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ABSTRACT

Considering the limited adaptability of the existing substation inspection robot path planning (PP) 
algorithms, the authors propose a novel PP method for mobile robots (MR) based on the structure of 
the ultra-high voltage (UHV) substation inspection robot system. The proposed method combines 
the improved ant colony optimization (IACO) algorithm and the enhanced artificial potential field 
(EAPF) algorithm. To minimize the interference of the pheromones, they introduced a pheromone 
adjustment coefficient in the later iterations of the algorithm. Furthermore, they improved the global 
pheromone update method, which is beneficial to the MR to search for the optimal path (OP) rapidly. 
They constructed two environmental models using the grid method, and they used MATLAB to 
implement comparative experiments between the proposed algorithm and other advanced methods. 
The results demonstrate that the proposed algorithm outperforms other methods in terms of running 
time, convergence speed, and global optimization ability.
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INTROdUCTION

Substations, as an essential part of the power grid, play a vital role in ensuring the safe operation 
of the entire power grid. Hence, substation inspections serve as the basis for the reliable operation 
of the substation equipment (Wang et al., 2019). With the massive deployment and development 
of ultra-high voltage (UHV) AC and DC projects, conventional inspection methods are no longer 
suitable for the large-scale area and multidevice characteristics of UHV substations. The application of 
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automatic inspection robots in substations will guarantee efficiency and safety, addressing some of the 
shortcomings of traditional manual inspections (Zhao et al., 2022). Path planning (PP) is one of the key 
techniques of inspection robots, and the research has important practical significance (Shiling, 2020). 
An intelligent robot is a kind of mechanical technology invented and developed based on computer 
technology (Wang et al., 2018). Intelligent robots are based on the design principles of intelligent 
robots in power equipment, and their main structure includes four components: a human-computer 
interaction system, a control system, a navigation system, and a sensor system (Ding et al., 2018). 
The intelligent robot can effectively realize the overhaul and power equipment fault diagnosis and 
achieve better power operation and maintenance performance through the interaction and cooperation 
of these four major components. Moreover, intelligent robots can consciously perceive the operating 
conditions of surrounding equipment through the acceleration and infrared sensors within the sensing 
system and convey real-time operating environment-related information to the power equipment 
operators in time (Alaraifi et al., 2013).

The ant colony optimization (ACO) algorithm is a self-heuristic and swarm intelligence method. 
It is not subject to external interference, adapts to complex and changeable environments, and is 
very robust (Wu et al., 2018). Based on these advantages, the ACO algorithm is chosen for PP tasks. 
However, this algorithm has limitations, such as being easily trapped in the local optimum issue, 
long optimization time, and slow optimization speed. To address these issues, we propose a mobile 
robot path planning (MRPP) method that combines the enhanced artificial potential field algorithm 
(EAPF) and the improved ant colony optimization algorithm (IACO), applied to the PP tasks of the 
inspection robots in the UHV substation environment. We used the grid method to build the working 
environment of the UHV substation for simulation, and the simulation results further verified the 
superiority of the proposed method.

RELATEd wORKS

Nowadays, many intelligent algorithms have been applied to the MRPP, such as the D* algorithm, 
ACO algorithm, APF method, and artificial fish swarm algorithm (Ab Wahab et al., 2020). Each of 
these algorithms has its own advantages and drawbacks. The advantages of different algorithms are 
combined to provide new methods for solving MRPP, such as the combination of the APF method 
and ACO algorithm (Wang et al., 2018) or the fusion of the particle swarm algorithm and the A* 
algorithm (Lian et al., 2020).

The APF method is comprehensively adopted in robot PP owing to its small computation 
requirements, simple structure, and smooth path (Azzabi & Nouri, 2019). However, the APF method 
is susceptible to local minimum points, where the MR may become a stationary state or oscillate 
within a certain range in front of an obstacle owing to the force balance problem, resulting in a failure 
to reach the target point. To solve this problem, various researchers have proposed different solutions. 
Zhang et al. (2018) added a chaos optimization algorithm to the APF method using the potential 
field function as the objective function for chaos optimization and determining the associated moving 
step size and direction of the MR through chaos search. Orozco-Rosas et al. (2019) investigated a 
new repulsion potential field function to eliminate local minima and employed the quantum genetic 
algorithm to select the optimal or suboptimal individual for path optimization. Wang et al. (2021) 
proposed combining the artificial potential field (APF) method with fuzzy control; these researchers 
then adopted a particle swarm-based algorithm to optimize the membership function of the fuzzy logic 
controller. This approach was applied to the motion control of MR, overcoming the local minimum 
problem. However, most of these aforementioned methods are suitable only for simple environments.

As a heuristic searching algorithm, the ACO algorithm is developed by simulating the food-
finding behavior of ants in the wild. It embodies the internal features of positive feedback, parallelized 
computation, and descent robustness (Gao et al., 2020), making it a popular choice for robot PP tasks. 
Jiao et al. (2018) proposed a polymorphic ACO algorithm for PP using the adaptive state transition 
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and adaptive updating strategies to guarantee the corresponding importance of the strengths of 
pheromones and heuristic information in the repeated cycles of the algorithm. However, this method 
has a relatively small search space and a weak exploration ability. Wang et al. (2017), divided the PP 
process into two steps: First, the genetic algorithm was used to obtain the initial path, and then the 
optimal paths were regarded as the reference for performing the initialization of pheromones for the 
ACO algorithm, alleviating the mindlessness in the initial searching process of the ACO algorithm. 
The ACO was then designed to make further steps in optimizing the initial path. Results indicated 
that the algorithm can avoid local optima and achieve a fast convergence speed. Wang et al. (2018) 
presented an MRPP method combining the improved ACO with potential field heuristic information. 
These researchers constructed comprehensive heuristic information using the APF method and 
introduced a decline coefficient to avoid local optima. Results have proven the effectiveness and 
feasibility of this method.

Many studies have been conducted on technologies related to PP tasks with inspection robots in 
UHV substations. Zhang et al. (2019) proposed combining a heuristic searching algorithm with an 
improved Dijkstra method to perform PP of MR in the substation scenes, considering the real-world 
system operation condition and using the times and angles of each turning as evaluating metrics. 
Chen et al. (2019) analyzed the PP problem in the presence of sophisticated substation scenes and 
validated a PP method for several MRs as well as a time-window-based solution. Results indicated 
that the solution can be effective and feasible in avoiding different categories of conflicts in the PP 
process. However, these methods still face challenges such as high algorithm complexity, high memory 
overhead, and poor real-time performance.

In the rest of this paper, we introduce the structure of the electric power inspection robot system, 
explain the EAPF method, propose an improved ACO algorithm fused with the EAPF method, present 
the experimental results and analysis, and share our conclusions.

SySTEM ARCHITECTURE

The structure of the robot inspection system is shown in Figure 1. It consists of two main parts: the 
host computer system and the MR. The host computer system includes a background monitoring 
system, background industrial computer, remote robot operation, image processing, positioning 
system, inspection report generation and query, industrial wireless network, and other components. 
The host computer system is responsible for receiving, recording, and processing image information 
obtained from the MR. The robot body comprises an embedded main controller, a digital signal 
processor (DSP) executor, a task controller, sensor modules, image acquisition modules, and wireless 
communication modules. These components are responsible for collecting on-site image information 
and sending it to the host computer system using wireless communication, thereby reducing the 
workload of substation employees.

Consequently, the robot can perform broad inspection coverage of the equipment on the site 
by receiving the work instructions sent by the system and executing the corresponding work tasks. 
Through the application of an intelligent system, the functions of independent inspection, remote 
operation, online detection, and intelligent alarm are realized, helping users achieve unattended and 
improve the intelligent operation and maintenance of substations.

APF METHOd

In this section we discuss our experiment with the APF method.

Enhanced APF Method
We combined the enhanced APF with the improved ACO algorithm.
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Distance Detection and Threshold Establishment
The function of the gravitational field is formally defined as shown in equation (1).

U k x x
a g
= −
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2( )  (1)

In this equation, Ua denotes the function of the gravitational potential field, k > 0 indicates the 
gravitational field coefficient, and xg represents the coordinate for the targeted point.

The repulsion field function is defined as shown in equation (2).
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In equation (2), m > 0 denotes the repulsion field coefficient, P0 symbolizes the influencing 
radius of the obstacle, representing the shortest distance between the robot and the obstacle. The 
obstacle will initiate a repulsive force on the robot if—and only if—the distance from the robot to 
the obstacle is less than P0.

When the robot becomes trapped in a local minimum, the robot will stay at a certain point or 
move back and forth within a small range. According to this feature, the unit time is used to detect 
the robot’s moving distance, and the detected distance is compared with a preset threshold. If the 
moving distance per unit of time is less than the threshold, it is determined that the robot has fallen 
into a local minimum.

Figure 1. Robot inspection system structure
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Virtual Traction
If the robot enters the U-shaped area composed of obstacles and becomes trapped in a local minimum 
problem, as shown in Figure 2, the current coordinates of the robot and the obstacle located at the 
outermost end of the U-shaped area are calculated.

Given an influencing length of the obstacle, denoted as r, the obstacle is converted into a circle 
with a radius of r, and the coordinate of the tangent point between the robot and the circle is calculated. 
Subsequently, a virtual traction point is generated along the line from the robot to the tangent point at 
a distance d from the tangent point. The traction force will then affect the robot, moving it toward the 
virtual traction point. Once the robot reaches the virtual traction point, the traction point disappears, 
and the gravitational force received by the robot automatically switches to the force from the original 
target point. Suppose the robot encounters the local minimum point again during the robot’s operation. 
In that case, the threshold is compared according to the previous rule and then automatically switches 
to the virtual traction point rules to facilitate the robot’s escape from the local minimum point.

The modeling method for setting the virtual traction point is as follows: Let (x0, y0) denote the 
current coordinates of the robot and (a1, a2) represent the coordinate of the obstacle. The tangent point 
coordinates are (x1, y1), and the coordinates of the virtual traction point are (x, y). First, the distance 
between the robot to the obstacle is calculated as shown in equation (3).

l a x a y= − + −( ) ( )
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to the tangent point is obtained bys l r= −2 2 . Thus, the coordinates of the tangent point can be 
obtained as shown in equation (4).
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Figure 2. Force analysis for the robot in local minimum
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Substitute the parameters yields as shown in equation (5).
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Based on the tangent coordinates (x1, y1) and the robot coordinates (x0, y0), the formulas shown 
in equations (6) and (7) can be established.

( ) / ( ) ( ) / ( )y y x x x x y y− − = − − −
1 1 0 1 0 1

 (6)

d x x y y y2
1

2
1

2= − + −( ) ( )  (7)

The final virtual traction point coordinates (x, y) can be calculated as shown in equation (8).
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Speed-Up Function
The gravitational force generated by the virtual traction point is given by equation (9).

Fι = − −k x x( )
0

 (9)

During movement, the robot is subjected to the virtual traction force, generating acceleration 
ι to move toward the virtual traction point. However, the traction force Fι is limited. To increase 
acceleration and improve efficiency, the virtual traction force is rapidly increased in a short period to 
maintain system stability during movement. The exponential function with a coefficient greater than 
1 can increase rapidly in a relatively short period. To leverage this property, an exponential function 
item is added in the modeling to increase the virtual traction as shown in equations (10) and (11).
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In these equations, Fι symbolizes the traction force generated by the virtual traction point, f(t) 
denotes the switch function, and ∇l  defines the moving distance of the robot per unit of time. In 
addition, S indicates the preset threshold, c represents the coordinates of the virtual traction point 
obtained using equation (8), ι1 represents an exponential function coefficient greater than 1, and d 
shows the robot position coordinates.

IMPROVEd ACO COMBINEd wITH ENHANCEd APF

Now we discuss steps we took to combine the ACO with the enhanced APF.

Heuristic Function for the Force of the Potential Field
The heuristic function constructed by the original ACO algorithm calculates only the distance between 
nodes (Dai et al., 2019). In this case, dij represents the Euclidean distance from the current node 
position i to the reachable node j in the next step, as shown in equation (12). The ant k at node i selects 
node j as the next position to reach, and the position selection probability is calculated by equation 
(13), where mk denotes a position set that ant k can choose to reach in the next step, τij represents the 
pheromone value of the path (i, j), ηij indicates the heuristic function, α denotes pheromone heuristic 
factor, and β defines the weighting parameter for function ηij. The smaller the dij, the larger the heuristic 
function, resulting in a greater probability that node i will choose node j.
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According to equation (13), the heuristic function of the original ACO algorithm is related to 
only the distance between the current MR position and the position of the next node. Suppose many 
obstacles are in the vicinity of the endpoint. In that case, the heuristic function of the original ACO 
may not fully consider the impacting factors, leading to the local optimum problem. Hence, owing 
to the characteristics of positive feedback from the ACO algorithm, if the initial generation of ants 
fails to obtain the optimal path (OP) and the ant colony secretes a large number of pheromones, other 
ants choose this path, resulting in a longer path or even a wrong path.

To tackle the existing limitation of the original ACO algorithm, we initially modified the 
heuristic function using the length information from the current node to the endpoint, which is 
calculated with the proposed APF method. Then, to avoid falling into the local optimum and 
mitigate the impact of the heuristic function on the path searching of the MR, we designed a 
descending parameter ϕ  within the heuristic function. As the MR approaches the endpoint, the 
heuristic function plays a smaller role. In addition to considering the distance heuristic information, 
when the MR encounters a complex environment with multiple obstacles in the path search, it must 
avoid the obstacles and search for the OP simultaneously. Therefore, the potential field heuristic 
information should also be taken into account.



International Journal of Information Technologies and Systems Approach
Volume 16 • Issue 3

8

The improved heuristic function can be expressed as shown in equation (14).

η
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η η
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In this equation, η
F
t( )  represents the potential heuristic function, η

d
t( )  denotes the 

length heuristic function, and ϕ  symbolizes a constant greater than 0 and less than 1. 
To ensure that the MR searches for the shortest path, the algorithm will prioritize to the 
nodes closer to the targeted point among the available nodes. The length dje from node 
j to target point e, to be chosen in the next step, will be substituted for the dij in the 
original ACO algorithm. The improved distance heuristic function can be expressed as 
shown in equation (15).

η
d
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Thus, the potential heuristic function is given as shown in equation (16).

η δ θ
F

Ft t( ) cos= ⋅  (16)

In this equation, δ defines a constant greater than 0 and θ represents the angle between the 
direction of the MR at the current position i pointing to the next node j and the direction of 
the resultant force of the potential field Ft. Applying the APF force, the MR is guided to keep 
away from the obstacles and go toward the endpoint. This approach effectively enhances the 
convergence speed of the algorithm.

Pheromone Updating Strategy
The pheromones are evenly distributed during the ant colony’s initialization in the original ACO 
algorithm. In the early stage of PP, the pheromone value of each grid position has little difference, 
leading to the blind search of the MR. In this paper we propose an uneven distribution method of 
pheromones to increase the pheromone concentration in the relevant area from the starting point to 
the ending point. The pheromone concentration gradually decays along the direction perpendicular 
to the start point of the MR to the endpoint.

Equation (17) is a linear function expression connecting the initial point of the MR to the 
targeted point:

y x C= − +  (17)

In equation (17), C denotes a positive integer. When the line encounters an obstacle, the pheromone 
concentration value of the grid position where the obstacle location is found is set to zero. The initial 
pheromone distribution is given by the formula shown in equation (18).
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In the coordinate system, the initial pheromone concentration value of the straight line 
y x C= − +  passing through all non-obstacle grids is set to T, which serves as the adjustment 
parameter of the initial pheromones. Differential allocation of initial pheromones has a significant 
effect on promoting the convergence speed of the algorithm.

Upon completion of the MR’s the movement from node i to node j, the local pheromones of the 
walking path of the MR must be updated. The update rule for the local pheromones is expressed as 
shown in equation (19).

τ ρ τ ω τ
ij ij
= − + ⋅( )1

0
 (19)

In this equation, ω  indicates a parameter within the range of (0, 1); ρ  represents the pheromone 
volatilization coefficient, ρ ∈ ( , )0 1 ; and τ

0
 denotes the initial value of the pheromone. During the 

path search process, each time the MR passes through the path (i, j), the local pheromone is updated 
according to equation (19). After the MR completes a path iteration, the pheromones on all paths are 
updated step by step. The global pheromone update strategy of the ant system can be expressed as 
shown in equations (20) and (21).
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As the number of iterations increases, the positive feedback effect of the ACO algorithm may 
cause the pheromones to concentrate on the nonoptimal path, leading the MR to prefer paths with 
higher pheromones. This situation may result in the algorithm converging to a nonoptimal solution. To 
address this problem and reduce the pheromone interference, the pheromone adjustment coefficient 
is introduced, and the improved global pheromone update method is given as shown in equation (22).

τ ρ τ τ
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N N N
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In this equation, e represents a constant. To prevent the algorithm from converging to a nonoptimal 
solution, the pheromone adjustment coefficient gradually decreases when Nk increases.

Implementation details
The proposed EAPF-IACO method can be implemented using the following steps:

Step 1:  Initialize all the algorithm parameters, establish a grid map environment, set the initial point and 
end point of the ant colony, and perform uneven pheromone distribution based on equation (18).

Step 2:  Conduct the path search from the starting point with m ants.
Step 3:  Substitute the constructed potential field force heuristic function formula from equation 

(14) and the redesigned pheromone update strategy from equation (22) into the state transition 
probability in equation (13) and select the node positions to be reached by the ants.

Step 4:  Check whether all ants avoid obstacles to reach the end position. If so, store the generated 
OP in this iteration. Otherwise, return to step 3.

Step 5:  Update the pheromone concentration value for each path and the potential field force heuristic 
function according to equation (14).

Step 6:  Determine whether all iterations are completed. If the maximum number of iterations is 
reached, store and output the OP. Otherwise, return to step 2.

SIMULATION RESULTS ANd ANALySIS

In this section we discuss our analysis of our proposed method in simple and complex environments.

Simulation Parameters
We verified the proposed method’s superiority through experimental analysis. We executed the 
simulation on a computer configured with an Intel i5 processor, 16 GB of memory, and a Windows 
10 operating system. The simulation was conducted with MATLAB 2018a software.

In the specific parameters of the algorithm, ρ represents the pheromone evaporating coefficient, 
and its value range is (0, 1). In this experiment, ρ was set to 0.6, and K was 100, indicating that the 
algorithm ends after 100 iterations and the number of ants is 100. Within a certain numerical range, 
increasing the number of ants can lead to a more stable planned path and faster convergence speed.

Given the complexity of real-world substation environments, especially in temporary maintenance, 
the simulation test environment should be appropriately modified based on the existing grid graph to 
increase the complexity of the environment as much as possible, making the algorithm more practical. 
Two simulation environments are established in MATLAB, as shown in Figure 3, where the lower 
right grid represents the starting point of the robot, and the upper left grid depicts the target point.

Comparison of Experimental Results in a Simple Environment
In a simple simulation environment, the characteristics of each algorithm can be observed from the 
experimental results owing to fewer obstacles. In the simple simulation environment illustrated in 
Figure 3(a), the results of the three algorithms are presented in Figures 4 and 5.

Figures 4 and 5 show that the original ACO algorithm falls into a locally optimal solution during 
the search process primarily because of the ants being misled by the heuristic information while 
avoiding the first convex obstacle, causing them to choose the right node with a smaller Euclidean 
distance from the target point. Thereafter, under the effect of positive feedback, the searched path 
consistently converges to the local solution. The method presented by Wang et al. (2018) and our 
algorithm proposed in this paper have both modified the heuristic information of the ant colony, 
thereby avoiding this problem. At the same time, because the APF algorithm provides the correct 
initial heuristic information for the ant colony, the ant colony acquires a better initial path, thus 
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Figure 3. Simulation environment

Figure 4. PP results in simple environment
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enhancing the convergence speed. Nonetheless, Wang et al. (2018) used the original APF algorithm 
to construct heuristic information, resulting in a significant difference between the initial path and the 
OP, affecting the subsequent convergence speed of the algorithm. In contrast, our proposed method 
uses an improved APF algorithm to obtain a superior initial path, greatly improving the convergence 
speed of the algorithm.

As shown in Figure 4, the path found by the proposed EAPF algorithm is just the OP in a simple 
environment, leading the IACO algorithm to converge to the optimum after only four iterations. As 
listed in Table 1, in a simpler scenario, the proposed algorithm has a higher convergence rate and the 
shortest running time, 0.985 s, compared with the other two algorithms.

Comparison of Experimental Results in a Complex Environment
In a complex environment, as shown in Figure 3(b), simulation experiments were conducted using 
three different algorithms. The results are shown in Figures 6 and 7.

The results in Figures 6 and 7 demonstrate that the path planned by the original ACO algorithm 
was still trapped in a local optimum in a complex environment. The OP planned by the proposed 
method and by Wang et al. (2018) were the same, both being 30.750 m. However, because the proposed 
method used an EAPF algorithm to inspire the performed search by the ant colony, the initial path 
was significantly better than that of Wang et al. (2018). The length of the initial path found by the 
proposed method was 37.657 m, whereas the method proposed by Wang et al. (2018) was 41.174 m.

Moreover, the convergence curve of the algorithm had a certain level of volatility owing to the 
alternating effects of global pheromones and local pheromones during the iterative courses of the 
algorithm. These effects seriously affected the converging speed of the algorithm. However, the 
proposed method effectively reduced the volatility in the iterative process, stabilized the convergence 
process, and improved the convergence speed of the algorithm. It is worth noting that the proposed 
method needed only seven iterations to converge to the best solution, whereas the method proposed 

Figure 5. Convergence curves in simple environment

Table 1. Simulation results in simple environment

Method OP Length Iteration Times Time

Original ACO 30.789 m 16 2.895 s

Wang et al. (2018) 29.015 m 9 2.275 s

Proposed method 28.429 m 4 0.985 s
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Figure 6. PP results in complex environment

Figure 7. Convergence curves in complex environment
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by Wang et al. (2018) required 10 iteration times to converge to the best solution, and the original 
ACO required at least 25 iteration times to converge.

Furthermore, as shown in Table 2, the proposed method for optimal PP had a significantly 
shorter operation time than the other two algorithms. The reason is the lower number of iterations 
for the proposed method and the exclusion of calculations related to invalid obstacles and repulsive 
force fields in the EAPF algorithm. Thus, the proposed method effectively reduced the computation 
burdens and shortened the processing time.

Summary of Experimental Results Under Two different Environments
The simple simulation environment had just a few obstacles, but the original ACO fell into 
the local best solution in the search process. In contrast, the method presented by Wang et 
al. (2018) and the proposed algorithm avoided local optimization owing to the improvements 
in the heuristic information of the ants. In addition, the proposed algorithm incorporated an 
EAPF algorithm to improve the optimality of the initial path and accelerate the convergence 
speed. Table 1 indicates that the proposed algorithm had the least number of iterations and 
the shortest running time compared with other methods. Moreover, it is worth mentioning 
that the difference in the generated OP lengths by three algorithms was very small owing to 
the simple characteristics of the simulation environment. However, in the complex simulation 
environment, the number of iterations and operation times of all the three algorithms were 
increased significantly. However, the proposed algorithm still maintained the best performance 
among the comparison methods, as the proposed algorithm can effectively reduce the volatility 
in the iterative process of the algorithm and stabilize the converging process of the algorithm. 
In addition, the OP generated by the original ACO was the longest among the comparison 
methods owing to repeatedly falling into local optima.

CONCLUSION

This paper proposed a PP method for the UHV substation inspection robot based on the EAPF 
algorithm and the IACO algorithm to enable the UHV substation inspection robot to perform 
the inspection task quickly and effectively. The novelties of the proposed method based on the 
EAPF algorithm are listed as follows: the resultant force of the APF was introduced as part 
of the heuristic information of the path points in the ant colony optimization algorithm, and 
the heuristic function of the APF forces was constructed, thereby improving the algorithm’s 
convergence speed. Furthermore, an improved global pheromone update method was proposed, 
so the mobile robot could quickly search for the OP. Simulation experiments were conducted 
in a grid environment. The results showed that compared with the original ACO algorithm and 
the method presented by Wang et al. (2018), the proposed method had obvious improvements 
in terms of the number of iterations, the OP length, and the processing time in the 20×20 grid 
environment with different complexities.

Table 2. Simulation results in complex environment

Method OP Length Iteration Times Time

Original ACO 35.624 m 25 15.607 s

Wang et al. (2018) 30.750 m 10 7.168 s

Proposed method 30.750 m 7 2.996 s
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