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ABSTRACT

As the need for handling data from various sources becomes crucial for making optimal decisions, 
managing multi-model data has become a key area of research. Currently, it is challenging to strike 
a balance between two methods: polyglot persistence and multi-model databases. Moreover, existing 
studies suggest that current benchmarks are not completely suitable for comparing these two methods, 
whether in terms of test datasets, workloads, or metrics. To address this issue, the authors introduce 
MDBench, an end-to-end benchmark tool. Based on the multi-model dataset and proposed workloads, 
the experiments reveal that ArangoDB is superior at insertion operations of graph data, while the 
polyglot persistence instance is better at handling the deletion operations of document data. When it 
comes to multi-thread and associated queries to multiple tables, the polyglot persistence outperforms 
ArangoDB in both execution time and resource usage. However, ArangoDB has the edge over 
MongoDB and Neo4j regarding reliability and availability.
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INTRODUCTION

There is an increasing demand for analyzing and processing multi-model data, including structured, 
semi-structured, and unstructured data. In particular, structured data commonly refer to relational, 
key-value, and graph data; semi-structured data mainly include JSON and XML documents; and 
unstructured data are typically text files. For multi-model data management, it is inevitable and 
difficult for developers to make trade-offs between multi-model databases and polyglot persistence. 
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However, existing studies suggest current benchmarks are not completely suitable for evaluating 
and comparing multi-model databases and polyglot persistence, whether in terms of test datasets, 
workloads, or metrics. First, obtaining large-scale real multi-model data is difficult and costly, and 
few data generators can generate multi-model test datasets. Second, the workloads of the existing 
benchmarks are not comprehensive and cannot cover diversified multi-model data application 
scenarios. Finally, most of the existing benchmarks pay more attention to the execution time of the 
workloads while ignoring the metrics of infrastructure resource usage and nonfunctional attributes. 
Specifically, in a distributed environment, database system failure is considered a normal event rather 
than an accident (Ghemawat et al., 2003), so collecting and measuring database resource usage and 
nonfunctional attributes is very important. However, as far as we know, there is no benchmark for 
multi-model databases and polyglot persistence that takes resource usage and nonfunctional attributes 
as metrics. Aiming at these problems, we propose an end-to-end benchmark named MDBench for 
evaluating and comparing a multi-model database and polyglot persistence. The main contributions 
of this paper are summarized as follows:

1. 	 A scalable multi-model data generator is designed for generating multi-model test datasets. The 
key algorithm of the data generator is efficient to ensure that no matter how large the dataset is 
generated, it will not cause serious out-of-memory resources.

2. 	 Four groups of representative workload experiments are designed and implemented to simulate 
different multi-model data application scenarios. In particular, a multi-thread workload experiment 
and reliability and availability experiments are conducted in the research field of evaluation and 
comparing multi-model databases and polyglot persistence.

3. 	 Based on data store selection, we use MDBench to implement a comprehensive performance 
evaluation on the single multi-model database ArangoDB and a polyglot persistence instance 
that consists of MongoDB and Neo4j and systematically analyze the experimental results.

The subsequent contents are organized as follows. First, the research status of database 
benchmarking is summarized. In the next section, we introduce the data stores involved in the 
evaluation and the reasons for selecting them. Then, MDBench is introduced in detail from three 
aspects: multi-model data generation, workloads, and metrics mechanism. Next, the experimental 
results are introduced and analyzed. Finally, the paper is summarized and proposed.

OVERVIEW OF DBMS BENCHMARKS

The database benchmark can perform repeatable, comparable, quantitative tests on performance 
indicators. Existing database benchmarks in the industry can be divided into the following two 
categories: RDBMS and NoSQL benchmarks. The multi-model database benchmarks belong to 
NoSQL benchmarks. Because of the particularity of its data model, we will also introduce multi-
model database benchmarks separately.

RDBMS Benchmarks
This kind of benchmark research work started early and had a wide range, and they are also the driving 
force behind the rapid development of relational database systems. For example, the Wisconsin 
benchmark (Bitton et al., 1983) consisted of 32 SQL statements and took the total time to execute the 
full workloads as the only metric. DebitCredit was designed by the Tandem team, which simulated a 
real-world transaction scenario, measuring the throughput and cost-effectiveness of various transaction 
processing systems. The TPC test benchmark, jointly established by Microsoft, Intel, HP, and others, 
was the standard for evaluating RDBMS. It tested the DBMS’s ACID characteristics, query speed, 
and online transaction processing capabilities. Among the thirteen TPC benchmarks, TPC-C and 
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TPC-E were designed for the OLTP databases; TPC-H and TPC-DS were designed for the decision 
support system. Currently, these benchmarks remain the key choice for DBMSs to provide data 
management solutions.

NoSQL Benchmarks
The development process of data management technology is to continuously integrate semi-structured 
and unstructured data into DBMS to reduce cost and improve efficiency. For each NoSQL store, there 
are different benchmarks for evaluating and comparing related big data systems, such as XBench 
(Yao et al., 2004), YCSB (Matallah et al., 2017), YCSB++ (Patil et al., 2011), BG (Alabdulkarim 
et al., 2018), BigDataBench (Zhan et al., 2016), and CloudSuite (Ferdman et al., 2012). XBench is a 
stand-alone XML benchmark that covers an overall database design defined by application categories. 
It tested the scalability of the database and the full XQuery functionality captured in the XML 
query case. YCSB is an open-source tool used by Yahoo to evaluate the performance of computer 
programs. It compared different data stores “apple to apple” regarding performance, elasticity, and 
availability. The YCSB framework consists of a workload generation client and standard workloads 
covering all aspects of the performance space. YCSB++ extends YCSB to evaluate the advanced 
features of NoSQL storage. BG is a benchmark for evaluating interactive social network behavior, 
which simulates social network behavior by reading or updating database operations. CloudSuite 
is designed for scale-out cloud applications and provides popular scale-out workloads to evaluate 
different NoSQL stores deployed in cloud architectures. CloudSuite also provides a list of real datasets 
and supports the extension of these datasets.

Multi-Model Database Benchmarks
As a part of NoSQL benchmarks, the multi-model database benchmark is listed separately due to the 
particularity of its data model. According to Messaoudi et al. (2017, 2018), in biomedical big data, 
the authors selected a single multi-model database OrientDB and a polyglot persistence instance 
composed of MongoDB and Neo4j to carry out performance evaluation with multiple workloads, 
such as insertion, deletion, and search operations. The results showed that MongoDB performed better 
than OrientDB in processing document data, and OrientDB performed better than Neo4j in querying 
graph data when the depth of the graph reached three layers. Although many workloads were involved 
in the evaluation, evaluating execution times alone did not give a complete picture of the capabilities 
of different data stores. Shah et al. (2014) evaluated eight databases, including OrientDB, Neo4j, and 
TitanDB, from two aspects of processing time and disk space usage. They found that OrientDB, Neo4j, 
and TitanDB performed well in persistence. Neo4j and MongoDB performed well in terms of query 
performance. Despite the fewer workload types, Shah et al. evaluated a wider range of databases than 
other researchers. Bagga and Sharma (2020) compared six databases, including MongoDB, CouchDB, 
and HBase, from backup, consistency, partition, and performance. Fernandes and Bernardino (2018) 
evaluated the graph and multi-model databases with graph function from seven aspects: storage 
mode, query language, partitioning, backup, multi-model, multi-architecture, extendibility, and cloud 
deployment. The experimental results showed that Neo4j and ArangoDB had the best performance. 
We can see that both teams are more focused on functional attributes. Macak et al. (2020) compared 
MongoDB and Neo4j with the multi-model database OrientDB from the perspective of eight query 
workloads. Finally, it was found that Neo4j was more efficient than OrientDB in processing graph 
data with a depth of less than four, and OrientDB performed better when the depth was greater than 
four, while MongoDB query efficiency was much higher than OrientDB in processing document 
data. Although only the time consumed by the query workload was measured, the measurements from 
Macak et al. covered many graph and document data query workloads. This research was of great 
reference value for those application scenarios with many queries. Jayathilake et al. (2012) used a 
column, document, tuple, graph, and multi-model database to process tree data. Membase showed 
the lowest latency and the highest throughput during tree creation.
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On the other hand, the graph database Neo4j and multi-model database have achieved excellent results 
in data retrieval. Tree data are an important data type, so the research results fill the gap in the NoSQL 
database evaluation of tree data. The experiment run by Oliveira and del val Cura (2016) compared the 
combination of ArangoDB and OrientDB with MongoDB and Neo4j. The experiment could be divided 
into two parts: insert and query. ArangoDB inserted document data efficiently, while MongoDB inserted 
document data efficiently when there were many fields. ArangoDB was the most efficient when inserting 
graph data. In the query part, when the depth was less than two, the performance of ArangoDB was better; 
when the depth was between two and four, the performance of OrientDB was better; and when the depth 
was greater than four, the performance of the combination of MongoDB and Neo4j was better. Although 
only insert and query workloads were evaluated, Oliveira and del val Cura’s experimental findings in graph 
depth traversal laid the foundation for the results reported by Macak et al. (2020).

We list the characteristics of six representative benchmarks from three aspects: dataset, workload 
and metric in Table 1. However, it can be seen from Table 1 that in the performance evaluation 
of different databases, most of them focus on the execution time of workloads while ignoring the 
occupation of hardware resources. The type of workload is relatively singular. The most incredible 
thing is that all benchmarks ignore the evaluation of the multi-thread workload. Therefore, we propose 
an end-to-end benchmark named MDBench for multi-model databases and polyglot persistence, 
aiming to provide a comprehensive solution for storing and managing multi-model data.

OVERVIEW OF THE EXPERIMENTAL DATABASE

Selecting the right objects for benchmarking is the starting point. Performance, price, and energy 
consumption are the most common metrics for computer program evaluation (Han et al., 2017). 
Therefore, based on the above standards, we select outstanding databases in various data model fields 
for benchmarking. Here, MongoDB and Neo4j are selected as the instances of polyglot persistence, and 
ArangoDB is representative of a single multi-model database for this study. Next, we will introduce the 
characteristics and selection basis of these data stores based on the literature analysis and comparison.

MongoDB
MongoDB is a document-oriented and scalable high-performance database (Banker et al., 2016, 
Plugge et al., 2015), whose efficient indexing mechanism brings high-speed queries that make it 
stand out among NoSQL databases (Zong et al., 2017).

Truică et al. (2018) proposed T2K2 and T2K2D2 benchmarks and used them to test the 
performance of MongoDB, Oracle, and PostgreSQL. Experimental results showed that MongoDB 
performed better than Oracle and PostgreSQL in calculating top-K keywords and documents. Truică et 

Table 1. 
Benchmark comparison

Benchmark Dataset Extensibility Workloads Metrics

Multi-Thread Join Table Transaction Time Resource

DebitCredit √ √

TPC-C √ √ √

TPC-H √ √ √

YCSB √ √

XBench √ √ √

UniBench √ √ √ √
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al. (2021) also proposed a universal document-oriented distributed benchmark TEXTBENDS, which 
was used to evaluate the computational efficiency of word weighting under two different weighting 
schemes: TF-IDF and Okapi BM25. Comparing MongoDB, Hive, and Spark, the experimental results 
showed that MongoDB had the best overall performance. Mishra et al. evaluated the performance 
of four document databases and databases with a document model. When comparing database 
throughput and runtime in a single-threaded state, MongoDB outperformed other databases with the 
highest throughput and lowest runtime. In a comprehensive analysis of MongoDB and ArangoDB for 
some threads under different workloads, MongoDB outperformed ArangoDB by a high percentage.

Neo4j
Neo4j is a high-performance graph database engine whose unique Cypher language enables convenient 
graph data processing (Holzschuher & Peinl, 2013). It follows the characteristics of the graph data 
model to maintain three data structures: nodes, relationships, and attributes. In addition, it has the 
characteristics of reliability, transactional, high availability, and security (Miller, 2013). Although 
Neo4j is a relatively new open-source project, it has been used in over 100 million nodes and meets 
enterprise robustness and performance requirements.

Beis et al. (2015) conducted a comprehensive comparative evaluation of three popular graph 
databases, Titan, OrientDB, and Neo4j. Experimental results showed Neo4j was the most efficient 
graph database for most workloads. Only by knowing the capabilities and limitations of each system 
can researchers know where to focus their efforts. Therefore, Lissandrini et al. (2018) conducted 
a comprehensive performance evaluation and analysis of seven graph databases: ArangoDB, 
BlazeGraph, Neo4j, OrientDB, Sparksee, SQLG, and Titan. The results showed that Neo4j and the 
other three databases performed better in graph traversal. Furthermore, completing the entire set 
of queries in a single and batch manner was the most efficient. Dominguez et al. (2010) evaluated 
four of the most scalable native graph databases, Neo4j, HypergraphDB, Jena, and DEX, against the 
HPC extensible graph analysis benchmark and tested the performance of each database for different 
typical graph operations and graph sizes. The results showed that Neo4j and DEX were the most 
efficient graph databases.

ArangoDB
In ArangoDB, documents are stored in collections. Collections use _id to uniquely identify each 
document. The _id can be assigned by the user at creation time or automatically generated by 
ArangoDB. Indexes are created for both the _id and _key attributes, where the index on the _key 
attribute is called the primary index, which exists in each collection and cannot be deleted. There are 
two types of sets in ArangoDB: vertex sets and edge sets. Documents in an edge collection have two 
additional attributes, _from and _to. Both must be bound to the corresponding vertex document’s _id 
attribute. ArangoDB uses the ArangoDB Query Language (AQL) to manipulate graphs or collections. 
AQL syntax is different from SQL syntax, although many of the same keywords exist. Compared 
with SQL syntax, AQL is more powerful and read-write.

Currently, OrientDB and ArangoDB are representative and influential multi-model databases. 
Zhang et al. (2018) proposed the UniBench benchmark for multi-model database evaluation and 
evaluated OrientDB and ArangoDB, and the experimental results show that ArangoDB performed 
better than OrientDB in most cases.

While there are few studies on multi-model databases, there is no other relevant research 
except Chao’s evaluation of multi-model databases above. Therefore, we should select OrientDB or 
ArangoDB as the multi-model database in the experiment. Based on workloads {C1, C2, R1, R2, U1, 
U2, D1, D2}, this paper compares the running times of OrientDB and ArangoDB. According to the 
experimental results shown in Figure 1, it can be seen that the overall performance of ArangoDB is 
indeed better than OrientDB under basic document operation and graph operation. Therefore, they 
chose ArangoDB as the multi-model database for the experiment.
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In summary, by analyzing and comparing existing studies, the single multi-model database 
ArangoDB and a specific polyglot persistence instance composed of MongoDB and Neo4j are chosen 
as research objects for benchmarking and comparison.

THE BENCHMARK PROPOSED

From a macro perspective, the three elements of the benchmark are data, workload, and metrics 
mechanism (Xia et al., 2015). This section will present our end-to-end benchmark from the three 
perspectives above.

Multi-Model Data Generation
One of the challenges facing the performance evaluation of multi-model databases and polyglot 
persistence is the lack of a large-scale multi-model dataset. Previous data generators have focused on 
single-model data. Combining multiple single-model data generators can increase system instability 
because we tailored each data generator to a specific application scenario. Jiaheng Lu and his team 
proposed a multi-model data generator in UniBench that can generate JSON, XML, relational, 
document, and graph data. However, the data generator has different requirements on the hardware 
operating environment according to different workload factors. The data generator of MDBench is 
realized after optimization of the data generator based on UniBench. Compared with UniBench, 
the data generator proposed in this paper occupies very low memory and saves hardware resources 
to a large extent. Compared to the pre-optimized data generator, the optimized data generator frees 
up three-quarters of the memory space. Algorithm 1 shows the implementation process of the data 
generator. This data generator generates the dataset used in the relevant experiments presented in 
this paper. Here, we select two types of data: document data and graph data. The document data 

Figure 1. 
ArangoDB vs. OrientDB
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comprises commodity and order information, while the graph dataset comprises customers and 
their social networks. In addition, the productId in the order points to the item’s primary key, and 
the personId points to the customer in the graph dataset. The orderId in the suborder points to the 
order primary key. We can see the specific information and relationship between goods, orders, and 
customers in Figure 2.

Workloads
There are many types of workloads, and some database vendors focus on query performance, while 
others focus on transaction consistency. Different databases behave differently even though they 
handle the same workloads, so the workloads should be designed with broad coverage. To explore 
and compare the processing capability of multi-model database and polyglot persistence on different 
workload types, to make the evaluation scenario similar to the real big data application scenario, 
and reflect the use case of the real environment, a series of workloads are designed, as shown in 
Table 2. Each workload contains a label, brief description, data model, and quantity. Categorized 
from the perspective of create, delete, update and query, C = {C1, C2, C3, C4, C5, C6} are the 
insert workloads, R = {R1, R2, R3, R4, R5, R6, R7} are the query workloads, U = {U1, U2, U3} 
are the update workloads, and D = {D1, D2, D3, D4, D5, D6} are the delete workloads. From the 
perspective of data type, D = {C1, C3, C4, C5, R1, R3, U1, U3, D1, D3, D4, D5} are the document 
workloads, G = {C2, C6, R2, U2, D2, D6} are the graph workloads, and M = {R4, R5, R6, R7} are 
the multi-model workloads.

Measurement Mechanism
Figure 4 is an architecture diagram of the MDBench. It comprises four parts: database cluster, resource 
monitoring unit composed of Prometheus and Grafana, data pipeline unit composed of Zookeeper 
and Kafka, and workload injection unit written in Java language.

Previous metrics of database benchmarks have mainly focused on the execution time of workloads. 
However, at a time when data volumes are exploding, it is not reasonable to focus solely on execution 

Figure 2. 
Relationship between datasets
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time. Therefore, compared with the previous database benchmark, the measurement mechanism of 
MDBench proposed in this paper measures the experimental results from four dimensions. The first 
dimension is the execution time of workloads, the second dimension is the resource occupation, the 
third dimension is reliability, and the fourth dimension is availability.

Execution Time
The execution time T is measured using the Timer class built into the Java language’s software 
Development Kit (JDK). In these experiments, the statistics of execution time follow Formula (1), 
where w

is
 is the start time of the i

th
workload, and w

ie
 is the end time of the ith workload.

T w w
ie is

= − 	 (1)

Figure 3. 
Algorithm
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Table 2. 
Workloads

Label Description Data Model Quantity

C1 Create customer information Document 9949

C2 Create customers’ social network Graph 187810

C3 Create orders and suborders Document 636167

C4 Create product information Document 10116

C5 Create document data(C3+C4) Document 846283

C6 Create graph data(C1+C2) Graph 197759

R1 Query customer information Document 9949

R2 Query who a customer knows Graph 187810

R3 Query product information with the primary key Document 10116

R4 Given the customer’s name, query the total amount of orders paid by the 
customer Multi-model 1000

R5 Given the customer’s primary key, query which products they have purchased Multi-model 1000

R6 Given the name of a product, query the information of customers who bought 
the product Multi-model 1000

R7 Given the name of a product, query what other products the woman who 
bought the product has purchased Multi-model 1000

U1 Update customer information Document 9949

U2 Update who a customer knows Graph 187810

U3 Update product information according to the primary key of the product Document 10116

D1 Delete customer information Document 9949

D2 Delete customer social networks Graph 187810

D3 Delete orders and suborders Document 836167

D4 Delete products Document 10116

D5 Delete document data(D3+D4) Document 846283

D6 Delete graph data(D1+D2) Graph 197759

Figure 4. 
The architecture of MDBench
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Resource Occupation
Resource occupation is monitored by the distributed monitoring unit Prometheus, which collects 
server performance data. Meanwhile, time series data collected by Prometheus are presented by 
Grafana in the form of graphs, which is an interface tool. CPU and memory statistics follow Formula 
(2), where r

i
 is the CPU or memory consumed by the i

th
 workload.

w
r

n
i

n

i
= =∑ 1 	 (2)

Reliability
The reliability metric is the ratio of successfully responded requests to the total number of requests, 
as shown in Formula (3).

Reliability
TotalRequest Unsuccessful Responses

TotalReques
=

−  

tt
	 (3)

Availability
The measure of availability is the ratio of effective working time to total working time, as shown in 
Formula (4).

Availability
TotalInServiceTime Downtime

TotalInServiceTime
=

− 	 (4)

DESIGN OF EXPERIMENTS

From the perspective of the practical application of big data, this paper divides the experiment into 
four groups. They are the single table workload experiment, multi-thread workload experiment, multi-
table joint query experiment, reliability and availability experiment. We tune each type of database 
for performance prior to experimentation to ensure that the database maximizes its advantages.

Experimental Configuration
The experiment runs on three servers containing one master node and two slave nodes. The master 
node is configured with eight-core 16 GB memory, and the two slave nodes are configured with 
four-core CPU and 8 GB memory. Three databases related to the experiment, including MongoDB, 
Neo4j, and ArangoDB, are installed and deployed on three servers in a distributed architecture. 
The evaluation platform is implemented in Java and runs on a single slave node, so the server has 
a preinstalled dependency environment. The measurement of experimental results is divided into 
two parts: execution time and resource occupancy. The execution time of the workload is measured 
using the Java Development Kit (JDK). The resource occupancy is measured by distributed resource 
monitoring platforms Prometheus and Grafana. We show the software and hardware parameters in 
Table 3.
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COMPARISON OF THE MULTI-MODEL DATABASE 
AGAINST POLYGLOT PERSISTENCE

This paper’s experiments on the performance evaluation of a multi-model database and polyglot 
persistence comprise four parts: a single-table workload experiment, a multi-thread workload 
experiment, a multi-table joint query experiment, and a reliability and availability experiment.

The first part of the experiment is a single-table workload experiment. This is because we must 
migrate the data in the database for practical applications, and persistence is inevitable in iterative 
operation systems. For example, in data migration, the consumption of time and resources to the 
downstream consumer must be predictable. Otherwise, it will directly affect the normal operation 
of the downstream system. Therefore, it is necessary to measure this kind of single-table workload.

The second part of the experiment is the multi-thread workload experiment. With the 
popularization of the Internet and the intelligence of mobile devices, servers are facing increasing 
concurrency pressure. The processing of sudden and high concurrent requests is the ability that 
distributed databases should have, and it is also the necessary condition for databases to be put into 
production and life.

The third part is the multi-table joint query experiment. In the real application scenario, with 
time and business development, the data in the tables will increase, increasing the cost of database 
operations. Therefore, at the beginning of the system, developers will cut data separately based on 
factors such as function modules and data relationships, using tables to store them. While these data 
are needed, we can query them via an associated query to multiple tables. Except for data migration 
and persistence involving only one table, most operations involve associated queries to multiple 
tables. Therefore, the effect of multi-model databases and polyglot persistence-associated queries on 
multiple tables is also a concern of users. The above three experiments will use measurements from 
execution time and resource occupation.

The fourth part is the reliability and availability experiment. E Bauer and R Adams proposed 
the calculation formula for reliability and availability in 2012 (Bauer and Adams., 2012). In this 
experiment, we sent 1000 requests to the evaluation database. During the request process, we adopt 
fault injection to simulate the restart of the server after power failure. The quantified reliability result is 
obtained by calculating the ratio of the number of successfully responded requests to the total number 

Table 3. 
Software and hardware parameters

OS CentOS 7.6

CPU Intel(R) Xeon(R) Platinum 8269CY CPU @ 2.50 GHz

Turbo Boost Active

Hyper Threading Active

JDK version 1.8.0_291

The heap size 4GB(master),2GB(slave)

ArangoDB version 3.9.0

MongoDB version 5.0.6

Neo4j version 4.3.10

Zookeeper version 3.7.0

Kafka version 2.13-2.8.0

Prometheus version 2.28.0

Grafana version 8.2.3
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of requests. The availability is quantified by the time the last request responded before the restart and 
the time the first request responded to after the restart. We will perform the reliability and availability 
tests for each database five times, averaging the remaining three times by removing one maximum 
and one minimum. The reliability and availability of polyglot persistence follow the Cannikin law.

RESULTS AND DISCUSSION

Single Table Workload Experiment
Single table workloads are the simplest of all workload types and are the basis of all workload types. 
The measurement of single table workloads includes a total of eight workloads. C5, R3, U3, and D5 
are the CRUD workloads of document data, while C6, R2, U2, and D6 are the CRUD workloads of 
graph data. We measure experiments from execution time and resource occupation. Figure 5 shows 
the comparison of processing time for single-table workloads, and Figure 6 shows the comparison 
of resource occupation for single-table workloads.

Figure 5 shows that the ArangoDB takes almost twice as long to delete document data as 
polyglot persistence. When inserting graph data, polyglot persistence took nearly three times as long 
as ArangoDB. In the case of handling other workloads, there is little difference between polyglot 
persistence and ArangoDB.

From the comparison of resource occupation of single table workloads in Figure 6, we can see 
that in most cases, the CPU consumption of polyglot persistence is higher than that of ArangoDB, 
and the memory consumption of ArangoDB is generally higher than that of polyglot persistence.

Figure 5. T
ime consumption of ArangoDB (MD) and polyglot persistence (PP) when processing a single table workload
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Multi-Thread Workload Experiment
The multi-thread experiment simulates a high-concurrency application scenario by controlling the 
number of threads created by the evaluation platform. R4 is selected to carry out the multi-thread 
workload experiment. R4 is a mixed workload involving document and graph operations. The 
evaluation platform measures the experimental results from two dimensions: execution time and 
resource occupation.

Figure 7 shows the comparison of ArangoDB and polyglot persistence under multi-thread 
workloads. As we observe in Figure 7, the execution time changes significantly as the number of 
threads increases from 1 to 5. This is because both ArangoDB and polyglot persistence can handle high 
concurrency scenarios. However, when the number of threads increases from 5 to 80, the ArangoDB 
and polyglot persistence processing times do not change, which is normal because all systems that 
support high concurrency have a performance ceiling on the number of concurrent processes they 
can support.

Figure 8 shows the resource occupation comparison of ArangoDB and polyglot persistence under 
multi-thread workloads. As the figure shows, the memory occupation of ArangoDB and polyglot 
persistence is remarkably stable, consistently at 40%. We find that when the number of threads is 
small, the CPU usage of polyglot persistence is significantly higher than that of ArangoDB. As the 
number of threads increases, the CPU usage of both approaches 100%.

Multi-Table Joint Query Experiment
This paper selects R4, R5, R6, and R7 to conduct the multi-table joint query experiment. This part of 
the experiment uses a vector-based method to represent the results of the associated query to multiple 
tables. Specifically, based on known parameters, an intermediate result is first queried, and then the 
eventual result is obtained progressively based on the intermediate result. For example, R4 is given the 

Figure 6. 
CPU and memory usage of ArangoDB (MD) and polyglot persistence (PP) when processing a single table workload
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Figure 8. 
CPU and memory usage of ArangoDB (MD) and polyglot persistence (PP) when processing workload R4

Figure 7. 
Time consumption of ArangoDB (MD) and polyglot persistence (PP) when processing workload R4
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customer’s name and queries the total price of orders paid by the customer. According to the customer’s 
name, a null vector can be calculated (|C|, |O|, |CO|), including the size of the vector |C| on behalf 
of the customer table, |O| represents the size of the order table, and |CO| on behalf of the associated 
query result. In the same way, R5 can be expressed as (|O|, |S|, |P|, |OSP|), where |S| represents the 
size of the order table and |P| represents the size of the goods table. R6 can be expressed as (|P|, |S|, 
|O|, |C|, |PSOC|). R7 can be expressed as (|X|, |Y|, |XY|), where X = (|P|, |S|, |O|, |C|, |PSOC|), Y = 
(|O|, |S|, |OS|). This method can reflect how many associated queries the workload contains and the 
size of the intermediate results at each step.

Figure 9 compares the time taken by ArangoDB and polyglot persistence under the workload of 
the associated query. It can be seen from the figure that with the increase in the number of associated 
tables, the time taken by ArangoDB and polyglot persistence increases gradually. At the same time, 
we can find that the time of polyglot persistence is always less than that of ArangoDB.

Figure 10 displays the resource occupation comparison of ArangoDB and polyglot persistence 
under the associated query to multiple tables. It can be seen from the figure that the number of 
associated tables has little influence on CPU and memory consumption, except that the consumption 
of CPU and memory of polyglot persistence increases slightly when the number of associated tables 
increases from 4 (R6) to 6 (R7).

Reliability and Availability Experiment
Table 4 shows the number of failed response requests among 1000 in the reliability experiment. Table 
5 shows the time in milliseconds for each database processing fault in the availability experiment. 
Reliability and availability calculations follow the Cannikin law to avoid experimental contingency, 
removing one maximum and one minimum and averaging the remaining three values. In the end, 
the reliability of ArangoDB was 97.40%, and the availability was 97.19%. Polyglot persistence has 

Figure 9. 
Time consumption of ArangoDB (MD) and polyglot persistence (PP) when processing the associated query to multiple tables
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Figure 10. 
CPU and memory usage of ArangoDB (MD) and polyglot persistence (PP) when processing the associated query to multiple tables

Table 4. 
The number of failed response requests

MongoDB Neo4j ArangoDB

2           3 55

1           5 5

1           5 18

2           2 44

2           3 16

Table 5. 
The time of database processing fault

MongoDB Neo4j ArangoDB

41 7365 3192

189 6540 2353

69 6889 2679

47 4706 3226

66 7282 2568



Journal of Database Management
Volume 34 • Issue 3

17

99.63% reliability and 93.10% availability. It can be seen that the availability of ArangoDB is higher 
than polyglot persistence, and the reliability is not as good as polyglot persistence.

Discussion
This section measures three sets of experiments: a single-table workload experiment, a multi-thread 
workload experiment, and a multi-table joint query experiment regarding execution time and resource 
occupation. In addition, we also performed reliability and availability experiments. According to the 
experimental results, we can draw the following conclusions.

We recommend ArangoDB for scenarios with heavy single-table workloads and a high proportion 
of graph data creation operations. We recommend polyglot persistence for a high percentage of 
document data deletion operations. If server memory is tight, polyglot persistence is recommended. 
If the server CPU is tight, we advise using ArangoDB.

We recommend polyglot persistence for high concurrency scenarios regarding execution time and 
resource occupancy. At the same time, it also shows that although research on multi-model databases 
has made remarkable progress in recent years, there are still many deficiencies. As we can see from 
this part of the experiment, ArangoDB is not as good at handling concurrency as polyglot persistence.

For applications where business operations are more complex, polyglot persistence is still better 
than ArangoDB regarding execution time and resource occupancy. However, especially in terms 
of execution time, as the number of tables involved increases (R4 to R7), so does the gap between 
polyglot persistence and ArangoDB.

We recommend ArangoDB if the requirements for availability are high. We recommend polyglot 
persistence if the requirements for reliability are high.

SUMMARY AND PROSPECTS

The benchmark MDBench proposed in this paper evaluates the selected multi-model database and 
polyglot persistence from execution time, resource occupation, reliability, and availability. The 
evaluation experiment comprises four parts: the first part is the single table workload experiment, 
the second part is the multi-thread workload experiment, the third part is the multi-table joint 
query experiment, and the fourth part is the reliability and availability experiment. Through the 
four experiments, we can comprehensively understand the execution time, resource occupation, 
reliability, and availability of ArangoDB and polyglot persistence to provide a reference for users to 
store multi-model data.

At present, MDBench has not evaluated read-write mixed workloads, but workloads are mixed 
in real application scenarios. Therefore, the evaluation of read-write mixed workloads will be a part 
of the work in the next stage.
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