Nash Equilibrium, 
Non-Cooperative Game, VANETs

1. INTRODUCTION

Vehicular Ad Hoc Networks (VANETs) represent a cutting-edge approach to wireless communication, 
leveraging advancements in device technology to facilitate intelligent communication between 
vehicles. Over recent decades, the emergence of VANETs has captured significant attention within 
the traffic research community. This novel communication paradigm offers promising avenues for 
enhancing Intelligent Transportation Systems, as evidenced by its potential applications in public 
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transport management (Paquet 2010). Additionally, VANETs play a crucial role in bolstering 
transportation security, thereby mitigating the occurrence of accidents and disasters. To this end, 
various safety mechanisms have been devised for VANETs, encompassing functionalities such as 
emergency alerts, accident notifications, curve warnings, file-sharing, internet connectivity, and 
targeted advertisements.

Improving security in VANETs is primarily accomplished through the exchange of Basic Safety 
Messages (BSMs), commonly referred to as beacons, between vehicles. These beacons serve as 
vital communication tools, with vehicles regularly broadcasting them to relay essential information 
such as their position, speed, and direction within the network. In critical situations like collisions, 
accidents, or road surface collapses, vehicles also transmit emergency beacons or safety messages to 
alert nearby vehicles. However, in densely populated vehicular environments, the sheer volume of 
beacons can lead to congestion in the communication channel, resulting in an increased likelihood of 
message loss and delays. This congestion not only hampers vehicles’ awareness but also diminishes 
the accuracy of safety-related information. The growing rate of beacon transmissions exacerbates 
this issue, raising concerns about the channel’s capacity to handle the escalating data load effectively. 
Given these challenges, the development of robust congestion control strategies for VANETs has 
garnered significant attention in recent years. Effectively managing channel congestion is crucial 
for ensuring timely and reliable message delivery, particularly as vehicular density continues to rise.

The endeavor to model vehicle behavior in VANETs analytically has become a focal point 
of research interest, with increasing attention from scholars. Numerous analytical models have 
been proposed to scrutinize VANET performance and offer viable solutions tailored to the unique 
challenges encountered in these networks. Among these challenges, congestion control stands out as a 
significant concern in computer networks. Metrics commonly employed to assess congestion control 
include fairness among vehicles, convergence time, and oscillation size (Chiu and Jain 1989). In the 
context of VANETs, congestion control must operate in a decentralized manner, without relying on 
any centralized infrastructure. This decentralized approach is essential to accommodate the dynamic 
nature of VANETs. Additionally, the convergence time of the control mechanism must be minimized 
to swiftly adapt to changing network conditions and ensure efficient traffic management.

Several work used game theory in wireless networks (Outanoute et al. 2019) (Omar et al. 2019a) 
(Omar et al. 2019b) (Garmani et al. 2019) (Garmani et al. 2018) (Ait Omar et al. 2019). The authors in 
(Le et al. 2011) introduced a beacon power control algorithm. This algorithm involves each participant 
computing the optimal beaconing power required to attain maximum communication effectiveness 
while ensuring that the Channel Busy Ratio (CBR) remains below a predefined threshold. In (Li and 
Huang 2018), the authors investigate the efficacy of a multi-hop broadcast protocol within VNETs 
for enhancing safety. They achieve this by developing a versatile probabilistic forwarding scheme and 
introducing an analytical model to assess the performance of their proposed approach. The authors 
in (Luong et al. 2017) present a method for determining the most effective beacon rates, focusing on 
maximizing a utility function. They explore how varying beacon rates influence network performance 
and illustrate the significant impact these rates can have on overall network effectiveness. In (Qureshi 
et al. 2018), the author investigates a dynamic congestion control mechanism aimed at facilitating 
the broadcast of Basic Safety Messages (BSMs). Their objective is to ensure the dependable and 
punctual delivery of messages to all neighboring nodes within the network. The authors in (Ishaq et 
al. 2018) used the tabu search algorithm with multi-channel allocation capability to reduce the time 
delay and jitter for improving the quality of service in VANET. In (Li and Huang 2018), the authors 
introduce a method for adapting beacon rates based on vehicle mobility prediction. Here, each vehicle 
utilizes a prediction module to assess the real-time situation of its neighboring vehicles. The authors 
in (Goudarzi and Asgari 2018) studied the competition among vehicles in beaconing power as a 
non-cooperative game. In (Goudarzi and Asgari 2017) the authors employed a non-cooperative game 
to devise a mechanism for controlling beacon rates. They demonstrated the uniqueness of the Nash 
equilibrium point and introduced a distributed method to determine this equilibrium. Expanding on 
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this approach, our paper delves into the utilization of both non-cooperative and cooperative games 
to analyze the simultaneous control of beaconing rate and beaconing power in VANETs. We present 
three algorithms aimed at learning the optimal joint beaconing rate and beaconing power, considering 
both Nash equilibrium and Nash bargaining solutions.

This paper addresses the challenge of achieving fair and stable control over joint beaconing 
power and rate in VANETs, employing a combination of non-cooperative and cooperative game 
theory. The aim is to devise a distributed approach that minimizes beacon losses by determining 
vehicle beaconing power and rate effectively. Utilizing the principles of supermodular games and 
the Nash bargaining solution, we formulate and solve the optimization problem associated with this 
joint control. The existence of a Nash equilibrium point within the non-cooperative game framework 
is established. We introduce three learning algorithms that iteratively adjust beaconing rates and 
powers, aiming to reach equilibrium in a distributed manner. Performance evaluation demonstrates 
the convergence of these algorithms towards equilibrium beaconing power and rate. Moreover, it 
elucidates the impact of system parameters on vehicle strategies. Our findings reveal the superiority 
of the proposed cooperative game algorithm in effectively controlling beaconing rate and power, 
making it the preferred choice for vehicles in VANETs.

The rest of this paper is organized as follows. In Section 2, we describe the proposed model. In 
Section 3, we present the non-cooperative game formulation and the price of anarchy. In Section 4, 
we present a cooperative game. Then, we present the Performance evaluation in Section 5. Finally, 
in Section 6 conclusions.

2. SYSTEM MODEL

The utility function of each vehicle is the difference between revenue and fees. Accordingly, the 
payoff of the vehicle i  can be written as:

U a r p c pCBR r p C C p C r
i i i i i i i s p i r ii i i
= + +( )− ( )− + +( )log 1 , 	 (1)

where a
i
 and c

i
 are two positive parameters. CBR p r p r

i i i i
, , ,− −( )  is the channel busy ratio that 

vehicle i  senses, and it is a function of all vehicle beaconing rates and beaconing power. The term 
a r p

i i
log + +( )1  is the revenue of vehicle i ; it is an increasing function with respect to beaconing 

rate and beaconing power. A logarithmic function has been used because it is increasing and has 
excellent concavity properties. Thus, the vehicle with lower beaconing power and their beaconing 
rate has more incentive to increase their beaconing power and their beaconing rate. The second term 
C C p C r
s p i r ii i i
+ +  is the energy consumed to send beacons and to switch the state of the transceiver. 

C
si

 is the energy consumed for switching the state of the transceiver, C
pi

 is the energy consumed 

for sending beacons with power p
i
, and C

ri
 is the energy consumed for sending beacons with a rate 

r
i
. The third term c pCBR

i i i
p r,( ) , is the congestion cost. It indicates that a vehicle should pay higher 

costs at higher congestions, which discourages the vehicles from using a high beacon rate and high 
beacon power.

Then, we define CBR
i
p r,( )  as that in (Chen et al. 2011) by:

CBR h r
i

j

N

ij j
p r,( ) =

=
∑
1

	 (2)
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where:
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C
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


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Γ

Γ

Ω
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Ω
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j
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p

d
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λ

π γ

2

24( )
	 (4)

G  is the gamma function, Γ .,.( )  is the upper incomplete gamma function, C
Tt

 is the threshold 
power level of carrier sense, p

j
 is the BSM  transmit power of vehicle j , d

ij
 is the distance 

between j th and i th vehicles, m  is Nakagami fading parameter, l  is the wavelength, g  is the 
path loss exponent, r

j
 is the beaconing rate of vehicles j , and T

frame
 is the time needed to 

transmit a beacon message.
Equation (2) indicates that the channel load experienced by vehicle i  is the weighted sum of the 

beaconing rate of all the other vehicles 
j

N

ij j
h r

=∑ 1
. The channel load also depends on various parameters 

such as channel fading, the time needed to transmit a beacon message, and the distance of other 
vehicles. The coefficients h

ij
 defined in (3), represents the action of these parameters in the channel 

load sensed by vehicle i .

3. A NON-COOPERATIVE GAME FORMULATION

Let G R P U
i i i

= { } ( ){ }





 , , , .  denote the non-cooperative beaconing rate and beaconing power game 

(NRPG), where  = { }1,...,N  is the index set identifying the vehicle, P
i
 is the beaconing power 

strategy set of vehicle i , R
i
 is the beaconing rate strategy set of vehicle i , and U

i
.( )  is the utility 

function of vehicle i  defined in Equation (1). We assume that the strategy spaces R
i
 and P

i
 of each 

vehicle i  are compact and convex sets with maximum and minimum constraints, for any given vehicle 
i  we consider as strategy spaces the closed intervals R r r

i i i
= 


,  and P p p

i i i
= 


, . Let the beaconing 

p o w e r  v e c t o r  p = ∈ = × × ×( ,..., ) ...p p P P P P
N
T N

N1 1 2
,  b e a c o n i n g  r a t e  v e c t o r 

r = ∈ = × × ×( ,..., ) ...r r R R R R
N
T N

N1 1 2
.

Definition 1. The strategy vector p r* * * * * * * *, , ,..., , , ,...,( ) = ( )p p p r r r
N N1 2 1 2

 is a Nash equilibrium of the 

NRPG G = [ , R P U
i i i
, , .,. ]{ } ( ){ }  if:

∀( ) ∈ ( ) ( ) ≥− − −i r p R P U p r U p r
i i i i i i i i i i i i i
, , , , , , , , , , , � * * * * *p r p r−−( )i* 	
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Definition 2. The game G  is submodular if she satisfies the following conditions:
◦◦ S P R

i i i
= ×  is a compact subset of Euclidean space.

◦◦ U p r
i i i

,( ) , p P
i i
Î , r R

i i
Î  is smooth and:

▪▪ submodular in p r
i i
,( )  for fixed p r− −( )i i

,  i.e.,

∂

∂ ∂
≤

2

0
U

p r
i

i i

	 (5)

▪▪ Has non-increasing differences in p r
i i i i
, , ,( ) ( ){ }− −p r , i.e.,

∂

∂ ∂
≤ ∀ ≠

2

0
U

r r
j ii

i j

, � 	 (6)

given that:

∂

∂ ∂
= ∀ ≠

2

0
U

r p
j ii

i j

, � 	 (7)

Theorem 1. The utility function U
i
p r,( )  is submodular in p r

i i
,( )  for fixed p r− −( )i i

, .
Proof: The second-order partial derivative utility function is written as:

∂

∂ ∂
= −

+ +
− ≤

2

21
0

U

p r

a

r p
c hi

i i

i

i i

i ii( )
	 (8)

then the utility function U
i
p r,( )  is submodular in p r

i i
,( )  for each fixed p r− −( )i i

, .

Theorem 2. The utility function U
i
p r,( )  has non-increasing differences in p r

i i i i
, , ,( ) ( ){ }− −p r .

Proof: The second partial derivative of the utility function is:

∂

∂ ∂
=

2

0
U

r r
i

i j

	 (9)

and:

∂

∂ ∂
=

2

0
U

r p
i

i j

	 (10)
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Then the utility function U
i
p r,( )  has non-increasing differences in p r

i i i i
, , ,( ) ( ){ }− −p r .

Based on theorems 1, theorems 2, and definition 2, we conclude the following theorems.

Theorem 3. The NRPG G  is submodular in p r
i i
,( )  for all i Î  .

Based on theorem 3, the game G  is a submodular game, and the set of its Nash equilibrium 
points is nonempty. Therefore, the following holds:

Theorem 4. The NRPG game G R P U
i i i

= { } ( ){ }





 , , , ,p r  has at least one Nash equilibrium [6], 
which is defined as:

p r U
i i p P r R i

i i i i

* * arg max, ,
,

( ) = ( )
∈ ∈

p r 	 (11)

The following theorem proves the uniqueness of the Nash equilibrium point.

Theorem 5. The unique Nash equilibrium point of the NRPG G  is given by:

p r U
i i p P r R i

i i i i

* * arg max, ,
,

( ) = ( )
∈ ∈

p r 	 (12)

s.t.

∂ ( )
∂

=
∂ ( )
∂

=

= =

U

p
and

U

r
i

i
p p

i

i
r ri i i i

p r p r, ,

* *

0 0 	 (13)

and:

p r J p r p r p P r R
i i i i i i

T
i i i i

, , ( , ) , ,( ) ( ) ≤ ∀ ∈ ∀ ∈0 � � 	 (14)

where:

J

U

p

U

p r

U

p r

U

r

i

i

i

i i

i

i i

i

i

=

∂

∂

∂

∂ ∂
∂

∂ ∂

∂

∂







2

2

2

2 2

2









	

is the Hessian matrix at point p r
i i
,( ) .
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Proof: The conditions of the first-order partial derivatives (13) determine the stationary points of 
the utility function U

i
p r,( ) , which can either be a maximum, a minimum or a saddle point. The 

condition (14) is necessary to find the global maximum of the utility function.

J

U

p

U

p r

U

p r

U

r

i

i

i

i i

i

i i

i

i

=

∂

∂

∂

∂ ∂
∂

∂ ∂

∂

∂






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2

2
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2









	 (15)
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−
+ +

−
+ +

−

−
+ +

− −
+

a

r p

a

r p
c h

a

r p
c h

a

i

i i

i

i i

i ii

i

i i

i ii
i

( ) ( )

( ) (

1 1

1 1

2 2

2 rr p
i i
+













)2
	 (16)

Thus,

p r J p r p r
a p

r p

a r

r p
a

i i i i i i
T i i

i i

i i

i i

, , ( , )
( ) ( )

( ) ( ) = −
+ +

−
+ +

−

2

2

2

21 1

ii i

i i

i ii i
i i

i i

i ii i

p

r p
c h p

a r

r p
c h r

2

2

2
2

2

2

1 1
0

( ) ( )+ +
− −

+ +
− ≤�

	 (17)

Then, the Hessian matrix J  is negative definite.
Since it is hard to get the analytical result of the system (13), we use an iterative and distributed 

algorithm that finds the unique Nash equilibrium point p r* *,( ) . This algorithm is defined as follows.

3.1 Iterative Nash Equilibrium Algorithm
In this section, building upon our earlier analysis, we present two distributed and iterative learning 
methodologies designed to converge towards the Nash equilibrium point of the Non-cooperative 
Reinforcement Power Game (NRPG). The best response algorithm, well-established for S-modular 
games, is employed here, leveraging the monotonicity of the best response functions. Each player in 
the game determines its optimal strategies to maximize its individual utility. Subsequently, players 
assess the strategies adopted by their counterparts in previous iterations, incorporating this information 
into their decision-making processes to adjust their own strategies accordingly. Consequently, the 
Nash equilibrium emerges as the natural convergence point of the game.

Algorithm 1 outlines the steps involved in the best response learning process, detailing the iterative 
actions that each player undertakes to identify its Nash equilibrium strategy.



International Journal of Cognitive Informatics and Natural Intelligence
Volume 18 • Issue 1

8

4. COOPERATIVE GAME

The Nash bargaining game (Nash Jr 1950) is a cooperative game in which players have a mutual 
agreement for cooperation in order to obtain a higher payoff compared to the non-cooperative case. 
Let   be a closed and convex subset of N  that represents the set of feasible payoff allocations that 
the players can get if they all cooperate. Suppose { | , }U U U i

i i i
min∈ ≥ ∀ ∈U N  is a nonempty 

bounded set. Define Umin min min
N
minU U U= ( )1 2

, ,..., , then the pair of ,Umin( )  constructs a K -

player bargaining game. Here, we define the Pareto efficient point (Fudenberg and Tirole, J. 1993), 
where a player can not find another point that improves the utility of all the players at the same time.

Definition 3. A strategy profile p r* *, , ,..., , , ,...,* * * * * *( ) = ( )p p p r r r
N N1 2 1 2

 is Pareto-optimal if and only 

if there is no other strategy profile p r,( )  such that U U
i i
p r p r, ,* *( ) ≥ ( ) , ∀ ∈i  , and 

U U
i i
p r p r, ,* *( ) > ( ) , ∃ ∈i  , i.e., there exists no other strategies that lead to superior 

performance for some players without causing inferior performance for some other players 
(Fudenberg and Tirole, J. 1993).

There may be an infinite number of Pareto optimal points in a game of multi-players. Thus, we 
must address how to select a Pareto point for a cooperative bargaining game. We need a criterion to 
select the best Pareto point of the system. A possible criterion is the fairness of resource allocation. 
Notably, the fairness of bargaining games is a Nash bargaining solution, which can provide a unique 
and fair Pareto optimal point under the following axioms.

Definition 4. r  is a Nash bargaining solution in   for Umin  i.e., r min= ( )H U,U , if the following 
axioms are satisfied (Fudenberg and Tirole, J. 1993).
◦◦ Individual rationality: r U

i i
min³ , r r

i
Î , i Î  .

◦◦ Feasibility: r Î  .
◦◦ Pareto Optimality: r  is Pareto optimal.
◦◦ Independence of Irrelevant Alternatives: If r ∈ ⊂ ' , r min= ( )H U,U , then 

r min= ( )H U',U .

Algorithm 1. Best Response Algorithm

1: Initialize vectors p 0 0 0
1( ) = ( ) ( )



p p

N
,...,  and r 0 0 0

1( ) = ( ) ( )



r r

N
,...,  randomly;

2: For each vehicle i  at round t  computes:

           p t U
i

p P
i

i i

+( ) = ( )( )
∈

1 argmax p r,

          r t U
i

r R
i

i i

+( ) = ( )( )
∈

1 argmax p r,

3: If r t r t
i i
+( )− ( ) <1 e  and p t p t

i i
+( )− ( ) <1 e , then STOP.

4: Else make t t← +1  and go to step (2).
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◦◦ Independence of Linear Transformations: For any linear scale transformation Q , 
Θ Θ ΘH U H U, ,U Umin min( )( ) = ( ) ( )( ) .

◦◦ Symmetry: If   is invariant under all exchanges of players, that is H U H U
i

min
j

min, ,U U( ) = ( ) , 
"i , j .

Theorem 6. A unique and fair Nash bargaining solution x p r* * *,= ( )  that satisfies all the axioms 
in Definition 4 can be obtained by maximizing a product term as follows:

x*
,

,= ( )
∈ ∈ =
∏argmax

p P r R i

N

i
i i i i

U
1

p r 	 (18)

Proof: The proof of the theorem 6 is omitted due to space limitations. A similarly detailed proof can 
be found in (Nash Jr 1950).

Our work aims to maximize utility functions while decreasing the number of losses beacons. 
Therefore, the corresponding cooperative Nash bargaining game-theoretic power and rate control 
problem for vehicle underlying the communication system can be formulated as:

P p r1
1

: ,
,
max
p P r R

i

N

j
i i i i

U
∈ ∈

=
∏ ( ) 	 (19)

s t
C p p

C r r
i i

max

i i
max. .

:

:
�
1 0

2 0

≤ ≤

≤ ≤








	

where constraint C1  limits the beaconing power of vehicle i  to be below p
i
max  and C2  limits the 

beaconing rate of vehicle i  to be below r
i
max .

Lemma 1. Define V ln U
i i
p r p r, ,( ) ( )( ) , i Î  . These objective functions are concave and 

injective, which satisfy all the Nash axioms in Definition 4.
Proof: The proof of theorem 5 shows that the Hessian matrix of the utility function U

i
p r,( )  is 

negatively define. Then, the utility function U
i
p r,( )  is strictly concave with regard to the 2-tuple 

p r
i i
,( ) . Subsequently, V ln U

i i
p r p r, ,( ) = ( )( )  is also concave in p r

i i
,( ) . Therefore, V

i
p r,( )  

defined above satisfies all the axioms required by Definition 4 and Theorem 6.

According to Theorem 6 and Lemma 1, the unique Nash bargaining equilibrium with fairness can 
be found over the strategy space. Then, taking advantage of the increasing property of the logarithmic 
function, the optimization problem P1 can be rewritten as:

P p r p r2
1 1

: , ,
, ,
max max
p P r R

i

N

i p P r R
i

N

i
i i i i i i i i

V U
∈ ∈

=
∈ ∈

=
∑ ∑( ) = ( ) 	 (20)
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s t
C p p

C r r
i i

max

i i
max. .

:

:
�
1 0

2 0

≤ ≤

≤ ≤








	

4.1 Solution of the Cooperative Game
Herein, we derive the unique equilibrium by solving the constrained optimization problem in (20) 
utilizing the method of Lagrange multipliers (Shi et al. 2017). Introducing Lagrange multipliers 
{ }c
i
ite

i
N
=1  and { }y

i
ite

i
N
=1  for the multiple constraints, the Lagrangian of problem (20) can equivalently 

be solved by maximizing the following expression:

( , ,{ } ,{ } )p r χ ψ
i
ite

i
N

i
ite

i
N

i

N

i i i i i
a r p c pCBR= =

=

= + +( )−∑1 1
1

1log
ii s p i r i i i i i

C C p C r p r
i i i

p r,( )− + +( )− −( )� χ ψ 	 (21)

Based on the standard optimization methods and the Karush–Kuhn–Tucker conditions, the 
beaconing power of vehicle i  can be obtained by taking the first derivative of (21) with respect to 
p
i
, which is expressed as follows:

∂
∂
=
+ +

− ( )− −

p

a

p r
cCBR C

i

i

i i
i p ii1

p r, c 	 (22)

Letting ∂
∂
=


p
i

0  we get,

p
a

cCBR C
r

i
i

i p i

i

i

*

*

*=
( )+ +

− −
p r, c

1 	 (23)

Meanwhile, the beaconing rate of vehicle i  can be obtained by taking the first derivative of (21) 
with respect to r

i
 as:

∂
∂
=
+ +

− − −

r

a

p r
c h C

i

i

i i
i ii r ii1

y 	 (24)

Let (24) equals to zero, then we get:

r
a

c h C
p

i
i

i ii r i

i

i

*

*

*=
+ +

− −
y

1 	 (25)

In this work, we employ the fixed-point technique to derive an iterative procedure that updates 
the beaconing rate and beaconing power control decisions, which can be given as:

p
a

cCBR C
r

i
ite i

i p i
ite i

ite

p

i

i
max

+ =
( )+ +

− −
















1

0

1
p r, c

	 (26)
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r
a

c h C
p

i
ite i

i ii r i
ite i

ite

r

i

i
max

+ =
+ +

− −
















1

0

1
y

	 (27)

4.2 Update of the Lagrange Multipliers

The Lagrange multipliers { }c
i
ite

i
N
=1  and { }y

i
ite

i
N
=1  need to be updated to guarantee the fast convergence 

property. Several practical approaches can be employed in the update of Lagrange multipliers. In this 
paper, the sub-gradient technique is utilized to update the multipliers, as formulated as follows:

ψ ψ α

χ χ α

i
ite

i
ite ite

i
ite

i
ite

i
ite ite

i
ite

p

r

+ +
+

+ +

= −





= −

1 1

1 1










+ 	 (28)

where ( ) ,x max x+ = ( )0 , b  denotes the step size of iteration ite  ( , ,...,ite L
max

∈ { }1 2  and L
max

 
denotes the maximum number of iterations.

4.3 Iterative Nash Bargaining Algorithm
In this section, a distributed algorithm is proposed as an implementation of our cooperative bargaining 
beaconing rate and beaconing power control solution. The proposed iterative Algorithm 2 will 
guarantee convergence by using the subgradient method.

5. PERFORMANCE EVALUATION

Extensive experiments have been undertaken to address the following inquiries: (1) the number of 
iterations necessary for the proposed algorithm to reach convergence towards equilibrium beaconing 
rate and power; (2) identifying the most efficient algorithm for rapidly converging towards equilibrium 

Algorithm 2. Cooperative Bargaining Algorithm

1:   Initialize c
i

, a
i

, C
pi

, C
ri

 and Lagrange multipliers { }c
i
ite

i
N
=1  and { }y

i
ite

i
N
=1 ; set ite = 1 ;

2:   Initialize { }p
i
ite

i
N
=1  and { }r

i
ite

i
N
=1 ;

3:   repeat
4:        for i = 1  to N  do

5:                 (i) Update p
i
ite  according to (26);

6:                 (ii) Update r
i
ite  according to (27);

7:                 (iii) Update c
i
ite  and y

i
ite  according to (28);

8:        end for
9:        (iv) Set ite ite← +1;

10: until Convergence or ite L
max

=

11: return { }p
i
ite

i
N
=1  and { }r

i
ite

i
N
=1 .
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strategies; and (3) examining how system parameters influence the equilibrium beaconing rate and 
power. In this section, we present the outcomes of these experimental investigations, utilizing the 
expressions derived from the utility function discussed earlier. To illustrate, we focus on a scenario 
involving two vehicles.

Figures 1 and 2 provide compelling evidence of the uniqueness of joint beaconing rate and power 
at Nash equilibrium. The best response algorithm consistently converges towards the beaconing 
rate and power values corresponding to the Nash equilibrium. Similarly, Figures 3 and 4 depict 
the convergence of the cooperative bargaining algorithm towards the Pareto-optimal equilibrium. 
Furthermore, the rapid convergence of the proposed algorithms is evident from the results depicted 
in Figures 1, 2, 3, and 4. Specifically, the best response algorithm typically converges within five to 
35 iterations, while the cooperative bargaining algorithm achieves convergence to the Pareto-optimal 
equilibrium after approximately 10 iterations. Consequently, the cooperative bargaining algorithm 
emerges as the faster-converging option, making it well-suited for real-world applications

Note that for any vehicle i , it’s Nash equilibrium beaconing rate r
i
 and beaconing power p

i
 

primarily depends on the parameter a
i
, c
i
, C

pi
 and C

ri
. As such, we investigate how the Nash 

equilibrium points can be affected by these parameters.
Figures 5 and 6 depict variations in the beaconing rate and power of vehicles as the parameter 

a ranges from 1 to 20. As a increases, both the beaconing rate and power of vehicles exhibit a 
corresponding rise. This trend is attributed to the increase in utility as a escalates. Consequently, 
vehicles are more inclined to elevate their beaconing rate and power in response to the heightened 
utility. The escalation of parameter a prompts vehicles to utilize higher beaconing rates and power 
levels, aligning with the amplified utility function.

In Figures 7 and 8, we visualize the relationship between the cost c and the beaconing rate, as 
well as the beaconing power, for the two vehicles under consideration in this example. Notably, we 
observe a downward trend in both the beaconing equilibrium rate and power concerning the cost 

Figure 1. Seeking the equilibrium beaconing power using the best response algorithm
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Figure 2. Seeking the beaconing equilibrium rate using the best response algorithm

Figure 3. Seeking the equilibrium beaconing power using a cooperative bargaining algorithm
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Figure 4. Seeking the beaconing equilibrium rate using a cooperative bargaining algorithm

Figure 5. Beaconing power with respect to a
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Figure 6. Beaconing rate with respect to a

Figure 7. Beaconing power with respect to c
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c. As the cost c escalates, vehicles incur higher expenses during periods of heightened congestion, 
resulting in diminished payoffs. Consequently, vehicles are motivated to reduce their beaconing rate 
and power to alleviate congestion costs.

Figures 9 and 10 show both the beaconing power and the beaconing for the non-cooperative 
games and the cooperative strategic beaconing obtained using the Nash bargaining solution. When 
energy cost (C

r
 and C

p
) rise, there is a noticeable decrease in both beaconing power and beaconing 

rate. Notably, the strategic beaconing strategy derived from the Nash bargaining solution consistently 
displays lower levels as energy costs elevate in comparison to the non-cooperative beaconing strategy. 
A notable distinction is that the Nash bargaining solution-based strategic beaconing scheme 
demonstrates superior energy efficiency across all energy cost values when contrasted with the non-
cooperative strategy. Consequently, the Nash bargaining solution scheme ensures an extended network 
lifetime compared to its non-cooperative counterpart.

6. CONCLUSION

This paper tackles the challenge of jointly controlling beaconing rate and power in VANETs using 
S-modular theory. We model the competition among vehicles in VNETs as both a non-cooperative and 
cooperative game, wherein each vehicle selects its beaconing rate and power. Equilibrium analysis is 
conducted, and we propose three distributed algorithms for computing the equilibrium point. Through 
simulations, we demonstrate how system parameters impact joint beaconing rate and power, while 
also revealing the iteration counts required by each algorithm to achieve convergence. Our analysis 
and simulation outcomes offer valuable insights into the intricate dynamics among vehicles, whether 
in competitive or cooperative scenarios, thereby facilitating the optimization of vehicle strategies.

Figure 8. Beaconing rate with respect to c
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Figure 9. Beaconing power with respect to C
p

Figure 10. Beaconing rate with respect to C
r
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