
DOI: 10.4018/JDM.321756

Journal of Database Management
Volume 34 • Issue 3

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

A Benchmark for Performance
Evaluation of a Multi-Model Database
vs. Polyglot Persistence
Feng Ye, Hohai University, China*

 https://orcid.org/0000-0003-0005-2073

Xinjun Sheng, Hohai University, China

Nadia Nedjah, State University of Rio de Janeiro, Brazil

Jun Sun, Hohai University, China

Peng Zhang, Jiangsu Provincial Water Conservancy Engineering Planning Office, China

ABSTRACT

As the need for handling data from various sources becomes crucial for making optimal decisions,
managing multi-model data has become a key area of research. Currently, it is challenging to strike
a balance between two methods: polyglot persistence and multi-model databases. Moreover, existing
studies suggest that current benchmarks are not completely suitable for comparing these two methods,
whether in terms of test datasets, workloads, or metrics. To address this issue, the authors introduce
MDBench, an end-to-end benchmark tool. Based on the multi-model dataset and proposed workloads,
the experiments reveal that ArangoDB is superior at insertion operations of graph data, while the
polyglot persistence instance is better at handling the deletion operations of document data. When it
comes to multi-thread and associated queries to multiple tables, the polyglot persistence outperforms
ArangoDB in both execution time and resource usage. However, ArangoDB has the edge over
MongoDB and Neo4j regarding reliability and availability.

Keywords
Availability, Benchmark, Multi-Model Database, noSQL, Polyglot Persistence, Reliability, Workload

INTRODUCTION

There is an increasing demand for analyzing and processing multi-model data, including structured,
semi-structured, and unstructured data. In particular, structured data commonly refer to relational,
key-value, and graph data; semi-structured data mainly include JSON and XML documents; and
unstructured data are typically text files. For multi-model data management, it is inevitable and
difficult for developers to make trade-offs between multi-model databases and polyglot persistence.

Journal of Database Management
Volume 34 • Issue 3

2

However, existing studies suggest current benchmarks are not completely suitable for evaluating
and comparing multi-model databases and polyglot persistence, whether in terms of test datasets,
workloads, or metrics. First, obtaining large-scale real multi-model data is difficult and costly, and
few data generators can generate multi-model test datasets. Second, the workloads of the existing
benchmarks are not comprehensive and cannot cover diversified multi-model data application
scenarios. Finally, most of the existing benchmarks pay more attention to the execution time of the
workloads while ignoring the metrics of infrastructure resource usage and nonfunctional attributes.
Specifically, in a distributed environment, database system failure is considered a normal event rather
than an accident (Ghemawat et al., 2003), so collecting and measuring database resource usage and
nonfunctional attributes is very important. However, as far as we know, there is no benchmark for
multi-model databases and polyglot persistence that takes resource usage and nonfunctional attributes
as metrics. Aiming at these problems, we propose an end-to-end benchmark named MDBench for
evaluating and comparing a multi-model database and polyglot persistence. The main contributions
of this paper are summarized as follows:

1. 	 A scalable multi-model data generator is designed for generating multi-model test datasets. The
key algorithm of the data generator is efficient to ensure that no matter how large the dataset is
generated, it will not cause serious out-of-memory resources.

2. 	 Four groups of representative workload experiments are designed and implemented to simulate
different multi-model data application scenarios. In particular, a multi-thread workload experiment
and reliability and availability experiments are conducted in the research field of evaluation and
comparing multi-model databases and polyglot persistence.

3. 	 Based on data store selection, we use MDBench to implement a comprehensive performance
evaluation on the single multi-model database ArangoDB and a polyglot persistence instance
that consists of MongoDB and Neo4j and systematically analyze the experimental results.

The subsequent contents are organized as follows. First, the research status of database
benchmarking is summarized. In the next section, we introduce the data stores involved in the
evaluation and the reasons for selecting them. Then, MDBench is introduced in detail from three
aspects: multi-model data generation, workloads, and metrics mechanism. Next, the experimental
results are introduced and analyzed. Finally, the paper is summarized and proposed.

OVERVIEW OF DBMS BENCHMARKS

The database benchmark can perform repeatable, comparable, quantitative tests on performance
indicators. Existing database benchmarks in the industry can be divided into the following two
categories: RDBMS and NoSQL benchmarks. The multi-model database benchmarks belong to
NoSQL benchmarks. Because of the particularity of its data model, we will also introduce multi-
model database benchmarks separately.

RDBMS Benchmarks
This kind of benchmark research work started early and had a wide range, and they are also the driving
force behind the rapid development of relational database systems. For example, the Wisconsin
benchmark (Bitton et al., 1983) consisted of 32 SQL statements and took the total time to execute the
full workloads as the only metric. DebitCredit was designed by the Tandem team, which simulated a
real-world transaction scenario, measuring the throughput and cost-effectiveness of various transaction
processing systems. The TPC test benchmark, jointly established by Microsoft, Intel, HP, and others,
was the standard for evaluating RDBMS. It tested the DBMS’s ACID characteristics, query speed,
and online transaction processing capabilities. Among the thirteen TPC benchmarks, TPC-C and

Journal of Database Management
Volume 34 • Issue 3

3

TPC-E were designed for the OLTP databases; TPC-H and TPC-DS were designed for the decision
support system. Currently, these benchmarks remain the key choice for DBMSs to provide data
management solutions.

NoSQL Benchmarks
The development process of data management technology is to continuously integrate semi-structured
and unstructured data into DBMS to reduce cost and improve efficiency. For each NoSQL store, there
are different benchmarks for evaluating and comparing related big data systems, such as XBench
(Yao et al., 2004), YCSB (Matallah et al., 2017), YCSB++ (Patil et al., 2011), BG (Alabdulkarim
et al., 2018), BigDataBench (Zhan et al., 2016), and CloudSuite (Ferdman et al., 2012). XBench is a
stand-alone XML benchmark that covers an overall database design defined by application categories.
It tested the scalability of the database and the full XQuery functionality captured in the XML
query case. YCSB is an open-source tool used by Yahoo to evaluate the performance of computer
programs. It compared different data stores “apple to apple” regarding performance, elasticity, and
availability. The YCSB framework consists of a workload generation client and standard workloads
covering all aspects of the performance space. YCSB++ extends YCSB to evaluate the advanced
features of NoSQL storage. BG is a benchmark for evaluating interactive social network behavior,
which simulates social network behavior by reading or updating database operations. CloudSuite
is designed for scale-out cloud applications and provides popular scale-out workloads to evaluate
different NoSQL stores deployed in cloud architectures. CloudSuite also provides a list of real datasets
and supports the extension of these datasets.

Multi-Model Database Benchmarks
As a part of NoSQL benchmarks, the multi-model database benchmark is listed separately due to the
particularity of its data model. According to Messaoudi et al. (2017, 2018), in biomedical big data,
the authors selected a single multi-model database OrientDB and a polyglot persistence instance
composed of MongoDB and Neo4j to carry out performance evaluation with multiple workloads,
such as insertion, deletion, and search operations. The results showed that MongoDB performed better
than OrientDB in processing document data, and OrientDB performed better than Neo4j in querying
graph data when the depth of the graph reached three layers. Although many workloads were involved
in the evaluation, evaluating execution times alone did not give a complete picture of the capabilities
of different data stores. Shah et al. (2014) evaluated eight databases, including OrientDB, Neo4j, and
TitanDB, from two aspects of processing time and disk space usage. They found that OrientDB, Neo4j,
and TitanDB performed well in persistence. Neo4j and MongoDB performed well in terms of query
performance. Despite the fewer workload types, Shah et al. evaluated a wider range of databases than
other researchers. Bagga and Sharma (2020) compared six databases, including MongoDB, CouchDB,
and HBase, from backup, consistency, partition, and performance. Fernandes and Bernardino (2018)
evaluated the graph and multi-model databases with graph function from seven aspects: storage
mode, query language, partitioning, backup, multi-model, multi-architecture, extendibility, and cloud
deployment. The experimental results showed that Neo4j and ArangoDB had the best performance.
We can see that both teams are more focused on functional attributes. Macak et al. (2020) compared
MongoDB and Neo4j with the multi-model database OrientDB from the perspective of eight query
workloads. Finally, it was found that Neo4j was more efficient than OrientDB in processing graph
data with a depth of less than four, and OrientDB performed better when the depth was greater than
four, while MongoDB query efficiency was much higher than OrientDB in processing document
data. Although only the time consumed by the query workload was measured, the measurements from
Macak et al. covered many graph and document data query workloads. This research was of great
reference value for those application scenarios with many queries. Jayathilake et al. (2012) used a
column, document, tuple, graph, and multi-model database to process tree data. Membase showed
the lowest latency and the highest throughput during tree creation.

Journal of Database Management
Volume 34 • Issue 3

4

On the other hand, the graph database Neo4j and multi-model database have achieved excellent results
in data retrieval. Tree data are an important data type, so the research results fill the gap in the NoSQL
database evaluation of tree data. The experiment run by Oliveira and del val Cura (2016) compared the
combination of ArangoDB and OrientDB with MongoDB and Neo4j. The experiment could be divided
into two parts: insert and query. ArangoDB inserted document data efficiently, while MongoDB inserted
document data efficiently when there were many fields. ArangoDB was the most efficient when inserting
graph data. In the query part, when the depth was less than two, the performance of ArangoDB was better;
when the depth was between two and four, the performance of OrientDB was better; and when the depth
was greater than four, the performance of the combination of MongoDB and Neo4j was better. Although
only insert and query workloads were evaluated, Oliveira and del val Cura’s experimental findings in graph
depth traversal laid the foundation for the results reported by Macak et al. (2020).

We list the characteristics of six representative benchmarks from three aspects: dataset, workload
and metric in Table 1. However, it can be seen from Table 1 that in the performance evaluation
of different databases, most of them focus on the execution time of workloads while ignoring the
occupation of hardware resources. The type of workload is relatively singular. The most incredible
thing is that all benchmarks ignore the evaluation of the multi-thread workload. Therefore, we propose
an end-to-end benchmark named MDBench for multi-model databases and polyglot persistence,
aiming to provide a comprehensive solution for storing and managing multi-model data.

OVERVIEW OF THE EXPERIMENTAL DATABASE

Selecting the right objects for benchmarking is the starting point. Performance, price, and energy
consumption are the most common metrics for computer program evaluation (Han et al., 2017).
Therefore, based on the above standards, we select outstanding databases in various data model fields
for benchmarking. Here, MongoDB and Neo4j are selected as the instances of polyglot persistence, and
ArangoDB is representative of a single multi-model database for this study. Next, we will introduce the
characteristics and selection basis of these data stores based on the literature analysis and comparison.

MongoDB
MongoDB is a document-oriented and scalable high-performance database (Banker et al., 2016,
Plugge et al., 2015), whose efficient indexing mechanism brings high-speed queries that make it
stand out among NoSQL databases (Zong et al., 2017).

Truică et al. (2018) proposed T2K2 and T2K2D2 benchmarks and used them to test the
performance of MongoDB, Oracle, and PostgreSQL. Experimental results showed that MongoDB
performed better than Oracle and PostgreSQL in calculating top-K keywords and documents. Truică et

Table 1.
Benchmark comparison

Benchmark Dataset Extensibility Workloads Metrics

Multi-Thread Join Table Transaction Time Resource

DebitCredit √ √

TPC-C √ √ √

TPC-H √ √ √

YCSB √ √

XBench √ √ √

UniBench √ √ √ √

Journal of Database Management
Volume 34 • Issue 3

5

al. (2021) also proposed a universal document-oriented distributed benchmark TEXTBENDS, which
was used to evaluate the computational efficiency of word weighting under two different weighting
schemes: TF-IDF and Okapi BM25. Comparing MongoDB, Hive, and Spark, the experimental results
showed that MongoDB had the best overall performance. Mishra et al. evaluated the performance
of four document databases and databases with a document model. When comparing database
throughput and runtime in a single-threaded state, MongoDB outperformed other databases with the
highest throughput and lowest runtime. In a comprehensive analysis of MongoDB and ArangoDB for
some threads under different workloads, MongoDB outperformed ArangoDB by a high percentage.

Neo4j
Neo4j is a high-performance graph database engine whose unique Cypher language enables convenient
graph data processing (Holzschuher & Peinl, 2013). It follows the characteristics of the graph data
model to maintain three data structures: nodes, relationships, and attributes. In addition, it has the
characteristics of reliability, transactional, high availability, and security (Miller, 2013). Although
Neo4j is a relatively new open-source project, it has been used in over 100 million nodes and meets
enterprise robustness and performance requirements.

Beis et al. (2015) conducted a comprehensive comparative evaluation of three popular graph
databases, Titan, OrientDB, and Neo4j. Experimental results showed Neo4j was the most efficient
graph database for most workloads. Only by knowing the capabilities and limitations of each system
can researchers know where to focus their efforts. Therefore, Lissandrini et al. (2018) conducted
a comprehensive performance evaluation and analysis of seven graph databases: ArangoDB,
BlazeGraph, Neo4j, OrientDB, Sparksee, SQLG, and Titan. The results showed that Neo4j and the
other three databases performed better in graph traversal. Furthermore, completing the entire set
of queries in a single and batch manner was the most efficient. Dominguez et al. (2010) evaluated
four of the most scalable native graph databases, Neo4j, HypergraphDB, Jena, and DEX, against the
HPC extensible graph analysis benchmark and tested the performance of each database for different
typical graph operations and graph sizes. The results showed that Neo4j and DEX were the most
efficient graph databases.

ArangoDB
In ArangoDB, documents are stored in collections. Collections use _id to uniquely identify each
document. The _id can be assigned by the user at creation time or automatically generated by
ArangoDB. Indexes are created for both the _id and _key attributes, where the index on the _key
attribute is called the primary index, which exists in each collection and cannot be deleted. There are
two types of sets in ArangoDB: vertex sets and edge sets. Documents in an edge collection have two
additional attributes, _from and _to. Both must be bound to the corresponding vertex document’s _id
attribute. ArangoDB uses the ArangoDB Query Language (AQL) to manipulate graphs or collections.
AQL syntax is different from SQL syntax, although many of the same keywords exist. Compared
with SQL syntax, AQL is more powerful and read-write.

Currently, OrientDB and ArangoDB are representative and influential multi-model databases.
Zhang et al. (2018) proposed the UniBench benchmark for multi-model database evaluation and
evaluated OrientDB and ArangoDB, and the experimental results show that ArangoDB performed
better than OrientDB in most cases.

While there are few studies on multi-model databases, there is no other relevant research
except Chao’s evaluation of multi-model databases above. Therefore, we should select OrientDB or
ArangoDB as the multi-model database in the experiment. Based on workloads {C1, C2, R1, R2, U1,
U2, D1, D2}, this paper compares the running times of OrientDB and ArangoDB. According to the
experimental results shown in Figure 1, it can be seen that the overall performance of ArangoDB is
indeed better than OrientDB under basic document operation and graph operation. Therefore, they
chose ArangoDB as the multi-model database for the experiment.

Journal of Database Management
Volume 34 • Issue 3

6

In summary, by analyzing and comparing existing studies, the single multi-model database
ArangoDB and a specific polyglot persistence instance composed of MongoDB and Neo4j are chosen
as research objects for benchmarking and comparison.

THE BENCHMARK PROPOSED

From a macro perspective, the three elements of the benchmark are data, workload, and metrics
mechanism (Xia et al., 2015). This section will present our end-to-end benchmark from the three
perspectives above.

Multi-Model Data Generation
One of the challenges facing the performance evaluation of multi-model databases and polyglot
persistence is the lack of a large-scale multi-model dataset. Previous data generators have focused on
single-model data. Combining multiple single-model data generators can increase system instability
because we tailored each data generator to a specific application scenario. Jiaheng Lu and his team
proposed a multi-model data generator in UniBench that can generate JSON, XML, relational,
document, and graph data. However, the data generator has different requirements on the hardware
operating environment according to different workload factors. The data generator of MDBench is
realized after optimization of the data generator based on UniBench. Compared with UniBench,
the data generator proposed in this paper occupies very low memory and saves hardware resources
to a large extent. Compared to the pre-optimized data generator, the optimized data generator frees
up three-quarters of the memory space. Algorithm 1 shows the implementation process of the data
generator. This data generator generates the dataset used in the relevant experiments presented in
this paper. Here, we select two types of data: document data and graph data. The document data

Figure 1.
ArangoDB vs. OrientDB

Journal of Database Management
Volume 34 • Issue 3

7

comprises commodity and order information, while the graph dataset comprises customers and
their social networks. In addition, the productId in the order points to the item’s primary key, and
the personId points to the customer in the graph dataset. The orderId in the suborder points to the
order primary key. We can see the specific information and relationship between goods, orders, and
customers in Figure 2.

Workloads
There are many types of workloads, and some database vendors focus on query performance, while
others focus on transaction consistency. Different databases behave differently even though they
handle the same workloads, so the workloads should be designed with broad coverage. To explore
and compare the processing capability of multi-model database and polyglot persistence on different
workload types, to make the evaluation scenario similar to the real big data application scenario,
and reflect the use case of the real environment, a series of workloads are designed, as shown in
Table 2. Each workload contains a label, brief description, data model, and quantity. Categorized
from the perspective of create, delete, update and query, C = {C1, C2, C3, C4, C5, C6} are the
insert workloads, R = {R1, R2, R3, R4, R5, R6, R7} are the query workloads, U = {U1, U2, U3}
are the update workloads, and D = {D1, D2, D3, D4, D5, D6} are the delete workloads. From the
perspective of data type, D = {C1, C3, C4, C5, R1, R3, U1, U3, D1, D3, D4, D5} are the document
workloads, G = {C2, C6, R2, U2, D2, D6} are the graph workloads, and M = {R4, R5, R6, R7} are
the multi-model workloads.

Measurement Mechanism
Figure 4 is an architecture diagram of the MDBench. It comprises four parts: database cluster, resource
monitoring unit composed of Prometheus and Grafana, data pipeline unit composed of Zookeeper
and Kafka, and workload injection unit written in Java language.

Previous metrics of database benchmarks have mainly focused on the execution time of workloads.
However, at a time when data volumes are exploding, it is not reasonable to focus solely on execution

Figure 2.
Relationship between datasets

Journal of Database Management
Volume 34 • Issue 3

8

time. Therefore, compared with the previous database benchmark, the measurement mechanism of
MDBench proposed in this paper measures the experimental results from four dimensions. The first
dimension is the execution time of workloads, the second dimension is the resource occupation, the
third dimension is reliability, and the fourth dimension is availability.

Execution Time
The execution time T is measured using the Timer class built into the Java language’s software
Development Kit (JDK). In these experiments, the statistics of execution time follow Formula (1),
where w

is
 is the start time of the i

th
workload, and w

ie
 is the end time of the ith workload.

T w w
ie is

= − 	 (1)

Figure 3.
Algorithm

Journal of Database Management
Volume 34 • Issue 3

9

Table 2.
Workloads

Label Description Data Model Quantity

C1 Create customer information Document 9949

C2 Create customers’ social network Graph 187810

C3 Create orders and suborders Document 636167

C4 Create product information Document 10116

C5 Create document data(C3+C4) Document 846283

C6 Create graph data(C1+C2) Graph 197759

R1 Query customer information Document 9949

R2 Query who a customer knows Graph 187810

R3 Query product information with the primary key Document 10116

R4 Given the customer’s name, query the total amount of orders paid by the
customer Multi-model 1000

R5 Given the customer’s primary key, query which products they have purchased Multi-model 1000

R6 Given the name of a product, query the information of customers who bought
the product Multi-model 1000

R7 Given the name of a product, query what other products the woman who
bought the product has purchased Multi-model 1000

U1 Update customer information Document 9949

U2 Update who a customer knows Graph 187810

U3 Update product information according to the primary key of the product Document 10116

D1 Delete customer information Document 9949

D2 Delete customer social networks Graph 187810

D3 Delete orders and suborders Document 836167

D4 Delete products Document 10116

D5 Delete document data(D3+D4) Document 846283

D6 Delete graph data(D1+D2) Graph 197759

Figure 4.
The architecture of MDBench

Journal of Database Management
Volume 34 • Issue 3

10

Resource Occupation
Resource occupation is monitored by the distributed monitoring unit Prometheus, which collects
server performance data. Meanwhile, time series data collected by Prometheus are presented by
Grafana in the form of graphs, which is an interface tool. CPU and memory statistics follow Formula
(2), where r

i
 is the CPU or memory consumed by the i

th
 workload.

w
r

n
i

n

i
= =∑ 1 	 (2)

Reliability
The reliability metric is the ratio of successfully responded requests to the total number of requests,
as shown in Formula (3).

Reliability
TotalRequest Unsuccessful Responses

TotalReques
=

−

tt
	 (3)

Availability
The measure of availability is the ratio of effective working time to total working time, as shown in
Formula (4).

Availability
TotalInServiceTime Downtime

TotalInServiceTime
=

− 	 (4)

DESIGN OF EXPERIMENTS

From the perspective of the practical application of big data, this paper divides the experiment into
four groups. They are the single table workload experiment, multi-thread workload experiment, multi-
table joint query experiment, reliability and availability experiment. We tune each type of database
for performance prior to experimentation to ensure that the database maximizes its advantages.

Experimental Configuration
The experiment runs on three servers containing one master node and two slave nodes. The master
node is configured with eight-core 16 GB memory, and the two slave nodes are configured with
four-core CPU and 8 GB memory. Three databases related to the experiment, including MongoDB,
Neo4j, and ArangoDB, are installed and deployed on three servers in a distributed architecture.
The evaluation platform is implemented in Java and runs on a single slave node, so the server has
a preinstalled dependency environment. The measurement of experimental results is divided into
two parts: execution time and resource occupancy. The execution time of the workload is measured
using the Java Development Kit (JDK). The resource occupancy is measured by distributed resource
monitoring platforms Prometheus and Grafana. We show the software and hardware parameters in
Table 3.

Journal of Database Management
Volume 34 • Issue 3

11

COMPARISON OF THE MULTI-MODEL DATABASE
AGAINST POLYGLOT PERSISTENCE

This paper’s experiments on the performance evaluation of a multi-model database and polyglot
persistence comprise four parts: a single-table workload experiment, a multi-thread workload
experiment, a multi-table joint query experiment, and a reliability and availability experiment.

The first part of the experiment is a single-table workload experiment. This is because we must
migrate the data in the database for practical applications, and persistence is inevitable in iterative
operation systems. For example, in data migration, the consumption of time and resources to the
downstream consumer must be predictable. Otherwise, it will directly affect the normal operation
of the downstream system. Therefore, it is necessary to measure this kind of single-table workload.

The second part of the experiment is the multi-thread workload experiment. With the
popularization of the Internet and the intelligence of mobile devices, servers are facing increasing
concurrency pressure. The processing of sudden and high concurrent requests is the ability that
distributed databases should have, and it is also the necessary condition for databases to be put into
production and life.

The third part is the multi-table joint query experiment. In the real application scenario, with
time and business development, the data in the tables will increase, increasing the cost of database
operations. Therefore, at the beginning of the system, developers will cut data separately based on
factors such as function modules and data relationships, using tables to store them. While these data
are needed, we can query them via an associated query to multiple tables. Except for data migration
and persistence involving only one table, most operations involve associated queries to multiple
tables. Therefore, the effect of multi-model databases and polyglot persistence-associated queries on
multiple tables is also a concern of users. The above three experiments will use measurements from
execution time and resource occupation.

The fourth part is the reliability and availability experiment. E Bauer and R Adams proposed
the calculation formula for reliability and availability in 2012 (Bauer and Adams., 2012). In this
experiment, we sent 1000 requests to the evaluation database. During the request process, we adopt
fault injection to simulate the restart of the server after power failure. The quantified reliability result is
obtained by calculating the ratio of the number of successfully responded requests to the total number

Table 3.
Software and hardware parameters

OS CentOS 7.6

CPU Intel(R) Xeon(R) Platinum 8269CY CPU @ 2.50 GHz

Turbo Boost Active

Hyper Threading Active

JDK version 1.8.0_291

The heap size 4GB(master),2GB(slave)

ArangoDB version 3.9.0

MongoDB version 5.0.6

Neo4j version 4.3.10

Zookeeper version 3.7.0

Kafka version 2.13-2.8.0

Prometheus version 2.28.0

Grafana version 8.2.3

Journal of Database Management
Volume 34 • Issue 3

12

of requests. The availability is quantified by the time the last request responded before the restart and
the time the first request responded to after the restart. We will perform the reliability and availability
tests for each database five times, averaging the remaining three times by removing one maximum
and one minimum. The reliability and availability of polyglot persistence follow the Cannikin law.

RESULTS AND DISCUSSION

Single Table Workload Experiment
Single table workloads are the simplest of all workload types and are the basis of all workload types.
The measurement of single table workloads includes a total of eight workloads. C5, R3, U3, and D5
are the CRUD workloads of document data, while C6, R2, U2, and D6 are the CRUD workloads of
graph data. We measure experiments from execution time and resource occupation. Figure 5 shows
the comparison of processing time for single-table workloads, and Figure 6 shows the comparison
of resource occupation for single-table workloads.

Figure 5 shows that the ArangoDB takes almost twice as long to delete document data as
polyglot persistence. When inserting graph data, polyglot persistence took nearly three times as long
as ArangoDB. In the case of handling other workloads, there is little difference between polyglot
persistence and ArangoDB.

From the comparison of resource occupation of single table workloads in Figure 6, we can see
that in most cases, the CPU consumption of polyglot persistence is higher than that of ArangoDB,
and the memory consumption of ArangoDB is generally higher than that of polyglot persistence.

Figure 5. T
ime consumption of ArangoDB (MD) and polyglot persistence (PP) when processing a single table workload

Journal of Database Management
Volume 34 • Issue 3

13

Multi-Thread Workload Experiment
The multi-thread experiment simulates a high-concurrency application scenario by controlling the
number of threads created by the evaluation platform. R4 is selected to carry out the multi-thread
workload experiment. R4 is a mixed workload involving document and graph operations. The
evaluation platform measures the experimental results from two dimensions: execution time and
resource occupation.

Figure 7 shows the comparison of ArangoDB and polyglot persistence under multi-thread
workloads. As we observe in Figure 7, the execution time changes significantly as the number of
threads increases from 1 to 5. This is because both ArangoDB and polyglot persistence can handle high
concurrency scenarios. However, when the number of threads increases from 5 to 80, the ArangoDB
and polyglot persistence processing times do not change, which is normal because all systems that
support high concurrency have a performance ceiling on the number of concurrent processes they
can support.

Figure 8 shows the resource occupation comparison of ArangoDB and polyglot persistence under
multi-thread workloads. As the figure shows, the memory occupation of ArangoDB and polyglot
persistence is remarkably stable, consistently at 40%. We find that when the number of threads is
small, the CPU usage of polyglot persistence is significantly higher than that of ArangoDB. As the
number of threads increases, the CPU usage of both approaches 100%.

Multi-Table Joint Query Experiment
This paper selects R4, R5, R6, and R7 to conduct the multi-table joint query experiment. This part of
the experiment uses a vector-based method to represent the results of the associated query to multiple
tables. Specifically, based on known parameters, an intermediate result is first queried, and then the
eventual result is obtained progressively based on the intermediate result. For example, R4 is given the

Figure 6.
CPU and memory usage of ArangoDB (MD) and polyglot persistence (PP) when processing a single table workload

Journal of Database Management
Volume 34 • Issue 3

14

Figure 8.
CPU and memory usage of ArangoDB (MD) and polyglot persistence (PP) when processing workload R4

Figure 7.
Time consumption of ArangoDB (MD) and polyglot persistence (PP) when processing workload R4

Journal of Database Management
Volume 34 • Issue 3

15

customer’s name and queries the total price of orders paid by the customer. According to the customer’s
name, a null vector can be calculated (|C|, |O|, |CO|), including the size of the vector |C| on behalf
of the customer table, |O| represents the size of the order table, and |CO| on behalf of the associated
query result. In the same way, R5 can be expressed as (|O|, |S|, |P|, |OSP|), where |S| represents the
size of the order table and |P| represents the size of the goods table. R6 can be expressed as (|P|, |S|,
|O|, |C|, |PSOC|). R7 can be expressed as (|X|, |Y|, |XY|), where X = (|P|, |S|, |O|, |C|, |PSOC|), Y =
(|O|, |S|, |OS|). This method can reflect how many associated queries the workload contains and the
size of the intermediate results at each step.

Figure 9 compares the time taken by ArangoDB and polyglot persistence under the workload of
the associated query. It can be seen from the figure that with the increase in the number of associated
tables, the time taken by ArangoDB and polyglot persistence increases gradually. At the same time,
we can find that the time of polyglot persistence is always less than that of ArangoDB.

Figure 10 displays the resource occupation comparison of ArangoDB and polyglot persistence
under the associated query to multiple tables. It can be seen from the figure that the number of
associated tables has little influence on CPU and memory consumption, except that the consumption
of CPU and memory of polyglot persistence increases slightly when the number of associated tables
increases from 4 (R6) to 6 (R7).

Reliability and Availability Experiment
Table 4 shows the number of failed response requests among 1000 in the reliability experiment. Table
5 shows the time in milliseconds for each database processing fault in the availability experiment.
Reliability and availability calculations follow the Cannikin law to avoid experimental contingency,
removing one maximum and one minimum and averaging the remaining three values. In the end,
the reliability of ArangoDB was 97.40%, and the availability was 97.19%. Polyglot persistence has

Figure 9.
Time consumption of ArangoDB (MD) and polyglot persistence (PP) when processing the associated query to multiple tables

Journal of Database Management
Volume 34 • Issue 3

16

Figure 10.
CPU and memory usage of ArangoDB (MD) and polyglot persistence (PP) when processing the associated query to multiple tables

Table 4.
The number of failed response requests

MongoDB Neo4j ArangoDB

2 3 55

1 5 5

1 5 18

2 2 44

2 3 16

Table 5.
The time of database processing fault

MongoDB Neo4j ArangoDB

41 7365 3192

189 6540 2353

69 6889 2679

47 4706 3226

66 7282 2568

Journal of Database Management
Volume 34 • Issue 3

17

99.63% reliability and 93.10% availability. It can be seen that the availability of ArangoDB is higher
than polyglot persistence, and the reliability is not as good as polyglot persistence.

Discussion
This section measures three sets of experiments: a single-table workload experiment, a multi-thread
workload experiment, and a multi-table joint query experiment regarding execution time and resource
occupation. In addition, we also performed reliability and availability experiments. According to the
experimental results, we can draw the following conclusions.

We recommend ArangoDB for scenarios with heavy single-table workloads and a high proportion
of graph data creation operations. We recommend polyglot persistence for a high percentage of
document data deletion operations. If server memory is tight, polyglot persistence is recommended.
If the server CPU is tight, we advise using ArangoDB.

We recommend polyglot persistence for high concurrency scenarios regarding execution time and
resource occupancy. At the same time, it also shows that although research on multi-model databases
has made remarkable progress in recent years, there are still many deficiencies. As we can see from
this part of the experiment, ArangoDB is not as good at handling concurrency as polyglot persistence.

For applications where business operations are more complex, polyglot persistence is still better
than ArangoDB regarding execution time and resource occupancy. However, especially in terms
of execution time, as the number of tables involved increases (R4 to R7), so does the gap between
polyglot persistence and ArangoDB.

We recommend ArangoDB if the requirements for availability are high. We recommend polyglot
persistence if the requirements for reliability are high.

SUMMARY AND PROSPECTS

The benchmark MDBench proposed in this paper evaluates the selected multi-model database and
polyglot persistence from execution time, resource occupation, reliability, and availability. The
evaluation experiment comprises four parts: the first part is the single table workload experiment,
the second part is the multi-thread workload experiment, the third part is the multi-table joint
query experiment, and the fourth part is the reliability and availability experiment. Through the
four experiments, we can comprehensively understand the execution time, resource occupation,
reliability, and availability of ArangoDB and polyglot persistence to provide a reference for users to
store multi-model data.

At present, MDBench has not evaluated read-write mixed workloads, but workloads are mixed
in real application scenarios. Therefore, the evaluation of read-write mixed workloads will be a part
of the work in the next stage.

ACKNOWLEDGMENT

The paper was supported by the National Key R&D Program of China (2019YFE0109900); the Jiangsu
Province Water Conservancy Science and Technology Project (2022003); The Key technology research
project of Tide Control Safety System Improvement in Nansha District of Guangzhou (823005916).

Journal of Database Management
Volume 34 • Issue 3

18

REFERENCES

Alabdulkarim, Y., Barahmand, S., & Ghandeharizadeh, S. (2018). BG: A scalable benchmark for interactive
social networking actions. Future Generation Computer Systems, 85, 29–38. doi:10.1016/j.future.2018.02.031

Bagga, S., & Sharma, A. (2020). A comparative study of NoSQL databases. In P. K. Singh, Y. Singh, M. H.
Kolekar, A. K. Kar, J. K. Chhabra, & A. Sen (Eds.), Recent Innovations in Computing (pp. 51–61). Springer.
doi:10.1007/978-981-15-8297-4_5

Banker, K., Garrett, D., Bakkum, P., Verch, S., Garret, D., & Hawkins, T. (2016). MongoDB in action: Covers
MongoDB version 3.0. Simon and Schuster.

Bauer, E., & Adams, R. (2012). Reliability and availability of cloud computing. Wiley. doi:10.1002/9781118393994

Beis, S., Papadopoulos, S., & Kompatsiaris, Y. (2015). Benchmarking graph databases on the problem of
community detection. In N. Bassiliades, M. Ivanovic, M. Kon-Popovska, Y. Manolopoulos, T. Palpanas, G.
Trajcevski, & A. Vakali (Eds.), New Trends in Database and Information Systems II (pp. 3–14). Springer
International Publishing. doi:10.1007/978-3-319-10518-5_1

Bitton, D., DeWitt, D. J., & Turbyfill, C. (1983). Benchmarking database systems-A systematic approach.
University of Wisconsin-Madison, Department of Computer Sciences. https://pages.cs.wisc.edu/~dewitt/includes/
benchmarking/vldb83.pdf

Dominguez-Sal, D., Urbón-Bayes, P., Giménez-Vanó, A., Gómez-Villamor, S., Martínez-Bazan, N., & Larriba-
Pey, J. L. (2010). Survey of graph database performance on the hpc scalable graph analysis benchmark. In H. T.
Shen, J. Pei, M. T. Özsu, L. Zou, J. Lu, T.-W. Ling, G. Yu, Y. Zhuang, & J. Shao (Eds.), Web-Age Information
Management (pp. 37–48). Springer. doi:10.1007/978-3-642-16720-1_4

Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Alisafaee, M., Jevdjic, D., Kaynak, C., Popescu, A. D.,
Ailamaki, A., & Falsafi, B. (2012). Clearing the clouds: A study of emerging scale-out workloads on modern
hardware. Proceedings of the Seventeenth International Conference on Architectural Support for Programming
Languages and Operating Systems, 37–48. doi:10.1145/2150976.2150982

Fernandes, D., & Bernardino, J. (2018) Graph Databases Comparison: AllegroGraph, ArangoDB, InfiniteGraph,
Neo4J, and OrientDB. 7th International Conference on Data Science, Technology and Applications, 373-380.
doi:10.5220/0006910203730380

Ghemawat, S., Gobioff, H., & Leung, S. T. (2003). The Google file system. Proceedings of the nineteenth ACM
symposium on Operating systems principles, 29-43. doi:10.1145/945445.945450

Han, R., John, L. K., & Zhan, J. (2017). Benchmarking big data systems: A review. IEEE Transactions on
Services Computing, 11(3), 580–597. doi:10.1109/TSC.2017.2730882

Holzschuher, F., & Peinl, R. (2013). Performance of graph query languages: comparison of cypher,
gremlin and native access in neo4j. Proceedings of the Joint EDBT/ICDT 2013 Workshops, 195-204.
doi:10.1145/2457317.2457351

Jayathilake, D., Sooriaarachchi, C., Gunawardena, T., Kulasuriya, B., & Dayaratne, T. (2012). A study into
the capabilities of NoSQL databases in handling a highly heterogeneous tree. 2012 IEEE 6th International
Conference on Information and Automation for Sustainability, 106-111. doi:10.1109/ICIAFS.2012.6419890

Lissandrini, M., Brugnara, M., & Velegrakis, Y. (2018). Beyond macrobenchmarks: microbenchmark-based graph
database evaluation. Proceedings of the VLDB Endowment, 12(4), 390-403. doi:10.14778/3297753.3297759

Macak, M., Stovcik, M., Buhnova, B., & Merjavy, M. (2020) How well a multi-model database performs
against its single-model variants: Benchmarking OrientDB with Neo4j and MongoDB. 2020 15th Conference
on Computer Science and Information Systems (FedCSIS), 463-470. doi:10.15439/2020F76

Matallah, H., Belalem, G., & Bouamrane, K. (2017). Experimental comparative study of NoSQL databases:
HBASE versus MongoDB by YCSB. Computer Systems Science and Engineering, 32(4), 307–317.

Messaoudi, C., Amrou, M., Fissoune, R., & Hassan, B. (2017). A performance study of NoSQL stores for
biomedical data. The Sixth International Conference on Innovation and New Trends in Information Systems.

http://dx.doi.org/10.1016/j.future.2018.02.031
http://dx.doi.org/10.1007/978-981-15-8297-4_5
http://dx.doi.org/10.1002/9781118393994
http://dx.doi.org/10.1007/978-3-319-10518-5_1
https://pages.cs.wisc.edu/~dewitt/includes/benchmarking/vldb83.pdf
https://pages.cs.wisc.edu/~dewitt/includes/benchmarking/vldb83.pdf
http://dx.doi.org/10.1007/978-3-642-16720-1_4
http://dx.doi.org/10.1145/2150976.2150982
http://dx.doi.org/10.5220/0006910203730380
http://dx.doi.org/10.1145/945445.945450
http://dx.doi.org/10.1109/TSC.2017.2730882
http://dx.doi.org/10.1145/2457317.2457351
http://dx.doi.org/10.1109/ICIAFS.2012.6419890
http://dx.doi.org/10.14778/3297753.3297759
http://dx.doi.org/10.15439/2020F76

Journal of Database Management
Volume 34 • Issue 3

19

Messaoudi, C., Fissoune, R., & Badir, H. (2018). A performance evaluation of NoSQL databases to manage
proteomics data. International Journal of Data Mining and Bioinformatics, 21(1), 70–89. doi:10.1504/
IJDMB.2018.095556

Miller, J. J. (2013). Graph database applications and concepts with Neo4j. Proceedings of the Southern Association
for Information Systems Conference, 2324(36).

Oliveira, F. R., & del Val Cura, L. (2016). Performance evaluation of NoSQL multi-model data stores in polyglot
persistence applications. Proceedings of the 20th International Database Engineering & Applications Symposium,
230-235. doi:10.1145/2938503.2938518

Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., López, J., Gibson, G., Fuchs, A., & Rinaldi, B. (2011).
YCSB++: Benchmarking and performance debugging advanced features in scalable table stores. Proceedings
of the 2nd ACM Symposium on Cloud Computing, 9. doi:10.1145/2038916.2038925

Plugge, E., Hows, D., Membrey, P., & Hawkins, T. (2015). The definitive guide to mongodb: A complete guide
to dealing with big data using MongoDB. Apress.

Shah, S. M., Wei, R., Kolovos, D. S., Rose, L. M., Paige, R. F., & Barmpis, K. (2014). A framework to benchmark
NoSQL data stores for large-scale model persistence. In J. Dingel, W. Schulte, I. Ramos, S. Abrahão, & E. Insfran
(Eds.), Model-Driven Engineering Languages and Systems (pp. 586-601). Springer International Publishing.
doi:10.1007/978-3-319-11653-2_36

Truică, C. O., Apostol, E. S., Darmont, J., & Assent, I. (2021). TextBenDS: A generic textual data benchmark
for distributed systems. Information Systems Frontiers, 23(1), 81–100. doi:10.1007/s10796-020-09999-y

Truică, C. O., Darmont, J., Boicea, A., & Rădulescu, F. (2018). Benchmarking top-k keyword and top-k
document processing with T2K2 and T2K2D2. Future Generation Computer Systems, 85, 60–75. doi:10.1016/j.
future.2018.02.037

Xia, F., Zhou, M., & Jin, C. (2015). Challenges and progress of big data management system benchmarks. Big
Data Research., 1(1), 81–95. doi:10.11959/j.issn.2096-0271.2015.01.008

Yao, B. B., Ozsu, M. T., & Khandelwal, N. (2004). XBench benchmark and performance testing of XML
DBMSs. Proceedings of the 20th International Conference on Data Engineering, 621-632. doi:10.1109/
ICDE.2004.1320032

Zhan, J.-F., Gao, W.-L., Lei, W., Li, J.-W., Wei, K., Luo, C.-J., Han, R., Tian, X.-H., & Jiang, C.-Y. (2016).
BigDataBench: An open-source big data benchmark suite. Chinese Journal of Computers, 39(1), 196–211.

Zhang, C., Lu, J., Xu, P., & Chen, Y. (2018). UniBench: A benchmark for multi-model database management
systems. In R. Nambiar & M. Poess (Eds.), Technology conference on performance evaluation and benchmarking
for the era of artificial intelligence (pp. 7–23). Springer International Publishing. doi:10.1007/978-3-030-
11404-6_2

Zong, P., & Lei, Li. (2017). Performance comparison of PostgreSQL and MongoDB dealing with unstructured
data. Computer Engineering and Applications, 53(7), 104–108. doi:10.3778/j.issn.1002-8331.1508-0203

http://dx.doi.org/10.1504/IJDMB.2018.095556
http://dx.doi.org/10.1504/IJDMB.2018.095556
http://dx.doi.org/10.1145/2938503.2938518
http://dx.doi.org/10.1145/2038916.2038925
http://dx.doi.org/10.1007/978-3-319-11653-2_36
http://dx.doi.org/10.1007/s10796-020-09999-y
http://dx.doi.org/10.1016/j.future.2018.02.037
http://dx.doi.org/10.1016/j.future.2018.02.037
http://dx.doi.org/10.11959/j.issn.2096-0271.2015.01.008
http://dx.doi.org/10.1109/ICDE.2004.1320032
http://dx.doi.org/10.1109/ICDE.2004.1320032
http://dx.doi.org/10.1007/978-3-030-11404-6_2
http://dx.doi.org/10.1007/978-3-030-11404-6_2
http://dx.doi.org/10.3778/j.issn.1002-8331.1508-0203

Journal of Database Management
Volume 34 • Issue 3

20

Feng Ye is a lecturer and member of CCF. His research interests include big data analysis, digital twin, and water
conservancy informatization.

Xinjun Sheng is a graduate student at Hohai University and has research interests, including data mining and
big data.

Prof. Nadia Nedjah graduated in 1987 in Systems Engineering and Computation and, in 1990, obtained an M.Sc.
degree in Systems Engineering and Computation. Both degrees were obtained from the University of Annaba,
Algeria. Since 1997, she has held a Ph.D. from the University of Manchester – Institute of Science and Technology,
UK. She joined the Department of Electronics Engineering and Telecommunications of the Engineering Faculty of
the State University of Rio de Janeiro as an Associate Professor. Between 2009 and 2013, she was the head of the
Intelligent Systems research area in the Electronics Engineering Post-graduate program of the State University of
Rio de Janeiro, Brazil.(More details can be found on her homepage: http://www.eng.uerj.br/~nadia/english.html.)

Jun Sun(1998-), born in Suzhou, Jiangsu province, China; graduate student in Hohai University. Research interests
include data mining and big data.

Peng Zhang, Ph.D. in Physical Geography, Nanjing University, Adjunct Professor of Hohai University, Researcher-
level Senior Engineer. He is also the vice chairman of the Hydraulic Committee of Jiangsu Hydraulic Society, and the
editorial board member of Jiangsu Water Conservancy Magazine. He has presided over several major plans, such
as Jiangsu River and Lake Protection Planning and Jiangsu Provincial Water Resources Comprehensive Planning.

http://www.eng.uerj.br/~nadia/english.html

