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ABSTRACT

Passenger-paid seat selection is one of the important sources of ancillary revenue for airlines, 
and machine learning-based willingness-to-pay identification is of great practicality for airlines 
to accurately tap potential willing passengers. However, affected by periodic statistical errors, air 
passenger order data often has some problems such as high noise, high latitude, and unbalanced 
category. In view of this, this paper proposes a method for identifying air passengers’ willingness 
to pay for seat selection based on improved XGBoost, which is improved and integrated from three 
stages: data, feature, and algorithm. The feasibility of the proposed multi-stage improved integration 
method is verified by real airline passenger dataset, and the experimental results show that the 
proposed improved method has better classification effect when compared with the classical six 
imbalance classification models, which provides a basis for accurate marketing of airline paid seat 
selection programs.
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1. INTRODUCTION

Affected by the global economic environment and market competition, airline’s main ticket business 
revenue has gradually decreased with the continuous decline in ticket prices, and many airlines have 
begun to generate revenue by increasing the added value of products and developing ancillary services 
to ease the financial pressure on their operations. In addition, coupled with the huge impact of the 
novel coronavirus pneumonia on global air passenger demand, better performance of ancillary revenues 
can help airlines survive the epidemic crisis to some extent. The “paid seat selection service”, one 
of the new domestic add-on services, has brought the airlines considerable profits due to its almost 
zero marginal expenditure. Since ancillary products and services are optional, so it is very important 
for airlines to understand passengers’ willingness to pay and let more passengers choose this service.
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Over the years, A great deal of exploration has been done in the identification of customers’ 
willingness to pay for various ancillary services, and machine learning-based willingness 
identification methods have been found to be more advantageous than traditional statistical 
methods (Jing et al., 2021; Maliah & Shani, 2021). By studying and analyzing the travel purpose 
of the ticket-purchased passengers, mining the behavioral characteristics of the known paid 
seat-selecting passengers and constructing their behavioral models (Borisyak et al., 2020; J. 
Pang, Chen, Li, Xu, & Lin, 2021), it is possible to identify the passengers who may have similar 
willingness and ability from the total number of passengers, so as to achieve increased revenue 
from accurate marketing at a lower cost.

The current research on the travel behavior of civil aviation passengers is divided into two 
main directions: passenger behavior segmentation (Pan & Truong, 2021) and passenger value 
calculation (Nakahara & Yada, 2011). Most airlines subdivide passengers according to the fare 
of the ticket they purchased or the accumulated mileage distance. The RFM model proposed by 
marketing expert Bob Stone can be used to quantify customer value, many scholars (Wu et al., 
2020; Wu et al., 2021; Zong & Xing, 2021) use RFM and improved k-means clustering to divide 
passenger groups. However, such segmentation method only discovers the value of passengers 
and does not point out the behavioral characteristics of passenger groups. The three attributes 
of traditional RFM model do not fully reflect the passenger behavior preferences, so on this 
basis, the LRFMC model and the TCSDG model have been successively evolved. Combining 
the improved model with classical machine learning classification algorithms such as SVM, 
KNN, GBDT and NN, etc., it is widely used in passenger behavior prediction (S. Q. Pang & Liu, 
2011), personalized recommendation (Tao, 2020), flight delay prediction (Jiang, Liu, Liu, & 
Song, 2020) and other aviation fields in business. However, experimental studies on identifying 
passengers’ willingness to choose a seat for a fee are still limited.

The biggest challenge in the field of air passengers’ pay-for-seat willingness identification is 
its noisy, latitudinal, and uneven distribution due to environmental and recording influences when 
collecting data. Therefore, this paper proposes an improved XGBoost-based method for identifying 
airline passengers’ willingness to take paid seats based on high-dimensional imbalance data, which 
conducts integrated classification prediction from three stages of data, features and algorithm.

The main contributions made in this paper are shown below:

1. 	 Data preprocessing: Random undersampling of the majority class samples and generation of 
new samples to supplement the minority class samples using CGAN, so as to solve the serious 
imbalance of passenger order data.

2. 	 Feature selection: Then combining chaos theory, introducing nonlinear convergence factors and 
adaptive weights, improving the whale optimization algorithm based on the opposing learning 
strategy to find the optimal feature subset and reduce the dimensionality of the traveler data set.

3. 	 Algorithm improvement: A new gradient harmonizing mechanism (GHM) is introduced to 
improve the loss function of XGBoost, and the genetic algorithm is used to optimize the parameters 
of XGBoost to obtain the final willingness recognition model.

The experimental results with real airline passenger data show that the improved classification 
model of this paper has a better classification effect than the other six representative imbalance 
classification models SMOTEBoost (Chawla, Lazarevic, Hall, & Bowyer, 2003), RUSBoost (Seiffert, 
Khoshgoftaar, Van Hulse, & Napolitano, 2010), CUSBoost (Rayhan, Ahmed, Mahbub, Muhammod, 
& Farid, 2017), EasyEnsemble (X. Y. Liu, 2006), SMOTE_SVM (Nguyen, Cooper, & Kamei, 2011) 
and Balanced Random Forest (Chao & Breiman, 2004). This study fully proves the superiority of 
multi-stage improved ensemble method in the field of passengers’ willingness to pay for seat selection 
recognition compared with a single model. The proposed improvement provides some certain reference 
for follow-up related research.
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2. RELATED WORK

2.1 Airline Database
Paid seat selection has gained much attention in recent years as one of the new additional services. 
At present, all major airlines basically have their own database systems and have accumulated a large 
amount of passenger data. How to identify the most profitable and potentially willing passengers from 
the huge amount of passenger data is an urgent problem for all airlines to solve. Many scholars have 
also conducted relevant studies on this topic. Liou et al. (Liou & Tzeng, 2010) used the Dominance-
based Rough Set Approach (DRSA) to provide a set of rules for determining customer attitudes and 
loyalty, which can help airlines to identify high-value customers and enhance their attractiveness to 
potential users. Then developing strategies to retain high-value customers and acquire new ones. Li et 
al. (L. Li, 2017) used the “Seat Reservation” information provided by Air China to analyze the booked 
passengers in six aspects and multiple dimensions to build a positioning model to help identify potential 
users for the “Seat Reservation” value-added service, and help airlines develop targeted strategies. 
Lu et al. (Lu, 2018) collected the historical operation records of frequent flyers of China Southern 
Airlines from 2012 to 2016, and used stacking to fuse individual models to predict lost passengers and 
analyze their behavioral characteristics, providing an effective method to identify passenger loyalty. 
Rouncivell et al (Rouncivell, Timmis, & Ison, 2018) set up a 14-question survey via an online survey 
platform on willingness to pay for seat selection on UK flights unrelated to the ticket, providing an 
evidence base for the development of revenue management and the marketing of seat selection fees 
as an ancillary product. Yu et al. (Yu, 2019) used an improved RFM-P model to segment airline 
customers, and then analyzed the factors influencing value-added service purchase decisions for the 
segmented customer groups to investigate which factors can facilitate airline passengers’ purchase 
of value-added services. Zhao et al. (Zhao, 2021) used the K-means++ to cluster passengers into 
three groups: “low-value passengers”, “medium-value passengers”, and “high-value passengers”, 
and constructed an improved XGBoost-based passenger churn prediction model with churn rules, 
enterprises can get the loss of passengers with different values and formulate differentiated retention 
strategies. While many of the above scholars have provided many experiences and results on airline 
value-added services, research in the area of willingness identification specifically related to paid 
seat selection is still very limited.

The data used in this experiment is the real booking data of an airline for three years from January 
2018 to December 2020, which comes from the China Student Service Outsourcing Innovation and 
Entrepreneurship Competition (The official website of the competition is http://www.fwwb.org.
cn/news/show/314, accessed on 22 June 2022). And the source of the data is related to the airline’s 
precise marketing activities.

There are a total of 23433 records in the experimental data set, and each record includes 656 
passenger information variables and 1 target variable. The passenger information variables can be 
divided into three parts: passenger basic information, Passenger information on a certain flight and 
passenger flight statistics during the period, including 523 numerical characteristics and 133 non-
numerical characteristics. The target variables are expressed by 0 and 1, where 0 represents the unpaid 
seat selection sample and is the majority class, and 1 represents the paid seat selection sample and is 
a minority class. There are 1475 minority samples and 21957 majority samples, with an unbalanced 
ratio of 1:15. The specific information is shown in Table 1.

As can be seen from Table 1, passenger seat selection willingness recognition is to classify the 
total number of passengers by mining the characteristic information of paid passengers to achieve 
precision marketing, which is essentially a binary classification problem. However, in the actual 
sample of air passengers, the number of passengers who do not pay for seat selection is usually far 
more than that of passengers who have paid for seat selection. and this unevenly distributed data is 
also widely available in other practical applications, such as disease diagnosis (Devarriya, Gulati, 
Mansharamani, Sakalle, & Bhardwaj, 2020), fraud identification (Y. Liu, Yang, K., 2021), text 

http://www.fwwb.org.cn/news/show/314
http://www.fwwb.org.cn/news/show/314
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classification (Elnagar, Al-Debsi, & Einea, 2020), machine fault detection (X. Q. Li, Jiang, Liu, 
Zhang, & Xu, 2021), spam filtering (Dedeturk & Akay, 2020), etc. When constructing the willingness 
recognition model, traditional classifiers prioritize the classification accuracy of the majority class 
samples (unpaid seat selection) in order to ensure the overall performance of the model training, 
resulting in some minority class samples (paid seat selection) being classified incorrectly. And in the 
willingness recognition problem, the portrait information of paid passengers has a higher value, that 
is, misidentification of a willing passenger often causes more losses to airlines than misclassification 
of an unwilling passenger. Therefore, how to detect more paid minority class passengers and improve 
the classification effect of the model on imbalanced passenger data is the focus of research in the 
field of air passengers’ willingness to pay for seat selection identification.

2.2 Unbalanced Data
In view of the shortcomings of the above-mentioned unbalanced data in the classification 
problem, many scholars have carried out in-depth research and analysis, and have put forward 
many solutions. There are mainly three types of solutions: data preprocessing, feature selection 
and algorithm improvement.

1. 	 Based on data preprocessing: At the data level, data distribution is mainly adjusted by resampling 
or grouping the data to weaken its distribution imbalance. Among them, resampling can be divided 
into oversampling for the minority classes, undersampling for the majority classes, and hybrid 
sampling combining the two sampling methods. Oversampling is to synthesize new minority 
class samples by some strategies to balance the number of positive and negative samples. The 
classical methods include SMOTE (Sindhu & George, 2022), SMOTE-Borderline (Han, Wang, 
& Mao, 2005), ADASYN (He, Yang, Garcia, & Li, 2008), and GAN-based methods (Lee & 
Park, 2021). However, the samples generated by artificial random replication may bring noise 
and reduce the classification accuracy of the model. At the same time, some redundant samples 
are easy to cause model overfitting and increase the training time of the model. Undersampling 
is to screen out some representative negative samples by randomly deleting some majority class 
samples, so that the data set tends to be balanced. Undersampling algorithms include density-
based undersampling (Cui, Cao, & Liang, 2020) and weight-based undersampling (Xiong, Wang, 
& Deng, 2016). However, undersampling may lose some important feature information in the 
process of eliminating most class samples, thus affecting the accuracy of model classification. 
Hybrid sampling is to rebalance the data by combining undersampling and oversampling, which 
can make up for the defects caused by a single method to some extent. Zhu et al. (Zhu, Yan, Zhang, 
& Zhang, 2020) proposed an evolutionary hybrid sampling technique that made the decision 
boundary between the majority class and the minority class samples is more visible, and random 
oversampling combined with imbalance ratio and classification performance was used for minority 
class samples, which reduced the risk of overfitting and enhanced the learning performance 
of the classifier. Gao et al. (Gao et al., 2020) divided the data space into four different regions 
according to the proportion of majority samples in the minority class neighborhood, different 
sampling methods in different regions can better balance the data distribution. Li et al. (Dongdong 

Table 1. Experimental data description

Data Category Data Sources Sample Structure Characteristic Attribute

Air passenger paid seat 
selection An airline

Minority samples: 1475 Total number of features: 657

Majority samples: 21975 Data types: numeric and category

unbalance degree: 1:15 Preprocessing: CGAN and IWOA
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et al., 2021) distinguished the importance of training samples by calculating the information 
entropy value in the undersampling process, and oversampling only expanded the positive data 
to the size of each negative sample subset, which alleviated the data overlap problem caused 
by artificial synthetic samples. Low et al. (Low, Cheah, & You, 2021) proposed an imbalanced 
class processing method combining gradient boosting algorithm and hybrid sampling. Although 
this method increased the possibility of model overfitting, it greatly improved the classification 
accuracy of minority samples, which was more advantageous than the single sampling method.

2. 	 Based on feature selection: The passenger order data collected from the actual air transportation 
industry usually has high dimensions, and the unbalanced category of high-dimensional data 
set also leads to the uneven distribution of feature attributes. The redundant irrelevant features 
will increase the training time of the sample, resulting in overfitting of the model. Therefore, 
feature selection seeks the optimal feature subset which contributes most to the model and can 
reflect the characteristics of unbalanced data from the original high-dimensional data to reduce 
the complexity of the model and improve the classification performance. Common feature 
selection methods are mainly divided into three categories: filter, wrapper (Kohavi & John, 1997) 
and embedding. When facing high-dimensional imbalance problems, many scholars have also 
made relevant improvements to the traditional methods. Hosseini et al. (Hosseini & Moattar, 
2019) combined symmetric uncertainty and binary interaction information to identify candidate 
features, then formed candidate feature subsets through the multivariate interaction information 
method and selected the best candidate feature subset, which reduced the data dimension thus 
improves the accuracy and f1 value. Chen et al. (H. M. Chen, Li, Fan, & Luo, 2019) proposed 
a feature selection method for imbalanced data based on neighborhood rough set theory, which 
fully considered the fuzzy distribution of class and class boundary, and verified the effectiveness 
of the method in binary and multi-class data. Shahee et al. (Shahee & Ananthakumar, 2020) used 
the effective complex distance measure to properly select the iteratively modified features, so as 
to obtain the final feature ranking and the unbalanced features between and within the classes 
are combined. Sharifai et al. (Sharifai & Zainol, 2021) combined the feature ranking of the six 
filters to select the feature set that exceeds the set threshold, then searched the feature space and 
mine high-quality features to enhance the capability to predict minority classes. Kim et al. (Kim, 
Kang, & Sohn, 2021) applied the ensemble learning paradigm to the feature evaluation process 
through the feature evaluation scheme based on filtering method, which accurately recognized 
the features with good robustness and greatly reduces the calculation time.

3. 	 Based on algorithm improvement: Traditional classification algorithms such as decision tree, 
SVM, neural network is mostly trained based on the premise of data balance, which also leads 
to the classifier biased towards majority class samples. Therefore, the algorithm level mainly 
deals with unbalanced data by improving traditional classification algorithms, where cost-
sensitive learning (Thai-Nghe, Gantner, Member, IEEE, & Schmidt-Thieme, 2010) and ensemble 
learning method (Galar, Fernandez, Barrenechea, Bustince, & Herrera, 2012) have outstanding 
effects. Cost-sensitive learning improves the detection rate by giving higher misclassification 
costs to minority samples, and reduces the impact of misclassification, Ensemble learning is to 
combine the learned multiple sub-classifiers into a strong classifier, which is usually combined 
with other imbalanced data classification processing methods to comprehensively improve the 
classification effect. Wong et al. (Wong, Seng, & Wong, 2020) found the optimal value of cost 
vector by randomly undersampling in hidden layer of deep neural network and extracting feature 
layer by layer, and good results were achieved in the binary classification of unbalanced business 
field. Vong et al. (Vong & Du, 2020) proposed a new sequential ensemble learning framework to 
solve the multi-classification problem of highly imbalanced data. The combination method was 
formulated for the extreme learning machine to weaken the sensitivity to IR and improved the 
average classification accuracy. Alves Ribeiro et al. (Ribeiro & Reynoso-Meza, 2020) proposed 
an ensemble learning method based on different multi-objective optimization design to improve 
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the level imbalance problem. It not only improved the integration creation on fewer instances 
and feature training, but also improved the performance of RF and RUSBoost integration. Du et 
al. (Hongle, Yan, Gang, Lin, & Chen, 2021) reduced the impact of unbalanced data stream and 
improved the classification accuracy by dynamically calculating the cost of misclassification, 
sampling probability and the weight of base classifier, especially suitable for the recognition 
of unknown intrusion behavior in network intrusion detection. Razavi-Far et al. (Razavi-Far, 
Farajzadeh-Zanajni, Wang, Saif, & Chakrabarti, 2021) used missing data imputation techniques 
to generate new samples, it proved that the performance of the proposed oversampling combined 
bagging strategy based on multiple imputation was significantly better than that of the commonly 
used class imbalance learning method. Chen et al. (Z. Chen, Duan, Kang, & Qiu, 2021) combined 
ensemble learning with edge-based undersampling and diversity-enhanced oversampling to better 
solve the problem of poor performance caused by single data-level method, the disadvantage 
was that the integration scheme was greatly affected by the parameters.

As a summary, the above methods can solve the problem of imbalanced data classification to 
a certain extent, but there are still some limitations in the actual application of recognition of the 
willingness of air passengers to pay for seat selection.

3. THE PROPOSED METHOD

Aiming the problem that the traditional classifiers have a low recognition rate of paid samples on 
high-dimensional unbalanced passenger data, this paper will further improve XGBoost, which has 
excellent performance in the field of binary classification of passenger willingness to pay, in three 
stages: Data preprocessing, combining random under-sampling and CGAN to balance passenger 
samples; Feature selection, using the improved whale optimization algorithm to filter out the feature 
subset that contributes the most to the willingness recognition model; Algorithm improvement, a new 
gradient harmonizing mechanism (GHM) is introduced to improve the loss function of XGBoost, and 
genetic algorithm is used to optimize the parameters of XGBoost, then the final model is obtained 
to identify passengers’ willingness to pay for seat selection. The overall framework of the algorithm 
is shown in Figure 1.

3.1 Data Preprocessing Based on Hybrid Sampling
Due to the single sampling method has its own defects, in order to improve the quality of passenger 
samples after resampling and to ensure that the samples are as diverse as possible (non-overlapping 
or less), a hybrid sampling strategy based on random undersampling and CGAN is proposed. The 
specific steps of the method are:

Step 1: Undersampling of negative samples. The undersampling of negative samples mainly includes 
two parts. Firstly, the noise samples in negative samples are removed to reduce the interference 
to the classification. Secondly, since the number of negative class samples is much larger than 
positive class samples in the overlap region, making the positive class boundary samples in the 
overlap region often harder to identify, the proportion of negative classes in the overlap region 
should be reduced. In this paper, the majority and minority class samples in the training set are 
randomly undersampled under the premise of controlling the sampling ratio.

Step 2: Oversampling of positive samples. The class label variable (whether to pay or not) of the 
passenger data set is used as the conditional variable y of the CGAN model. For the training 
subset, CGAN is used to learn the distribution information of minority samples, and the training 
generator generates realistic minority supplementary samples to reduce the imbalance of data. 
Different from the traditional oversampling technology, CGAN effectively solves the problems 
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of sample overlap and overfitting, and determines the number of minority samples generated 
according to the number of samples and the imbalance degree in different data sets. The unpaid 
passenger samples with large contribution to the model are selected, and the paid passenger 
samples with important feature information are generated, so that the proportion of the two 
tends to be balanced.

Figure 1. Flow chart of the proposed method
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3.2 Improved WOA for Feature Selection Based on Hybrid Strategy
3.2.1 Chaotic Mapping Initializes Population
The traditional whale optimization algorithm (WOA) (Mirjalili & Lewis, 2016) solves function 
optimization problems by initializing the population through the random number method, resulting 
in the initial population to be unevenly distributed in the search agent space, which greatly affects 
the convergence speed and the accuracy of the optimal solution of the algorithm. Chaotic motion is 
an irregular and ergodic nonlinear random behavior, its characteristics can improve the quality of 
the initial population to ensure the global search performance of the algorithm. The common chaotic 
maps include Logistic map, Tent map, Cubic map, Circle map and Singer map. Related research 
shows that the performance optimization of Tent mapping for WOA is higher than that of other 
mappings. Therefore, this paper uses Tent mapping to generate the initial whale population, and the 
mathematical expression is as follows:
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For the whale population with size N and search dimension D, the tent mapping sequence 
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3.2.2 Nonlinear Convergence Factor and Adaptive Inertia Weight
In traditional WOA, parameter A is usually used to adjust the capability of the algorithm to perform 
global search and local development. And the convergence factor a decreases linearly with the increase 
of iteration times, which leads to the weak global search capability in the early stage of the algorithm 
and easy to fall into local optimum, in the late stage, the local development capability gradually 
decreases and the convergence speed Slow down. To address the shortcomings of the standard linear 
update strategy, a segmented nonlinear update formulation is introduced to dynamically adjust the 
convergence factor:
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where t is the current number of iterations; T is the maximum number of iterations; μ is a nonlinear 
adjustment coefficient, through experiments, μ = 2 is selected in this paper to balance the global search 
and local development capability, and enhance the convergence speed and accuracy of the algorithm.
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As the traditional WOA enters the later stage of local development, due to the influence of prey on 
the position of whales, the individual stays near individual with better fitness in the population, thus 
falling into local optimum. Therefore, this paper introduces the inertia weight in the particle swarm 
algorithm to improve the population position update of the algorithm. The formula is as follows:
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where ω
max

 and ω
min

 are the maximum and minimum inertia weights in the iterative process 
respectively, the control parameter k = 0.6 is selected to control the smoothness of the curve, and the 
inertia weights decrease with the increase as the number of iterations. At this point the position update 
formula becomes:
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3.2.3 Opposition-Based Learning Strategy
In the WOA optimization process, with the reduction of search range, the population will continue to 
approach the optimal solution, resulting in a decline in population diversity. Therefore, the Oppositional 
Based Learning (OBL) strategy is introduced to calculate the opposite solutions of individuals at the 
end of each iteration to improve the quality and diversity of the population, and the relative search 
is used instead of random search to continuously update the positions of individuals to improve the 
efficiency of searching the global optimal solution.

Based on the current randomly initialized population x i N j D
ij
= =( )1 2 1 2, ,... ; , ,..., , the opposite 

population x
ij
'  is generated according to Equation (8):

x x x x
ij max j min j ij
'

, ,
= + − 	 (8)

After merging the population x
ij

 and x
ij
' , they are arranged in ascending order according to the 

fitness value, and the first N whale individuals with better fitness value are selected as the next 
iteration population.

3.2.4 Improved WOA for Feature Selection
After the class of passenger data set tends to be balanced, in order to reduce the interference of 
abnormal data and enhance the generalization capability of the model, this paper cross the features 
of some categories in passenger data sets, then combined with the original features to obtain a high-
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dimensional feature set with a dimension of 1464. Feature redundancy not only affects the running 
speed of the algorithm, but also easily leads to overfitting. In order to filter out as few feature subsets 
as possible from the original high-latitude feature set, which can better represent the behavior of paid 
passengers, the above three kinds of search mechanisms are introduced to the traditional WOA. The 
improved WOA for feature selection based on hybrid strategy can be described in pseudocode as 
shown in Figure 2.

Considering the accuracy of the classifier and the running time of the algorithm, 20 features 
are finally selected as the best feature subset of passengers. Defines the behavior characteristics of 
known paid passengers as shown in Table 2.

3.3 Improved XGBoost Based on GHM and Genetic Algorithm
After defining the behavioral characteristics of paid passengers, in order to achieve the accurate 
classification of passengers by the model, this chapter mainly optimizes the XGBoost algorithm from 
two aspects; Firstly, GHM-C Loss is introduced to improve the loss function of XGBoost, and then 
the genetic algorithm is used to adjust the hyper parameters of XGBoost. Then the final recognition 
model of passengers’ willingness to pay for seat selection is obtained.

3.3.1 GHM-C Loss Optimization
Gradient Harmonizing Mechanism(GHM)is a solution proposed by Li et al. (B. Li, Liu, & Wang, 
2019) in 2019 for the imbalance between positive and negative samples, easy and hard samples in 
target detection tasks. Assume a data set, p∈ [0,1] is the probability predicted by the classification 
model, p*∈{0,1} is the true label of a class, the single cross entropy loss function is as follows:

Figure 2. Algorithm of the Improved WOA
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Due to the advantages in quantity, the overall gradient contribution of simple negative samples is 
often much larger than that of difficult positive samples, so overwhelming the optimizer and making 
the training process ineffective. At the same time, the gradient modulus of particularly difficult samples 
(outliers) is longer than that of general samples. When the model is forced to learn to classify these 
samples, the classification of other samples may not be so accurate. Therefore, the gradient density 
function is introduced to coordinate the sample balance within a certain gradient range:

GD g
l g

g g
k

N

k( ) = ( ) ( )
=
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1

1∫

δ , 	 (10)

GHM is embedded into the loss function of the classification algorithm, and the samples that are 
in the larger gradient density position is regarded as simple samples to reduce the weight of outliers. 
The gradient density equilibrium form of the loss function is:

Table 2. Behavioral characteristics of paid passengers

Feature Meaning

pax_tax Taxes and fees

pax_fcny Airfare

seg_dep_time Flight date

tkt_3y_amt Total airfare consumption for 3 years

cabin_upgrd_cnt_y3 Number of upgrades in the last 3 years

tkt_avg_amt_y3 Average airfare spends over the last 3 years

avg_dist_cnt_y3 Average mileage per trip for the last 3 years

dist_cnt_y1 Total mileage in the past year

select_seat_cnt_y3 Number of preferred seats in recent 3 years

ssr_cnt_y3 Number of purchases of paid SSRs in recent 3 years

tkt_avg_amt_y2 Average airfare consumption in recent 2 years

cabin_f_cnt_y2 Number of first-class trips in the past 2 years

flt_bag_cnt_y3 Number of flights carrying baggage in recent 3 years

member_level Membership level

select_seat_cnt_y2 Number of preferred seats in the past 2 years

flt_delay_time_y2 Average flight delays in the last 2 years

dist_cnt_y3 Total mileage in the past three years

seat_walkway_cnt_y3 Number of seat walkways in recent three years

mdl_mcv passenger value

birth_date Date of birth
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According to the objective optimization function of XGBoost, this paper introduces GHM-C 
Loss to modify its loss function, and forms GHM-XGBoost algorithm to enhance the robustness of 
classification algorithm training.

3.3.2 Genetic Algorithm Optimizes Parameters
There are many parameters in the XGBoost algorithm, and the reasonable selection of hyper parameters 
will greatly affect the classification prediction performance of the algorithm. Therefore, this paper 
uses genetic algorithm to adjust the parameters of XGBoost by the average score of 5-fold cross-
validation to obtains the optimal parameter combination.

In this paper, the seven parameters of learning_rate, n_estimators, max_depth, min_child_weight, 
gamma, sub_sample, and colsample_bytree, which have a large impact on the XGBoost model, are 
selected for optimization by genetic algorithm, and the other parameters are set to default values.

Combined with the improvement of XGBoost by GHM in the previous section, the main steps 
of using genetic algorithm to adjust XGBoost parameters are shown in Figure 3.

After optimization by genetic algorithm, the optimal combination of parameters is shown in Table 3.

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Evaluation Indicator
In the general classification problem, ACC (accuracy) is used as the evaluation indicator. However, 
in the classification problem of such unbalanced data, ACC cannot accurately reflect the accuracy 

Figure 3. Algorithm of the improved XGBoost

Table 3. Optimal parameter combination

Parameter Value Parameter Value

learning_rate 0.05 gamma 0.1

n_estimators 675 sub_sample 0.6

max_depth 8 colsample_bytree 0.7

min_child_weight 1
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of the model, because the imbalance of data will lead to the prediction to be biased towards the side 
with a large amount of data. Although the accuracy of the output is high, the accuracy is not good 
on a small category of samples, which is not meaningful to the actual output. Therefore, this paper 
selects the typical F1, G-mean and AUC as the evaluation indicators of the experiment. At present, the 
evaluation indicator for imbalanced data classification is obtained on the basis of confusion matrix. 
The confusion matrix is shown in Table 4.

According to Table 4, the following indicators can be defined:

•	 F1: The harmonic value of precision and recall, also known as F-Measure, which is closer to 
the two smaller ones:

F score
Precision Recall

Precision Recall
− =

( )
+( )

2 * *
	 (12)

•	 G-mean: The comprehensive index of the probability of correct classification in the positive 
class and the probability of correct classification in the negative class:

G mean
TP

TP FN

TN

TN FP
− =

+ +
* 	 (13)

•	 AUC: Defined as the area under the ROC curve (ROC integral), usually greater than 0.5 and 
less than 1.

4.2 Result Analysis
This chapter designs two sets of comparative experiments. The first group: the experimental comparison 
between the improved method in stages and the previous method verifies that the improvement in 
each stage is feasible. The second group: The three-stage improved complete method is compared 
with other classical classification models to verify that the multi-stage improved ensemble method 
proposed in this paper has better classification effect.

4.2.1 Phased Experimental Comparison of Improved Methods
The experiment compares the original XGBoost, the improved method of one-stage data preprocessing, 
the improved method of two-stage feature selection and the improved complete method of three-stage 
algorithm. The comparison results of G-mean, F1 and AUC of each method on passenger data set 
are shown in Table 5.

It can be seen from Table 5 and Figure 4 that the phased improvement method proposed in this 
paper has a gradient increase in G-mean, F1 and AUC values, which verifies the feasibility of the 
phased improvement method. Among them, the fully improved G-mean and F1 are increased by 5~6% 
compared with those without improvement, which proves that the proposed method in this paper has 

Table 4. Confusion matrix

Actual positive category Actual negative category

Predicted positive category TP (True Positives) FP (False Positives)

Predicted negative category FN (False Negatives) TN (True Negatives)
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better classification effect on the unbalanced passenger data set. At the same time, the AUC of the 
fully improved XGBoost is also greatly improved compared with the original XGBoost. The proposed 
method in this paper has better classification effect.

4.2.2 Experimental Results Based on Different Algorithms
In order to prove the effectiveness of the proposed method, six classical improved algorithms 
EasyEnsemble, SMOTEBoost, RUSBoost, CUSBoost, SMOTE_SVM and Balanced Random Forest 
in the field of imbalanced data classification are selected to compare with the improved methods 
proposed in this paper. The comparison results of G-mean, F1 and AUC of each method on passenger 
data set are shown in Table 6.

It can be seen from Table 6 and Figure 5 that the improved method proposed in this paper has 
higher recognition rate and better classification performance than other improved classification 
models. In the passenger data set, the G-mean, F1 and AUC values of the proposed method are 
higher than those of other improved models, and the G-mean value is up to 85.9%. Moreover, the 
AUC value of the proposed method is significantly higher than that of other improved models, and 
the maximum value reaches 91.6%, indicating that the improved method proposed in this paper has 
good classification performance on the whole.

Table 5. Comparison results of phased improvements

Algorithm G-mean F1 AUC

XGBoost 0.802 0.766 0.847

Stage 1 0.845 0.787 0.872

Stage 2 0.852 0.804 0.890

Complete improvement 0.859 0.811 0.916

Figure 4. Phase improvement comparison results
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5. CONCLUSION

With the experience-based economy, more and more airlines are offering advance seat selection 
services to passengers, which will become a trend. The recognition of passengers’ willingness to 
pay for seat selection is one of the research hotspots in the aviation business field. In order to control 
marketing costs and increase ancillary revenue, mining valuable customers from the large number 
of passenger flight records and identifying passengers with similar willingness or ability to pay is 
crucial for airlines to implement precision marketing.

The high-dimensional imbalance of samples is the main factor affecting the recognition of air 
passengers’ willingness to pay for seat selection. This paper proposes a comprehensive improvement 
method to solve the two-category high-dimensional imbalanced data problem from three aspects: 
data, feature and algorithm. This method first uses the hybrid sampling of random undersampling and 
CGAN to balance the passenger sample at the data level; Secondly, uses feature crossover to combine 
features at the feature level, and then the feature subset which is more suitable for imbalanced data 
classification is selected by the improved whale optimization algorithm; Finally, at the algorithm 

Table 6. Comparison results of different algorithms

Algorithm G-mean F1 AUC

EasyEnsemble 0.791 0.754 0.837

SMOTEBoost 0.840 0.766 0.864

RUSBoost 0.723 0.703 0.793

CUSBoost 0.850 0.782 0.872

SMOTE_SVM 0.842 0.774 0.886

Balanced Random Forest 0.846 0.802 0.908

Method of this paper 0.859 0.811 0.916

Figure 5. Comparison results of different algorithms
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level, GHM-C loss is used to improve XGBoost, which is specifically designed for imbalanced 
data classification. then uses genetic algorithm to adjust the parameter and trains to obtain the final 
recognition model of passengers’ willingness to pay for seat selection. The results of two comparative 
experiments prove that the improved method in this paper is feasible and has better classification 
effect and better performance than other improved imbalanced classification models. This study not 
only proves the excellent performance of XGBoost in dealing with unbalanced air passenger data, but 
also fully proves the superiority of multi-stage improved ensemble method in the field of passengers’ 
willingness to pay for seat selection recognition compared with a single model, the research results 
of this paper provide a certain basis for the marketing of airlines’ paid seat selection project.

Due to the constraints, the model in this paper was built on the basis of theoretical and historical 
data, so although the model achieves the initial goal of identifying potential travelers, it is not 
guaranteed to be fully applicable to every situation during the implementation of the project and has 
certain limitations. Therefore, the future research contains the following directions: (1) As the airline’s 
database is constantly being updated, the large amount of data pre-processing work is time-consuming 
and requires research into more efficient algorithms for data mining. (2) As the need for explanatory 
models decreases for marketers, try building models using other algorithms such as neural networks, 
perhaps increasing the ability of the model to identify potential travelers. (3) The data used in this 
paper is only the consumption behavior records of travelers, and the subsequent textual information 
such as travelers’ evaluation can be added for multi-dimensional analysis to further segment the 
travelers. (4) Establish a traveler willingness identification system based on the model proposed in 
the paper to really help decision makers develop accurate marketing strategies.
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