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ABSTRACT

Mechanical transmission is one of the earliest transmission modes in human society. With the 
continuous progress of science and technology, effective simulation and calculation research 
on mechanical transmission has gradually become an important link in the study of mechanical 
transmission. In the actual engineering practice, reliable and accurate data are difficult to obtain due 
to the complexity and low accuracy of the traditional mechanical transmission process. Machine 
learning (ML), a model trained by data, was used to analyze the response of the system through 
different parameters and drew scientific and reasonable conclusions. ML is more intuitive, easier to 
operate, and faster in calculation than the traditional methods. In many mechanical structures, due 
to the large number of processing parts and data, numerical simulation of this important equipment 
requires a considerable time to adjust and optimize accordingly.
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INTRODUCTION

With the continuous improvement of technology and industrial production level, mechanical 
transmission technology has been widely used. Specifically, it is used to connect motion transmission 
belts of various large mechanical equipment and engineering machinery in industrial production, as 
well as the transmission between various industries and machinery. It is among the indispensable 
fields with great development potential in current industrial applications given its advantages, such as 
high transmission accuracy, good reliability, low noise, and few moving parts. The method based on 
machine learning (ML) provides a theoretical basis and technical means for optimizing transmission 
systems, exhibiting great importance for various complex transmission systems.

Mechanical transmission is a widespread concern for the industrial manufacturing community, and 
many scholars have carried out research on this subject. Zhang et al. (2019) proposed a power return 
hydromechanical transmission system and modeled the speed ratio, torque ratio, efficiency, capacity, 
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and other characteristics of the return hydromechanical transmission system to ensure the dynamic 
torque ratio and improve the efficiency of the automatic transmission system. Compared with the 
hydraulic mechanical split transmission, the return flow hydraulic mechanical transmission system can 
achieve higher efficiency while ensuring the starting torque ratio. Blagonravov et al. (2017) considered 
the stepless mechanical transmission with the vibration motion of internal components and outlined 
the basic principle of the automatic control of transmission with internal force function according to 
the vibration amplitude of the internal components. Asgari and Yazdizadeh (2018) proposed a robust 
fault diagnosis scheme for wind turbine generator sets and established a comprehensive mathematical 
model of the mechanical transmission system and gearbox dynamics of wind turbine generator 
sets operating in a wind farm. Farrage and Uchiyama (2018) believed that the friction occurring in 
mechanical systems is an important issue to achieve high-precision performance. They also believed 
that friction would not only adversely affect the motion accuracy of the drive shaft but also consume 
excessive energy and that the sliding mode control verified the effectiveness of the proposed friction 
model in the dual axis feed drive system. Kim et al. (2019) analyzed the transmission strength of a 
tractor’s transmission gear by using the equivalent torque during plowing. The load measurement 
system consists of engine speed sensor, torque gauge, four-shaft speed sensor, and a pressure sensor 
of two hydraulic pumps. The analysis method using equivalent torque showed lower stress and higher 
safety factor than that using maximum torque. Therefore, the equivalent torque method would support 
a more reliable product development when designing tractors with an actual working torque. Yang et 
al. (2019) mentioned that the hydraulic mechanical transmission (HMT) is suitable for high-power 
vehicles and established the speed model of HMT in power shift, considering HMT as the research 
object. Baek et al. (2020) proposed a quantitative method of reliability distribution to solve the 
reliability distribution problem of the mechanical transmission system. Their case analysis results 
proved that the method can provide certain reference for reliability distribution of the mechanical 
transmission system. The research theory of the mechanical transmission is relatively rich, but its 
application is still limited.

ML is applied in many fields. Pathan et al. (2019) proposed the data analysis application and ML 
monitoring to accurately predict the macro stiffness and yield strength of unidirectional composite 
materials under lateral loading. These researchers showed that predictions can be obtained without 
performing physics-based calculations by analyzing the image of material microstructure and the 
constitutive model knowledge of fiber and matrix. Moghadam et al. suggested that ML and deep 
learning algorithms become important tools in the field of materials and mechanical engineering. 
According to these researchers, ML models trained from large material datasets associate structures, 
attributes, and functions at multiple hierarchical levels, providing a new approach for rapid exploration 
of design space. Shen et al. (2019) showed how the strength of ML trained through a multilevel 
simulation combination can predict the performance of metal organic frameworks and introduced the 
ML algorithm to predict the mechanical performance of existing and future metal organic frameworks 
in seconds. Maley et al. (2010) evaluated the mechanical properties by using molecular dynamics 
simulation and ML technology. These researchers showed that the mean squared error of the ML 
prediction of the mechanical properties is several orders of magnitude smaller than the actual value 
of each attribute, indicating that the model has good training results. Shamsirband and Khansari 
(2021) believed that the most powerful methods for detecting damage are ML and deep learning. 
They discussed advanced ML methods and their applications in detecting and predicting material 
damage. These researchers showed that according to performance, deep learning and integration-based 
technology have the highest application and robustness in the field of damage diagnosis. Talebjedi et 
al. (2022) proposed the optimization strategy for refining the mechanical energy saving by combining 
ML algorithm and heuristic optimization method. Najjar et al. (2022) used the micromechanical model, 
finite element simulation of micro-indentation, and ML to predict the mechanical properties of the 
2O3 nanocomposites. They established a micromechanical model on the basis of the evolution law 
of mixture, grain, and grain boundary size. The application of ML in machinery still has limitations.
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The application of ML in the mechanical transmission has been researched, and the satisfaction, 
speed, periodicity, safety, and efficiency of the mechanical transmission have been analyzed to improve 
the performance of mechanical transmission in all aspects and to promote its further development 
in the industry.

EDGE COMPUTING, ML, AND MECHANICAL TRANSMISSION

Relationship Between Edge Computing and ML
ML is a technical complement in edge computing. In ML, the generated data would be transmitted 
to the ML system software to generate an analytical decision model. ML has two methods in the IoT 
and edge computing scenarios. ML optimization algorithm requires considerable computing power 
to make decisions in cloud computing (Sangaiah, 2019). The data collected from the edge would be 
transmitted to the ML system software to form a decision mode for learning, training, and analysis, 
and then the entity model information would be transmitted to the edge of the network. With this 
method, all edge devices can be analyzed and managed. In this entity model, edge devices would be 
used for collection, analysis, and application to the cloud to improve the level of intelligence. The 
edge computing architecture can be used to improve the performance of cloud computing systems, 
so that they can process and analyze data at the edge of the network and be closer to the data source. 
In this approach, data can be collected and processed around the device compared with sending data 
to the cloud or data management center. The advantages of edge computing are shown in Figure 1.

Edge computing can reduce the server bandwidth required by sensors and central cloud 
computing, as well as the pressure on the entire information technology (IT) architecture. Data are 
stored and processed on edge devices without using data links. This approach eliminates continuous 
high-bandwidth network connections. Based on boundary computing, node devices provide only the 
information required by cloud computing, and not the original data. This approach is beneficial to 
reduce the connectivity of cloud architecture and save costs. It is very beneficial when a large number 
of industrial production machines and devices are used for edge analysis, and only excessive data 
information is transmitted to the cloud, resulting in considerable savings in IT infrastructure. The 
individual behavior of the edge device is similar to the actual cloud computing class by mathematical 
operation. Applications can be executed rapidly and can establish reliable and highly corresponding 
communication with nodes.

Figure 1. 
Relationship between edge computing and ML
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With regard to security and privacy of data based on boundary computing, compared with 
unsecure data transmission, sensitive data are generated, processed, and stored on edge devices, and 
the centralized data management center may be damaged. An edge computing system can provide 
common countermeasures for each edge to achieve data consistency and privacy.

Mechanical Transmission
Mechanical transmission is the most commonly used in mechanical engineering. It realizes power 
and motion through mechanical form. It mainly has two types: one is driven by the friction between 
the mechanical parts, and the other is driven by the meshing of the driving parts or by the meshing 
of intermediate parts to achieve power and movement. Many types of mechanical transmission are 
available, and they can be divided into two categories: friction transmission and gear transmission.

The transmission of power is realized through friction, including belt drive, rope drive, and friction 
wheel drive. Friction transmission can easily realize stepless speed regulation. Most of them can be 
applied to the driving occasions with a large wheelbase. Overload slip can be used as a damping and 
protection transmission mechanism, but it is usually inapplicable to high-power occasions and cannot 
ensure an accurate transmission ratio.

Gear transmission, chain transmission, spiral transmission, and harmonic transmission are meshed 
with the transmission device to achieve transmission and movement. Gear transmission can be used 
in high power occasions with an accurate transmission ratio, but usually requires high machining 
accuracy and assembly accuracy. Basic product categories include reducer, brake, clutch, coupling, 
CVT, lead screw, and slide rail.

INFLUENCE OF ML ON MECHANICAL TRANSMISSION

Mechanical Transmission Test Platform
The mechanical transmission test platform consists of four modules: transmission, power, test, 
and loading. The transmission module is mainly the mechanical transmission equipment for bag 
test. Common transmission equipment includes gear transmission, belt transmission, and chain 
transmission. The power module is the main power input equipment of the entire test platform, 
mainly including the motor and frequency converter. The loading module simulates the load of the 
transmission system; the test module collects data signals. Common devices include pressure sensor, 
encoder, speed torque sensor, temperature sensor, vibration sensor, and noise sensor. The mechanical 
transmission test platform is shown in Figure 2.

Figure 2. 
Mechanical drive test rigs
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Mechanical Transmission Structure Composition
Transmission shaft: it is composed of several tooth-shaped gears and is used to transmit rotary torque 
or rotary motion. Coupling between teeth: when the gear and end cover are assembled together, a 
device or component that transmits torque is formed between the shaft end and end cover. The end 
cover is usually fixed with tooth keys, locking pins, or bolts, and the end cover should always be 
clean. Installation of shaft: the end cover is generally fixed with a shaft to bend the shaft end inward. 
Coupling: the transmission shaft is composed of two cams, and a coupling is installed between the 
cams. Transmission teeth: tooth-bonded or meshed gear sets are used; they are usually composed of 
two cylindrical gears and four spur gears. The mechanical transmission structure is shown in Figure 3.

Gear transmission mainly uses gears and cams to transmit force and torque and can also use cams 
to adjust the rotation angle. It has the following advantages:

•	 Stepless speed regulation: Under low-speed conditions, the torque generated by gear meshing 
is small.

•	 Simple structure: The design and manufacture are relatively simple while maintaining the 
transmission ratio and running stability.

•	 High transmission efficiency, small size, and light weight: The transmission shaft generally 
adopts hollow bearing or rolling bearing and is equipped with cam or cam gear to realize torque 
transmission.

•	 High transmission reliability: Transmission can be realized without maintenance and 
replacement of parts.

Application of ML in Mechanical Transmission
ML allows experts to easily learn and process complex inputs. The algorithm provided by ML can 
improve the analysis quality and work efficiency. If a robot is used to assemble a machine, then all 
parts of the car need to be installed on a central platform. These parts would be assembled on the car. 
The robot would use ML algorithms to program and then compare it with the current car to determine 
which parts are better on the current car. If a sensor system is installed in front of the car, then the 
car would track obstacles in front of the car, and then the sensor would judge whether the car would 

Figure 3. 
Mechanical drive structure composition
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turn through the body or other positions. Finally, the robot would obtain information from the sensors 
installed on other vehicles near it for calibration and adjustment. During these processes, if the car 
does not deviate from its intended route or deviates from its lane or stop line, then it would send an 
alarm, and the car would start to repair itself. The application of ML in mechanical transmission is 
shown in Figure 4.

Vehicle Safety Control
The traditional driving simulation system needs to be realized through data collection. These processes 
include all tests conducted in the test environment, such as sensors installed in the center of the car, 
testing and calibration systems, simulation of operating software, and simulation of steering wheel 
steering. With the continuous development and maturity of ML technology, achieving real-time 
control, real-time analysis and feedback, real-time calibration, and safety assessment of the autodrive 
system in the test environment is currently possible.

The ML system also optimizes any unexpected situations that occur in the vehicle while driving. 
The regression and measurement theory in ML is used to collect various event data identified by the 
current car drivers, traffic lights, and other traffic signs, thereby adjusting the autodrive system and 
enabling the car to drive autonomously (Gupta et al., 2019). In addition, for the problems faced by the 
autodrive system, interaction interference may be observed among many sensor systems involved in the 
challenges faced by the autodrive system and other sensor systems closely related to the entire system. 
The interaction interference between sensors would lead to problems. For example, the sensors cannot 
obtain accurate information (similar to the current vehicle, with either people or obstacles) about the 
current car and other vehicles for analysis and for determining the impact on the speed of information 
transmission to improve the ability of interaction delay between automation systems and sensors. 
Therefore, a combination of a complete set of ML technology and advanced sensor technology should be 
established to achieve fully autonomous vehicle automatic driving function and safe control system status.

Figure 4. 
Application of ML in mechanical transmission
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Adaptive Driving System
The adaptive driving system includes multiple independent cameras and microphones, both of which 
can capture video and audio information while driving. In a typical use case, when an autonomous 
vehicle enters a lane on the road, it detects the speed and direction of the car in front. When the car turns, 
accelerates, or decelerates, it recognizes the danger signal and sends an alarm. The sensor can analyze 
these signals and negotiate with the driver to predict the driver’s action through the steering angle and 
speed. The vehicle system detects whether obstacles exist or whether the driving direction of the vehicle 
is within a reasonable speed range and does not interfere with the vehicle or change its route or speed. 
The vehicle would encounter different road conditions (such as rainy and snowy weather and slippery 
roads) during actual use. Thus, the adaptive driving system needs to constantly adjust the algorithm to 
ensure that the vehicle moves in the right direction and maintains a safe distance from other vehicles.

Automobile Maintenance Monitoring and Diagnosis System
ML can monitor the status of vehicles in real time. With the help of sensors, computer vision, and other 
technologies, ML systems can collect various data to further improve vehicle performance. If the vehicle 
cannot brake at the right time and position, then the vehicle would encounter problems in some cases. 
The ML system achieves this goal through classification, statistics, and description of measured data 
(Groensfelder et al., 2020). The measurement data contain different structural features, location, and working 
modes of the sensors or systems; thus, they can support the decision-making of the artificial intelligence 
software and algorithms. Contrary to the traditional vehicle-centered measurement data, the ML system 
can analyze, detect, diagnose, track, and even control vehicles and maintain them and other relevant data.

MECHANICAL TRANSMISSION MODEL ALGORITHM OF EDGE COMPUTING

Robert Edge Detection Operator
The Robert edge detection operator uses a local difference operator to find edges.

The gradient of a function is defined as shown in equation (1):
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The modulus of ∇ ( )r a b,  gradient is the gradient of the digital image. In digital image processing, 
the difference method is generally used to obtain better differential results. The Robert operator 
determines the edge by using a local difference operator; that is, edge detection is performed by the 
difference between two adjacent pixels in the diagonal direction. The difference value is considered 
as shown in equations (2) and (3):
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The gradient of the image is obtained by the formula shown in equation (4):
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It is simplified to the formula shown in equation (5):
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The corresponding convolution template is shown in equation (6):
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According to the calculation formula, the gradient amplitude ∇ ( )r a b,  can be obtained. Then, 
the threshold value should be obtained through actual inspection and testing. If the threshold is TH, 
then TH would be used as the standard for comparison and judgment.

Optimal Distribution of Motion Accuracy

•	 Design Variable: The meta-action chain includes m transmission pairs, and the standard deviation of 
the motion error of each transmission pair is considered the design variable, as shown in equation (7):
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•	 Objective Function: The distribution value of the motion error of each transmission pair is 
introduced into the motion error of the element action chain, and the difference between the result 
and the design value is considered the objective function, as shown in equation (8):
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•	 Cost Function: In the optimal allocation of motion accuracy of the element action chain, its 
manufacturing cost is mainly the total equipment cost of each element action unit. The cost is 
measured by the complexity of unit comprehensive assembly, and the cost function is obtained 
by the formula shown in equation (9):
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In the formula, d
n n-1,  is the weighted coefficient of the transmission pair assembly cost.
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•	 Robust Function: To minimize the influence of the uncertainty factors of the motion errors of 
each transmission pair on its motion accuracy, the sensitivity analysis method is used to design 
the robust function, as shown in equation (10):
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The optimization model aims at cost and robustness; this is a multi-objective optimization 
problem. The multi-objective optimization problem is transformed into a single objective optimization 
problem to reduce the complexity of the problem. The cost and robustness are normalized using the 
formulas shown in equations (11) and (12):
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The formula for the optimal allocation model of the integrated motion accuracy of the meta 
motion chain is shown in equation (13):

min
,
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In the formula, h
1
 and h

2
 are the weight coefficients, and the distribution value of the motion 

error of each transmission pair can be obtained.

Optimal Distribution of the Kinematic Accuracy of the Transmission Pair
The parts in the transmission pair belong to different element action units. Thus, the motion accuracy of 
the transmission pair should be redistributed to obtain the motion error of the power input components 
and power components of the adjacent element action units.

If the motion error of the transmission pair between the n -1  element action unit and the m-th 
element action unit is d

n n-1, , and the motion error of the matched upstream element action power output 
and downstream element action power input is d

n-1  and d
n

 respectively, then through the comprehensive 
accuracy distribution, the results can be obtained using the formula shown in equation (14):

d d d
n n n n− −= +
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	 (14)

The mean and standard deviation of the motion error of the transmission pair are obtained using 
the formulas shown in equations (15) and (16):
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In the transmission pair, the standard deviation design variable of the motion error of the upstream 
element action unit and the downstream element action unit is obtained as shown in equation (17):

0
1 1

≤ ′( ) ≤ 



− −ε δ ε δ

n n n n, ,
	 (17)

EVALUATION EFFECT OF MECHANICAL TRANSMISSION ON ML

Experiment Purpose
Two types of mechanical transmission, A and B, were selected as the research objects to study the influence 
of ML on mechanical transmission. A is the traditional mechanical transmission, and B is the ML mechanical 
transmission. In recent years, user satisfaction with mechanical transmission, mechanical transmission speed, 
operation periodicity, mechanical transmission safety, and mechanical transmission efficiency is studied.

Experimental Data

•	 Customer Satisfaction with Mechanical Transmission: The user’s satisfaction with mechanical 
transmission is shown in Table 1.

In Table 1, the satisfaction with mechanical transmission increases and the dissatisfaction decreases 
over the 4-year period. Among them, user satisfaction with mechanical transmission is approximately 
29.77% in 2015 and 38.94% in 2019, showing an increase of approximately 9.17%. Based on ML, 
machines can better interact with humans. For example, mechanical transmission can execute the driver 
of the machine and provide feedback through robots. In the ML mechanical transmission system, the 
machine can be adjusted as required to satisfy the requirements of humans or robots. When traditional 
mechanical transmission is in operation, the adjustment period of some machines becomes uncertain.

•	 Mechanical Transmission Speed: Mechanical transmission speed is a main research topic, as 
shown in Figure 5.

In Figure 5, the mechanical transmission speed of B increases, whereas that of A is unstable, 
and the speed has decreased from 2015 to 2016. In the entire mechanical transmission system based 
on ML, the shaft is a component that transfers energy from the middle. Thus, the shaft performance 
is better than that of the motor. In most cases, the ML models are used to predict axes. If the input is 
constant, then the output is predicted. The larger prediction input indicates smaller prediction error, 
which is more conducive to improving the transmission speed.

Table 1. 
User satisfaction with mechanical drives

2015 2016 2017 2018 2019

Satisfaction 29.77% 32.65% 35.51% 36.77% 38.94%

General 33.55% 34.36% 36.33% 37.84% 38.66%

Dissatisfaction 36.68% 32.99% 28.16% 25.39% 22.40%
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•	 Operation Periodicity: The periodicity of mechanical transmission operation reflects the quality 
of its equipment. The comparison of the periodicity of mechanical transmission operation is 
shown in Figure 6.

In Figure 6, the mechanical transmission periodicity of B shows an increasing trend, whereas that 
of A shows an unstable trend. The entire life cycle of the transmission system would be affected by 
environmental conditions and human behavior. For example, environmental conditions can affect the 

Figure 5. 
Mechanical drive speed comparison

Figure 6. 
Operational periodicity comparison



International Journal of Information Technologies and Systems Approach
Volume 16 • Issue 2

12

motion track, dynamic state, position, and time of the system, and these factors can also affect the entire 
life cycle. The support of the ML technology on the Internet of Things indicates that if the prediction 
result of the mechanical transmission system is accurate, then the next stage of operation can be guided 
according to the prediction results. During the prediction process, the structural parameters of the parts 
are predicted, and the optimal running state of the machine is obtained. Based on the prediction results, 
the design is improved to reduce the wear of the machine and reduce its maintenance cost.

•	 Mechanical Transmission Safety: The safety of the mechanical transmission is related to the 
life and safety of the users. The main research topic is the mechanical transmission safety, as 
shown in Figure 7.

The mechanical transmission safety of A is lower than that of B, which is continuously improved. 
The ML technology can improve the accuracy and reliability; thus, it can monitor the mechanical 
parts in the production process in real time. It can also select the appropriate model according to the 
actual application and predict the movement track and state of the parts to improve the mechanical 
transmission safety.

•	 Mechanical Transmission Efficiency: The results when the mechanical transmission efficiency 
is considered as the research object are shown in Figure 8.

Figure 8 shows that the mechanical transmission efficiency of B is always higher than that of A, 
and the efficiency of A is unstable. The traditional mechanical transmission cannot accurately detect 
the operation of machinery. Based on the ML background, the sensors can be used to collect data by 
adding them inside the machinery. Thus, the impact of various factors on transmission efficiency can 
be evaluated from different dimensions, and the mechanical transmission efficiency can be improved.

Figure 7. 
Comparison of mechanical drive safety
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CONCLUSION

The continuous development of Internet of Things and ML technology was greatly beneficial to the 
field of mechanical transmission simulation. This study analyzed the structure of the mechanical 
transmission, the application of ML in mechanical transmission, and the edge computing simulation 
of the mechanical transmission model under the background of transmission ML. In addition, the 
ML-based method can simplify the entire analysis process and result in an efficient work to accelerate 
the product development process and improve the safety and accuracy of the mechanical transmission. 
When ML is applied to mechanical transmission, it becomes more satisfactory to users.

Figure 8. 
Comparison of mechanical drive efficiency
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