
DOI: 10.4018/IJCAC.318698

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

A Hybrid Binary Bird Swarm Optimization
(BSO) and Dragonfly Algorithm (DA) for VM
Allocation and Load Balancing in Cloud
Thanwamas Kassanuk, Pibulsongkram Rajabhat University, Thailand*

Khongdet Phasinam, Pibulsongkram Rajabhat University, Thailand

ABSTRACT

The cloud platform is becoming one of the fastest-rising environments in human activities, connecting
the whole world in the upcoming decades. The three crucial aspects of cloud computing that enhance
the quality of service are load balancing, task scheduling, and resource allocation. To address these
issues, the research proposed dynamic degree balance with CPU_based VM allocation policy
integrated with hybrid bird swarm optimization (BSO) and dragonfly algorithm (DA). The proposed
algorithm focuses on improving the overall performance of the system by limiting DoI, execution
time, and response time, while also maintaining system balance. In the CloudSim tool, D2B_CPU
based BSO-DA is implemented and evaluated. The simulation results, on the other hand, show that
the proposed BSO and DA-based load balancing scheme is significantly more effective in balancing
load optimally among virtual machines more quickly than existing algorithms. The proposed method’s
efficiency is evaluated by comparing it to other existing techniques.

Keywords
Bird Swarm Optimization, cloud computing, Dragon Fly Algorithm, load balancing, optimization, scheduling,
virtual machine

INTRODUCTION

Due to advancements in communication technology and internet usage, as well as their ability to solve
complex problems, cloud computing is emerging as a networking technology. Using the internet, cloud
users have access to hardware and software resources. An Internet-based computing model called cloud
computing allows resources such as software, information, services, storage, and servers to be shared
with multiple users (Xu et al., 2018; Kumar et al., 2020). Because of its services to customers, Cloud
Computing (CC) is an established business model for distributed computing. The CC model provides
for the sharing, allocation, and access of IT resources based on individual needs. CC also offers many
services, including Platform-as-a-Service (PaaS), Infrastructure-as-a-Service (IaaS) and Software-as-a-
Service (SaaS) (Xue et al., 2018.). They are useful in different domains, including industrial, business,
scientific, etc. Amazon, Oracle, HP, IBM, and Apple use cloud computing techniques (Rawat et al., 2020).

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

2

A CC platform, in general, suffers from three major problems: Load Balancing, Distributed
Framework and Virtualization. In Meeting the demands of cloud users and providers, balancing of
load and scheduling of tasks are two major problems in the management of cloud resources (Kumar
et al., 2018; Ruan et al., 2019). A load balancer allocates tasks to various machines in such a way
that job execution times are reduced and virtual machine performance is monitored (Daming et al.,
2020; Polepally et al.,2019). Load balancing’s ultimate objective is to lower the highest execution
time (maximum Makespan time) whereas raising cloud resource utilization (Kumar & Sharma, 2018).
Scheduled tasks can be assigned virtualized resources for a specific period. It canbe done with the
help of a cloud service broker and a task scheduling algorithm (Xingjun et al., 2020). Scheduling
designates that what tasks will take the lowest time to accomplish. The workload is rising due to
the growing set of users in the cloud, but the set of virtual machines (VMs) is remaining the same.
Due to the consumption of energy constraints, the set of Virtual machines is reduced by the capacity
of PMs. Load balancing and Scheduling tasks ensure that no node is over-or under loaded by the
workload (Pradhan et al., 2020; Ragmani et al., 2020).

Static and dynamic load balancing approaches are the two major categories of load balancing
approaches (Kruekaew et al., 2020). genetic algorithm (GA), artificial bee colony (ABC), ant colony
optimization (ACO) and other optimization algorithms are often used in an existing Complex Load
balancing research project. Researchers develop many heuristic and meta-heuristic methodologies
such as the jaya algorithm, dragonfly optimization algorithm, and bee colony optimization algorithm
and to achieve greater load balancing and task scheduling performance (Priya et al., 2019; Gupta et
al., 2021; Milan et al., 2019).

Since metaheuristics seek a wider search area than heuristics, they have a greater computational
cost, and they are using a directed general check to solve the scheduling issue. To achieve the optimal
solution in the shortest period, heuristics reduce the search space for metaheuristics (Raja et al., 2020;
Janakiraman et al., 2021). However, balancing of the load is a multi-objective problem: the main
goal is to schedule tasks or jobs evenly within available resources in order to minimize the relative
imbalance, and a secondary goal is to make the best use of available resources as well as reduce
makespan and response time (Fatima et al., 2019; Jena et al., 2020).

Considering these facts, proposed an algorithm that balances the load using dynamic degree
balanced with CPU-based VM allocation technique. In addition, a new fast meta-heuristic algorithm
is proposed to address the aforementioned problems; bird swarm optimization (BSO) and Dragonfly
(DA) algorithm is proposed for allocation of tasks and balancing the load in a cloud environment. A
recent algorithm is compared with the proposed algorithm in order to determine how efficient it is.
As per the results, the proposed algorithm effectively manages load imbalance. The key contribution
of this research is as follows:

•	 To implement the dynamic degree balanced with CPU-based (D2B_CPU based) VM allocation.
•	 To implement the hybrid binary bird swarm optimization (BSO) and dragonfly (DA) algorithm.
•	 Virtual machine tasks can be allocated by identifying the overloads and under loads of VMs by

the binary bird swarm optimization (BSO) and its response time can be accelerated by adopting
the Dragonfly (DA) algorithm.

•	 Using CloudSim to build a cloud platform.
•	 Algorithm reduces the load balancing aspects are as follows: Makespan, Execution time, degree of

imbalance, response time and load balancing with an increase in throughput in the cloud applications.

The upcoming sections are planned as follows: Section 2 discusses about the Literature review
of numerous LB techniques. The problem statement in allocating tasks and balancing the load are
discussed in section 3. Section 4 describes the proposed D2B CPU based VM allocation algorithm
with hybrid BSO-DA. The results of this algorithm are presented in sections 5 and 6. Section 7
concludes with the conclusion.

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

3

LITERATURE REVIEW

Numerous assignment models, task scheduling, load balancing, and resource allocation methods have
been proposed in recent years to minimize the execution and makespan time, optimize the utilization
of resources, as well as distribute the load across machines. These works are discussed in this section.

(Ullah et al., 2020) focused on enhancing the job distribution system in VM for cloud computing
employing load balancing. As a result, the Bat algorithm fitness function value utilized in the load balancer
section was modified. When algorithm iterations are completed, it is time to allocate the task among various
VM; consequently, the algorithm was adjusted. The second alteration occurred during Bat’s dimension
section search procedure. The suggested approach is referred to as the modified Bat algorithm.

(Negi et al., 2021) introduce a hybrid of supervised clustering ML, ANN and IT2FIS based LB
algorithm, dubbed CMODLB, for balancing the load. Initial implementation of ANN-LB technique
clusters VMs into underloaded and overloaded VMs using BOEK algorithm. Next, user tasks are
scheduled for underloaded VMs to optimize resource utilization and load balancing. Using several
cloud criteria, TOPSIS-PSO algorithm facilitates job scheduling. The VM manager migrates VMs to
balance PM load. If a PM is overcrowded and another PM is underloaded, VM migration decisions
are made based on the appropriate criteria. Multiple significant characteristics inform the judgments
of IT2FS that facilitates virtual machine (VM) migration.

In a cloud environment, (Kumar et al., 2019) presented by hybrid CS-FA for LB. At first, each virtual
machine’s load and capacity were determined. LB was used to perform task when the virtual machine
load exceeded the balanced threshold level. Jobs are alloted to the best Virtual Machines (VMs) by CS-
FA and migrates overloaded VM tasks to under loaded VM tasks. In a cloud environment, this algorithm
greatly avoids the problem of uneven workload performance. An evaluation of the suggested CS-FA
method is compared with existing LB methods such as Honey Bee Behavior LB (HBB-LB), Hybrid
Dynamic LB (HDLB) and Dynamic LB (DLB) for the purposes of evaluating their load and capacity.

(Ouhame et al., 2018) suggested a hybrid algorithm to improve VM allocation using GWO and
ABC. In VM for cloud computing, execution time, average network, throughput network stability
and energy consumption were improved using the presented technique. According to those results,
the proposed algorithm improves 1.25% accuracy compared to RAA algorithm, GWO algorithm and
ABC algorithm and it is more efficient in VM resource allocation for cloud computing.

(Kaur et al., 2020) have proposed and implemented a method for executing workflows in a cloud
infrastructure, for instance, DLD-PLB. Taking the Genome workflow tasks into account, a suggested
framework has been developed. In terms of makespan and time, our proposed load balancing optimisation
model was compared to an earlier suggested scheme. Earlier load balancing approaches used ACO to
optimize underutilized VMs, and a hybrid PEFT-BAT approach to accelerate overflow Virtual machines.

Task scheduling was optimised using a metaheuristic algorithm, and load balancing was
implemented by (Ziyath et al., 2018)). Two algorithms were used, MHO-D and MHO-S where
MHO-S was used to calculate the confirmed and static properties of virtual machines. MHO-D is in
charge of scheduling the tasks for which property values cannot be confirmed and discloses a least
property they will retain. The client also specifies a maximum acceptable value for the task completion.
MHO-D schedules the tasks optimally based on these values. Based on a comparison with a few
existing solutions, the proposed MHO algorithm was found to operate with a minimum number of
virtual machines at low execution times while utilizing the VM clusters of the infrastructure providers.

Using hybridization of MPSO and an improved Q-learning algorithm called QMPSO, (Phi et al.,
2018) presented a new method of dynamic balancing of workload among virtual machines. Using the
gbest and pbest generated by improved Q-learning, the MPSO’s velocity was adjusted through the
hybridization process. With hybridization, workloads are balanced among the VMs, throughput is
maximized, and priorities are maintained by minimizing waiting times. A comparison of the QMPSO
simulation results to the existing scheduling algorithm and balancing of load has demonstrated the
robustness of the technique.

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

4

The FIMPSO algorithm was presented by (Devarajet et al., 2018) for an energy-efficient LB
method in cloud. In this method, the benefits of both IMPSO and FF are incorporated. By presenting
the FIMPSO algorithm, the average load for making and response time of the tasks was improved.
The following metrics were used to evaluate the experimentation results: throughput, makespan,
reliability, resource utilization and execution time. Simulation results indicated that the proposed
FIMPSO model performed better than the compared methods.

(Arora et al., 2019) presented a hybrid optimization technique, EHGWO, in the CC paradigm
for LB by identifying the appropriate VMs for executing the reassigned tasks. The technique reduces
workloads from overburdened VMs to maintain performance of the system. Here, the PM, capacity,
and load of VM are computed to determine whether or not the LB must be performed. Additionally,
TPF and VPF, are considered when reallocating jobs from an overloaded VM to an underutilized
VM. The suggested method assigns VM tasks based on newly developed fitness functions.

(Sahana et al., 2029) have described a technique for load balancing using the weighted Round-Robin
algorithm that can execute client requests on several servers with little response time. Due to these factors, a
cloud-based dynamic load balancer is utilized to handle the problem of load balancing in cloud architecture.

In their study, (Kaur et al., 2020) suggested a framework for resource scheduling and load
balancing that maximises VM usage while guaranteeing uniform load distribution. To achieve its
optimal performance regarding makespan and cost, the suggested framework combined heuristic
techniques with metaheuristic algorithms. PEFT-ACO and HEFT-ACO are two hybrid methods used
to implement the suggested framework. For both approaches, the simulated results of cost metrics
and makespan has been analysed and compared.

PROBLEM STATEMENT

A key component of cloud technology is load-balancing. The load balancing mechanism makes the
most of available resources while also managing complex load imbalances. A proper load balance
also reduces resource consumption, thereby lowering energy consumption. Numerous approaches for
balancing the load in cloud systems have been developed by various scholars. Much of this research,
however, suffered from a number of issues. Therefore, the present study focused on virtualization.

The overuse of virtual machines in the early stages and the underuse of them in the late stages
has already been established. Resources are sometimes heavily loaded while other resources are idle
due to the CPU’s random utilization. Load imbalance makes cloud systems ineffective, reducing
scalability, reliability, availability and throughput while also increasing migration and response times.
An effective load balancing mechanism facilitates balanced resource utilization, improving maximizes
the scalability, reliability, availability and throughput and reducing the migration and response time. It
is assumed that the proposed algorithm can effectively minimize the degree of imbalance, makespan,
response time, load balancing and execution time and maximize throughput.

METHODOLOGY

To maintain a trade-off, load balancing (LB) distributes less power across servers with an equal load.
In this research, proposed dynamic degree balanced with CPU (D2B_CPU based) VM allocation.
In each data center, users can access some computing resources. Multicloudusers have a variety of
tasks, each of which is allotted to the various Virtual machine. The load of the VM can be determined
by measuring the processing time of every task. As a result, every task is analyzed at varying rates,
resulting in VM load fluctuations. Suppose the overloading VM is shared with the under loading
VM in order to maximize resource utilization. Hence, proposed is the hybrid binary BSO and DA
load balancing algorithm that improves the metrics such as duration of execution and response time
spontaneously. The allocation of tasks by finding the overloaded with the under loaded condition of
VMs can be boosted by BSO and its response time can be improved by DA-based strategies.

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

5

System Model
The proposed VM allocation and task allocation architecture is shown in Figure 1. In the proposed
methodology, tasks are assigned to VMs according to their capacity (load). Load balancing algorithms
help to distribute tasks among overloaded VMs and underloadedVMs. As part of the proposed system,
there are many data centers, also known as physical machines (PM) that are equipped with virtual
machines (VMs) that performs the task of the users. Each cloud user has a different number of tasks
to complete on the VM. The proposed work involves two stages. In the first phase, virtual machines
are alloted to the host and in phase 2, the load is distributed among the VMs.

In every data center, users can access some computing resources. Users across multiple clouds
complete a variety of tasks, each of which is assigned to a different virtual machine (VM). VM load
can be calculated by calculating the processing time for every tasks. As a result, each task is processed
at a different rate, resulting in VM load variations. If the VM is overloaded, its workload is shared
with the under loaded one in order to maximize resource utilization. C represents the cloud system,
P represents the number of PMs, which includes multiple VMs, and it is denoted by V. n represents
the number of PMs in Eq. (1).

C P P P k n
k n

= < ≤{ , ,...... }
1 2

1.......P 	 (1)

P
k

is thekth number of PMs, whereas P
n

 is the nth number of PMs. PMs are made up of several
virtual machines, and this is numerically shown in Eq. (2).

V V V V i m
i m

= < ≤{ , ,...... }
1 2

1.......V 	 (2)

Figure 1.
Proposed VM allocation and task allocation framework

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

6

𝑚represents total number of VMs in thekth PM. Moreover, cloud system includes multiple users so,
𝑙No. T

s
are numerically displayed in the Eq. (3),

T T T T
j l

= { , ,...... }
1 2

.......T 	 (3)

T represents a set of tasks, whereas l represents the number of tasks T
s

in total. A VM is assigned to
each task. The cloud system handles tasks without any problems as long as VM workloads are normal.
Whenever VM workload status exceeds capacity, an LB strategy must be applied to move the task from
overloaded VMs to underloaded VMs. The VMs are based on a few parameters, as shown in Eq. (4),

V r s b m
i i i i i i
= { , , , , }g 	 (4)

Memory usage is defined, task migration cost is defined as, the variable is defined as bandwidth,
the number of MIPS is defined as and numerous processors are defined as. Tasks have different
execution times as well as priority values. Also, tasks are assigned to the VMs according to two main
points such as (i) higher priority tasks (ii) task with low execution time are first assigned to the VM.
Consequently, communication costs are significantly reduced.

Proposed Approach for VM Allocation and Task Allocation for Load Balancing
Phase 1: Dynamic Degree Balanced with CPU (D2B_CPU based) VM allocation
As an input to the algorithm, a set of VM’s is provided. Following that, the algorithm creates data
structures for VMTable, UsedPes, FreePes, and Host Allocation table. VMTable is a table that holds
data about a virtual machine and its assigned host. UsedPes keeps track of the no. of processors used
for each virtual machine. For every host, FreePes keeps track of the no. of free processors and the
data about the server is stored in the Host allocation table. The next step is to determine whether or
not certain Virtual machines are assigned to the Server. If a host does not have a VM assigned to it,
look for hosts that use fewer processors (Pes), then assign a VM to it. Afterward, check if VMs were
created successfully on the host. Update the Mabel, Usurpers, FreePes, and Host Allocation tables
once all VMs have been allocated. Upon failing to create VM, the algorithm sets a minimum integer
value in the Free PesTmp table. Upon completion of the allocation process, the VM is created. After
this phase of VM allocation, phase 2 follows, i.e) task allocation.

Phase 2: A Novel Binary BSO and DA for Task Allocation
The proposed work aims to allocate tasks using hybridization of bird swarm optimization and dragonfly
algorithm for optimal resource utilization within a short response time of the network. In a cloud
environment, a swarm of birds resonates as particles. Distributing tasks among VMs is same as that
of birds finding for food. Food sources that are either empty or already explored behave like a VM
that is overloaded. Therefore, it is necessary to find a new food source that matches the available
resources and to find an under loaded VM to migrate the tasks. The fitness function is used to evaluate
particles assigned to a given issue based on the best position. Iterations result in a new best position
being determined. Several particles in the cloud have their own fitness values: according to the best
fitness value, assigning tasks to VMs.
Step 1: 	 Encoding of solution

Encoding solutions is the key step in scheduling of task. A challenging aspect of task scheduling
is allocating a task to a virtual machine. Every solution is composed of a number of tasks and several
VMs. Every VM has its own configuration. We can schedule the tasks according to the virtual machine

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

7

capacity so that the penalty, resource usage, energy consumption and cost are minimized, while the
credit is increased. Here, the initial solution is generated randomly. As an example, consider three
tasks (T1, T2, T3) containing three subtasks each (T1, T2, T3), totalling nine subtasks. Two physical
machines (PM1, PM2) so that, PM1 is allotted by two virtual machines (VM1, VM2) and PM2 is allotted
by three virtual machines (VM3, VM4, VM5). A basic solution format is shown in Table 2. Tasks t1 and
t5 are allocated to VM1, VM2 is allocated by task t2 and t9 are, VM3 is allocated by task t4 and t8, task
t3 and t6 are allocated to VM4 and VM5 is allocated by task t7. This research aims to schedule virtual
machines in the most optimal way.
Fitness Function: Fitness values are evaluated by the proposed load balancing algorithm. Each problem
is evaluated differently. Our aim is to optimize resource utilization while reducing task makespan
and balancing load between VMs. Therefore, consider the aforementioned objective as one objective.
A particle with a smaller fitness value will have the best position. Therefore, the fitness function is
displayed in equation 5.

f
Makespan

AverageUtilization
val VM
= ×

1 	 (5)

Load balancing involves mapping task set T on the VM set V (:)f T V
val

® in a cloud in which
the following goals should be met: (1) the total time span must be as short as possible; (2) resource
utilization should be maximized by optimizing resources, and (3) load should be evenly distributed
among VMs. These goals are developed using the aforementioned QoS parameters.

Proposed Hybrid Binary Bird Swarm Optimization (BSO) – Dragonfly (DA) Approach
The hybrid LB method is explained briefly in this section. The proposed multi-objective load
balancing based scheduling of tasks using hybrid binary Bird Swarm Optimization (BSO) and
Dragonfly (DA) that results in low response time, DOI and execution time while balancing the load.
Initialize the population along with the set of data centers, while optimizing the set of tasks based
on BSO to prevent falling into local optimum. The Bird Swarm Optimization (BSO) and Dragonfly
algorithms are employed to optimize the system. The Small Position Value (SPV) rule is used to
convert continuous solution to discrete solutions. As the basic BSO is a continuous method for
optimization, it will be unable to produce binary solutions to problems such as load scheduling, due
to its binary nature. It is important to map the load allocation issue in the cloud infrastructure to a
binary version in order to solve it.

Response time is a crucial factor in the effectiveness of Cloud Computing load balancing
algorithms, and likely involved in resource allocation and load balancing. The response time is the
time taken by the Virtual Manager to react to a client’s request based on tasks, according to the LB
technique. As response time decreases, system efficiency increases, as the VM balances the load

Table 1.
Format for initial solution

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

8

between the VMs efficiently. Load balancing is accomplished using BSO. The Dragonfly Algorithm
is used in this research to reduce the time it takes for the system to respond to a user request or to
emulate the present operation.

After a single iteration, the VM with the lowest load and maximum resources is used to optimize
the allocation of resources to balance the load. Following are the steps to take to implement this
proposed hybrid approach.
Algorithm for Phase 2:
Input: T = {T

1
, T

2
, T

3
. . .T

n
}

 VM = {VM
1
, VM

2
, VM

3
, . . ., VM

m
}

Output: The best potential task-to-VM mapping that is balanced
Step 1: Initialization and Particle definition
      for every particle,
Create an N-dimensional vector
VM VM VM VM whereVM j m

repre
m j

= ∈{ , ,...., }, ({ , ,... })
1 2

1 2

 ssents the number of VM on which task T i n
i

({ , ,..., })∈ 1 2

 is going to be processed.

      end

for;
Step 2: Estimate the particle’s load

Load onVM LVM
N T t

S VMi t
i t

()
(,)

(),
,

=

Where, LVM Load of VM at time t
i t i,

=

      N T t set of t at time t on service queue(,) = ask

      S VM Rate of service rate of VM at time t
i t i

()
,

=

Step 3:To keep track of the presence of low-load VMs, run the
birds swarm, such as to test the       load on the VM, followed
by DA to optimize the response times, i.e. depending on
the       response time for the assigning the task. As the
method becomes more proficient,       response times decrease.
The task’s execution time is determined by DA.
Step 4: Determine which VMs to be alloted based on the load.
Step 5: If nodes are not overloaded, look for underloaded nodes.
Upon finding an
      Underloaded user, a virtual machine is allocated and the
process continues until no
      Underloaded VMs are found.
Step 6: Find VM to transfer task
Step 7: Task Migration based on VM group
Step 8: Continue until the whole task queue is completed.

As a result of its load scheduling capabilities, the D2B_CPU based BSO-DA reduces response
times for cloud requests. By utilizing a wider search area, users get full satisfaction. The results are
presented in the upcoming sections. The VMs benefit from this technique since they can be optimized
and reduced in time.

SIMULATION RESULTS

The Results of the experiment and implementation specifics about the proposed LBA are evaluated
in this section.

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

9

Experimental Setup
Experiments were conducted in a simulated environment using Java (jdk 1.8) with the Cloudsim tool.
CloudSim is a simulation tool used by developers and researchers to solve cloud-related problems.
The research solution can be modeled and evaluated without the need and expense of computing
facilities. The simulation tool can be imported into software i.e., Maven, Eclipse etc. Eclipse is used
to simulate the Cloud infrastructure, and Windows 10 is the operating system.

To assess the performance of this algorithm, we modeled entities and computing resources in
a cloud infrastructure to simulate load balancing and scheduling. Table2: Hardware requirements.
Table 2 illustrates the hardware requirement.

Parameter Settings
To determine system load and manage task migration, load balancing necessitates the use of several
metrics and techniques. Metrics such as throughput, workflow time, response time and processor
performance are affected by balancing the load. This research is focused on execution time, running
time DoI, throughput, makespan, speedup and Responding time of hybrid HHHOPIO, HHO, SMA
and the D2D_CPU based BSO-DA algorithm. In table 3, listed out the types of entities, parameters,
and their corresponding values.

Performance Metrics
The proposed algorithm and other algorithms are evaluated using the following metrics.

1. 	 Response time: Average response time:

T
r

nresp

jj

n

= =∑ 1 	 (6)

Table 2.
Hardware requirements

Component Specification

Operating System Windows(X64 based Processor) 64-bit OS

Processor Intel(R) Core(TM) CPU @ 2.60GHz with 8 GB RAM

RAM 8 GB

Table 3.
Parameter setting for cloud simulator

Entities Parameters Values

Cloudlets/tasks
Task Length 5000-1000000

Total set of tasks 100-500

Virtual machine (VM)

Set of VM 30

Bandwidth 200,000

Storage 300 GB

MIPS/PE 400

Policy type Cloudlet scheduler dynamic workload

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

10

2. 	 Makespan: The time it takes for a cloudlet to be scheduled

MT Max CT= () 	

MT
Max CT

navg
=











∑ ()

	 (7)

3. 	 Throughput: Throughput time is calculated using formula (8)

Throughput time =
m

FT
i m i

max { }

1≤ <

	 (8)

4. 	 Degree of Imbalance: This indicator measures how evenly tasks are distributed among VMs.

DOI
T T

T
avg

=
−

max min 	 (9)

T
L

PE PEi
num MIPSi i

=
×

	 (10)

5. 	 Execution time
Task

oces g speed of VM

=

Pr sin
 (11)

6. 	 Load balance: LB is a critical factor that has a long-term impact on a decentralised system’s
performance and efficiency.

7. 	 Speedup: This is the ratio of the sequential schedule length calculated by assigning all tasks to
the speediest processor to the task schedule’s execution time (makespan).

Speedup
W

makespan
p H i jvi V=
()∈ ∈∑min

, 	 (12)

DISCUSSIONS

Simulation Analysis with Various Algorithm
According to the proposed methodology, each task is alloted to a Virtual Machine depending on its load
(capacity). On the basis of load and execution time, tasks are assigned to VMs. To evaluate our proposed
work, it is compared with another existing algorithm. We analyze two different configurations, are as
follows (i) VM = 15, PM = 5 and 500 tasks and (ii) VM=30, PM = 10 and 500 tasks.

VM = 15, PM = 5 and 500 tasks	

In order to analyze experiments, VM = 15 and PM = 5 and 500 cloudlets were used. The main
goal is to distribute the five hundred tasks to the appropriate VMs. This configuration is shown in
figures 2, 3, 4, 5, 6 and 7. In Table 4, response time for cloudlets utilizing D2B_CPU based with
hybrid binary BSO-DA and existing Load Balancing Algorithm are computed.

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

11

Response times for various tasks are listed here. According to the table above, it can be seen
that with D2B_CPU based on the hybrid BSO-DA algorithm, the number of requests queued has
decreased and device response time has increased on comparing with other existing algorithms.
Therefore, the proposed algorithm is better suited for balancing the load than existing algorithms.
Figure 2 illustrates the response times for proposed and existing approaches.

Based on comparisons between the proposed algorithm and HHHOPIO, HHO and SMA, it is
clear that D2B_CPU based on hybrid BSO-DA results in a significant improvement over existing
algorithms, as shown in Figure 3. Rather than focusing solely on fast machines, which could overburden
one machine over another and slow down overall performance, the suggested approach always selects
the most appropriate virtual machines to accomplish the tasks (i.e., increase execution time).

Figure 4 shows the DoI among the VMs. Every algorithm exhibits a different DOI with the set of
tasks ranging between 100 and 500. The makespan of the proposed load balancing approach is of about
2.8, 3, 2.7, 2.6, 2.5 for 100, 200, 300, 400 and 500 tasks respectively. Similarly for Spider Monkey
Algorithm takes about 3.4, 3.6, 3.7, 3.9, 3.8 milliseconds, HHO takes about 3.2, 3.4, 3.5, 3.1, 3.3
milliseconds, and HHHOPIO takes 3, 3.1, 3.2, 2.8 and 3 milliseconds for 100, 200, 300, 400 and 500
tasks respectively, indicating that our proposed approach is less imbalanced than the existing solutions.

Table 4.
Response time analysis of existing and proposed approaches

No. of tasks
Response time (milliseconds)

SMA HHO HHHOPIO Proposed

100 7364 6171 4293 3124

200 8528 7211 5525 4462

300 9131 8168 6144 6108

400 10,225 9244 7123 7118

500 11,247 10,556 9366 9245

Figure 2.
Comparative analysis of response time

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

12

As depicted in Figure 5, a detailed average throughput analysis of various approaches was
conducted between D2B CPU with hybrid BSO-DA and existing methods. Both the SMA and
HHO models performed poorly for 100 tasks, achieving a minimal throughput of 63% and 75%,
respectively. Simultaneously, the HHHOPIO approach attempted to perform well by achieving a
slight improvement in throughput of 80%. In contrast, the proposed model demonstrated greater
performance by obtaining a maximum throughput of 96.5% for 100 tasks. Under 500 tasks, however,
both SMA and HHO models had poor average throughput, with a minimal average throughput of just
32% and 38%, respectively. Simultaneously, both HHHOPIO methods attempted to perform better by
achieving a modest increase in throughputs of 48%. Under 500 tasks, however, the proposed model
had the highest average throughput of 73% by obtaining higher performance.

Figure 3.
Comparative analysis of makespan

Figure 4.
Comparative analysis of degree of imbalance

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

13

Figure 6 demonstrates that the suggested optimal load balancing algorithm based on D2B
CPU and hybrid BSO-DA takes 31.25 percent less time to execute than existing approaches such as
HHHOPIO, HHO and SMA algorithms.

As a result of the findings, it is obvious that the novel technique outperforms other existing methods.

VM = 30, PM = 10 and 500 tasks	

Figure 5.
Comparative analysis of throughput

Figure 6.
Comparative analysis of execution time

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

14

For this experiment, 500 tasks, 10 PMs and 30 VMs were used. These machines were used to
schedule tasks. Results are shown in Figures 8-13. Table 5 shows the response time of cloudlets
using D2B CPU, which is based on a hybrid BSO-DA and an existing Load Balancing Algorithm.

The varying response times for various jobs are tabulated above. Figure 7 shows the response time
values acquired for a set of cloudlets utilizing various techniques, including the proposed algorithm.
The experiment reveals that the novel algorithm outperforms other algorithms in terms of response
time. The simulation results proved that when the amount of cloudlets grows, the performance of the
other comparison algorithms improves in terms of response time. However, the proposed strategy
outperforms the challenge.

Figure 8 provides an in-depth comparison of various scheduling approaches using D2B CPU utilizing
the hybrid BSO-DA method based on make span. The graph demonstrates that the proposed approach
produced significantly better outcomes than the competing scheduling techniques. On comparing the
results for 500 tasks, the SMA and HHO approaches required a maximum make span of 98 and 94,
respectively. Next, HHHOPIO techniques with a make span of 86 required a considerably shorter make
span. Nevertheless, the presented algorithm proved effective with a minimum make span of 81. It should
be noticed that the makespan duration increases gradually as the number of tasks increases.

Table 5.
Response time analysis of existing and proposed approaches

No. of tasks
Response time (milliseconds)

SMA HHO HHHOPIO Proposed

100 7368 6278 5185 5024

200 8678 8125 6471 6182

300 9251 8254 6325 6318

400 11,235 9524 8243 8112

500 12,436 11,452 9452 9206

Figure 7.
Comparative analysis of response time

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

15

In figure 9 and 10, throughput and execution times of all algorithms, viz. D2B_CPU based with
hybrid BSO-DA and HHHOPIO, HHA, SMA algorithms are compared and presented respectively.
Cloudlets varied in count from 100 to 500. The proposed methods are found to gain effective result
for both performance parameters i.e. execution time and throughput time.

Figure 10 shows a thorough comparison of the execution times of various scheduling methods and
the proposed algorithm. The graph demonstrates that the proposed method significantly outperformed
existing algorithms. The maximum execution time required by SMA and HHO techniques was
0.015ms and 0.014ms, respectively, when the results were evaluated. The HHOPIO algorithm showed
slightly a higher execution time of 0.04 milliseconds. However, the proposed method produced a
great outcome in 0.013ms. In contrast, when measuring the execution times for 500 tasks, SMA and
HHO techniques required 0.078ms and 0.080ms, respectively. The HHHOPIO method required a

Figure 8. Comparative analysis of makespan

Figure 9. Variation in throughput vs no. of tasks

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

16

higher execution time of 0.21ms. However, the proposed algorithm obtained a better outcome with
an execution time of 0.045 milliseconds.

Figure 11 depicts the relationship between changes in the DoI and variations in the set of cloudlets.
Figure 11 shows that the suggested algorithm has the least DoI for all sets of tasks ranging from 100
to 500. Furthermore, present algorithms are found to have the highest DoI for all tasks in the range
of 100 to 500. As a result, the proposed algorithm-based approach reduces imbalance.

Figure 11.
Variation in DoI vs no. of tasks

Figure 10.
Variation in time for execution vs no. of tasks

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

17

Figure 12 displays the comparative experiment on efficiency of the proposed algorithm on
comparing with other existing approaches. It shows that the efficiency of HHO is about 89%, efficiency
of PIO is about 92%, ACO is about 94%, and HHHOPIO is about 97% and proposed algorithm
outcomes the other algorithm with an efficiency of about 98.2%.

According to Table 6, the proposed algorithm has a significantly least execution time than HLBZID,
FSA, and RR. This indicates that the proposed method can execute quickly. Nevertheless, the proposed
approach often produces the best results. For 100 tasks, the running time of the proposed method is
approximately 270.45 seconds, and for 200 tasks, it is approximately 573.25 seconds. The lesser execution
time of the presented method on comparing to the existing HLBZID with 574.5 seconds, FSA with
1595.21 seconds, and RR with 696.64 seconds demonstrates its superiority. Similar analyses have been
conducted for 300, 400, and 500 tasks, and there is only a minor change in running time.

Furthermore, as shown in Table 7, the proposed algorithm exhibits a significant speedup
improvement. This enhancement demonstrates that the suggested technique is quite effective. For
100 jobs, the proposed method outperforms HLBZID, FSA, and RR by 3.87%, 7.16% and 15.95%,
respectively. Similarly, the proposed approach outperforms HLBZID, FSA, and RR for 500 tasks by
2.72%, 9.42%, and 17.82%, respectively.

As a result of the experiment, it is obvious that the novel hybrid effort achieves better outcomes
than other works.

Figure 12.
Efficiency comparison with various algorithms

Table 6.
Running time analysis of existing and proposed approaches

No. of tasks
Running time (Sec)

HLBZID FSA RR Proposed

100 274.05 836.54 286.73 270.45

200 574.5 1595.21 693.64 573.25

300 788.07 2119.29 915.91 781.52

400 2788.63 6237.17 3049.39 2640.36

500 6288.3 13746.23 7299.9 5980.12

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

18

CONCLUSION AND FUTURE WORKS

Load Balancing and scheduling are the most crucial task in the CC environment. Various research
approaches for load balancing and scheduling were presented, however each had limitations, such as
failing to account for task scheduling time fluctuations and virtual machine parameters. To address this
problem, this study suggested a metaheuristic optimization technique that combined job scheduling
with load balancing. Based on D2B_CPU-based BSO-DA, this paper proposes a hybrid method for
Load Balancing to reduce the time it takes for every client request to be processed. The incoming
requests were balanced optimally utilizing the binary Bird Swarm Optimization and Dragonfly
algorithm based on the overloaded and underloaded VM’s. This approach is aimed at improving
important parameters in CC: throughput, makespan, response time, DOI, execution time, running
time, speed, and efficiency. To evaluate the performance of the proposed method, various simulation
parameters, such as the number of tasks, virtual machines, and data size, are varied throughout the
experimentation phase. Two cloud configurations are evaluated using CloudSim for the purpose of
experimenting with VM allocation and task scheduling methods. For makespan, response time, load
balancing, DOI, throughput, and execution time, the researchers compared the proposed technique
to known algorithms (hybrid Harries Hawks Optimization and Pigeon inspired Optimization,
Spider Monkey Algorithm and Harries Hawks Optimization). Although the explained proposal has
demonstrated significant improvements in throughput, makespan, response time, degree of imbalance,
speedup, efficiency, execution time, and running time, the datacenter’s power consumption remains
one of the key factors that has a significant impact on load balancing’s effectiveness. Therefore,
future work will comprise of extending our proposed method by including datacenter power usage
and VM live migration.

Conflict of interests: The authors declare that they have no known competing financial interests
or personal relationships that could have appeared to influence the work reported in this paper.

ACKNOWLEDGMENTS

We declare that this manuscript is original, has not been published before and is not currently being
considered for publication elsewhere.

AVAILABILITY OF DATA AND MATERIAL

Not applicable

Table 7.
Speedup analysis of existing and proposed approaches

No. of tasks
Speedup

HLBZID FSA RR Proposed

100 904 418 198 920

200 935 425 205 947

300 940 430 213 956

400 967 444 223 975

500 982 450 229 994

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

19

CODE AVAILABILITY

Not applicable

AUTHORS’ CONTRIBUTIONS

The author confirms sole responsibility for the following: study conception and design, data collection,
analysis and interpretation of results, and manuscript preparation.

ETHICS APPROVAL

This material is the authors’ own original work, which has not been previously published elsewhere.
The paper reflects the authors’ own research and analysis in a truthful and complete manner.

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

20

REFERENCE

Arora, P., & Dixit, A. (2020). An elephant herd grey wolf optimization (EHGWO) algorithm for load balancing
in cloud. International Journal of Pervasive Computing and Communications.

Daming, L., Su, Q., Deng, L., Cai, K., Cai, Z., & Mohammed, B. O. (2020). Load balancing mechanism in the
cloud environment using preference alignments and an optimisation algorithm. IET Communications, 14(3),
489–496. doi:10.1049/iet-com.2019.0800

Devaraj, A., Saviour, F., Elhoseny, M., Dhanasekaran, S., Lydia, L., & Shankar, K. (2020). Hybridization of
firefly and improved multi-objective particle swarm optimization algorithm for energy efficient load balancing
in cloud computing environments. Journal of Parallel and Distributed Computing, 142(1), 36–45.

Fatima, A., Javaid, N., Butt, A. A., Sultana, T., Hussain, W., Bilal, M., Akbar, M., & Ilahi, M. (2019). An
enhanced multi-objective gray wolf optimization for virtual machine placement in cloud data centers. Electronics
(Basel), 8(2), 218.

Gupta, A., Bhadauria, H. S., & Singh, A. (2021). Load balancing based hyper heuristic algorithm for cloud
task scheduling. Journal of Ambient Intelligence and Humanized Computing, 12(6), 5845–5852. doi:10.1007/
s12652-020-02127-3

Janakiraman, S., & Deva Priya, M. (2021). Improved Artificial Bee Colony Using Monarchy Butterfly
Optimization Algorithm for Load Balancing (IABC-MBOA-LB) in Cloud Environments. Journal of Network
and Systems Management, 29(4), 1–38. doi:10.1007/s10922-021-09602-y

Jena, U. K., P. K. Das, and M. R. Kabat. (2020). Hybridization of meta-heuristic algorithm for load balancing
in cloud computing environment. Journal of King Saud University-Computer and Information Sciences.

Jena, U. K., P. K. Das, and M. R. Kabat. (2020). Hybridization of meta-heuristic algorithm for load balancing
in cloud computing environment. Journal of King Saud University-Computer and Information Sciences.

Kaur, A. & Kaur, B. (2019). Load balancing optimization based on hybrid Heuristic-Metaheuristic techniques
in cloud environment. Journal of King Saud University-Computer and Information Sciences.

Kaur, A., Kaur, B., Singh, P., Devgan, M. S., & Toor, H. K. (2020). Load balancing optimization based on
deep learning approach in cloud environment. International Journal of Information Technology and Computer
Science, 12(3), 8–18.

Kruekaew, B., & Kimpan, W. (2020). Enhancing of artificial bee colony algorithm for virtual machine scheduling
and load balancing problem in cloud computing. International Journal of Computational Intelligence Systems,
13(1), 496–510. doi:10.2991/ijcis.d.200410.002

Kumar, K. P., Ragunathan, T., Vasumathi, D., & Prasad, P. K. (2020). An efficient load balancing technique
based on cuckoo search and firefly algorithm in cloud. Algorithms, 1, 423.

Kumar, K. P., Ragunathan, T., Vasumathi, D., & Prasad, P. K. (2020). An efficient load balancing technique
based on cuckoo search and firefly algorithm in cloud. Algorithms, 1, 423.

Kumar, M., & Sharma, S. C. (2018). Deadline constrained based dynamic load balancing algorithm with elasticity
in cloud environment. Computers & Electrical Engineering, 69, 395–411. doi:10.1016/j.compeleceng.2017.11.018

Milan, S. T., Rajabion, L., Ranjbar, H., & Navimipour, N. J. (2019). Nature inspired meta-heuristic algorithms for
solving the load-balancing problem in cloud environments. Computers & Operations Research, 110, 159–187.

Negi, S., Rauthan, M. M. S., Vaisla, K. S., & Panwar, N. (2021). CMODLB: An efficient load balancing approach
in cloud computing environment. The Journal of Supercomputing, 77(8), 8787–8839.

Ouhame, S., Hadi, Y., & Arifullah, A. (2020). A hybrid grey wolf optimizer and artificial bee colony algorithm
used for improvement in resource allocation system for cloud technology.

Phi, N. X., Tin, C. T., Luu, N. K. T., & Hung, T. C. (2018). Proposed load balancing algorithm to reduce response
time and processing time on cloud computing. Int. J. Comput. Netw. Commun, 10(3), 87–98.

Polepally, V., & Shahu Chatrapati, K. (2019). Dragonfly optimization and constraint measure-based load balancing
in cloud computing. Cluster Computing, 22(1), 1099–1111. doi:10.1007/s10586-017-1056-4

http://dx.doi.org/10.1049/iet-com.2019.0800
http://dx.doi.org/10.1007/s12652-020-02127-3
http://dx.doi.org/10.1007/s12652-020-02127-3
http://dx.doi.org/10.1007/s10922-021-09602-y
http://dx.doi.org/10.2991/ijcis.d.200410.002
http://dx.doi.org/10.1016/j.compeleceng.2017.11.018
http://dx.doi.org/10.1007/s10586-017-1056-4

International Journal of Cloud Applications and Computing
Volume 13 • Issue 1

21

Pradhan, A., &Bisoy, S. K. (2020). A novel load balancing technique for cloud computing platform based on
PSO. Journal of King Saud University-Computer and Information Sciences.

Priya, V., Sathiya Kumar, C., & Kannan, R. (2019). Resource scheduling algorithm with load balancing for cloud
service provisioning. Applied Soft Computing, 76, 416–424. doi:10.1016/j.asoc.2018.12.021

Ragmani, A., Elomri, A., Abghour, N., Moussaid, K., & Rida, M. (2020). FACO: A hybrid fuzzy ant colony
optimization algorithm for virtual machine scheduling in high-performance cloud computing. Journal of Ambient
Intelligence and Humanized Computing, 11(10), 3975–3987. doi:10.1007/s12652-019-01631-5

Raja, R., & Karthikeyan, A. (2020). An improved GSO based task scheduling (IGSOTS) algorithm for load
balancing in cloud environment. PAIDEUMA J, 13(5), 12–30.

Rawat, P. S., Dimri, P., & Saroha, G. P. (2020). Virtual machine allocation to the task using an optimization
method in cloud computing environment. International Journal of Information Technology, 12(2), 485–493.
doi:10.1007/s41870-018-0242-9

Ruan, X., Chen, H., Tian, Y., & Yin, S. (2019). Virtual machine allocation and migration based on performance-
to-power ratio in energy-efficient clouds. Future Generation Computer Systems, 100, 380–394. doi:10.1016/j.
future.2019.05.036

Sahana, S., Mukherjee, T., & Sarddar, D. (2020). A conceptual framework towards implementing a cloud-
based dynamic load balancer using a weighted round-robin algorithm. [IJCAC]. International Journal of Cloud
Applications and Computing, 10(2), 22–35.

Ullah, A., & Chakir, A. (2022). Improvement for tasks allocation system in VM for cloud datacenter using
modified bat algorithm. Multimedia Tools and Applications, 1–15.

Xingjun, L., Shao, Z., Cheng, H., & Mohammed, B. O. (2020). A new fuzzy‐based method for load balancing
in the cloud‐based Internet of things using a grey wolf optimization algorithm. International Journal of
Communication Systems, 33(8), e4370. doi:10.1002/dac.4370

Xu, P., He, G., Li, Z., & Zhang, Z. (2018). “An efficient load balancing algorithm for virtual machine
allocation based on ant colony optimization.” International Journal of Distributed Sensor Networks, 14(12),
1550147718793799.

Xue, L. S., Majid, N. A. A., & Sundararajan, E. (2018).”Dynamic virtual machine allocation policy for
load balancing using principal component analysis and clustering technique in cloud computing. Journal of
Telecommunication, Electronic and Computer Engineering (JTEC), 10(3-2), pp. 47-52.

Ziyath, S., & Senthilkumar, S. (2021). MHO: Meta heuristic optimization applied task scheduling with load
balancing technique for cloud infrastructure services. Journal of Ambient Intelligence and Humanized Computing,
12(6), 6629–6638.

Thanwamas Kassanuk is a Faculty of Food and Agricultural Technology, Pibulsongkram Rajabhat University,
Phitsanulok, Thailand

Khongdet Phasinam is currently working as an Assistant Professor in the School of Agricultural and Food
Engineering, Faculty of Food and Agricultural Technology, Pibulsongkram Rajabhat University, Thailand. He
received his B.Eng. degree in agricultural engineering, the M.Eng. degree in energy management engineering, and
the Ph.D. degree in agricultural and food engineering from Suranaree University of Technology (Thailand) in the
year 2007, 2010, and 2016, respectively. His current research interests include power and machinery, computer
aided design, renewable energy, and smart farm systems.

http://dx.doi.org/10.1016/j.asoc.2018.12.021
http://dx.doi.org/10.1007/s12652-019-01631-5
http://dx.doi.org/10.1007/s41870-018-0242-9
http://dx.doi.org/10.1016/j.future.2019.05.036
http://dx.doi.org/10.1016/j.future.2019.05.036
http://dx.doi.org/10.1002/dac.4370

