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ABSTRACT

Recently, local gradient microstructure of image textures has become an important field of texture 
classification, but it is generally to investigate the multiscale local microstructures of image gradient, 
and rarely consider the multidirectional and multiscale local microstructure of image gradient. 
The proposed algorithm first extracts the two-order gradient feature of the image from different 
orthogonal directions and further constructs the multiple shape index of the image, and then calculates 
the histogram feature vectors of the shape index on different orthogonal directions and scales, and 
finally connects all histogram feature vectors on different orthogonal directions and scales to obtain 
the final matching feature vector of the image. To further enhance the discriminant ability of feature 
vector generated by multidirectional shape index schemes, the weight of each block of images is also 
considered. Experiments on two texture databases and one palmprint database have fully confirmed 
the effective of proposed algorithm.
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1. INTRodUCTIoN

Computer vision and machine learning are critical for image retrieval (Liao et al., 2018), fault 
recognition, automatic control, automatic driving, ensemble learning (Liu et al., 2018), block chain, 
vehicle communications, target detection, and tracking (Akhilesh Mohan Srivastava, 2022; Seddik et 
al., 2022; Thanh, 2022). Image texture has played an important role in computer vision and machine 
learning since the 1960s (Julesz,1962). It has been widely studied and applied in many fields, such 
as image segmentation (Li et al., 2018), content-based image retrieval (Zheng et al., 2018), target 
detection and recognition (Marszalek et al., 2007; Oyallon & Mallat, 2015), biometrics recognition 
(Ding et al., 2016; Vu, 2003; Xi & Zhang, 2011; Zhang et al., 2009; Zhao & Pietikainen, 2007), 
computer graphics, and image texture synthesis (Gatys et al., 2016).

Typical methods of image texture analysis include statistics-based methods (Chellappa & 
Chatterjee, 1985; Haralik et al., 1973), filtering-based methods (Bovik et al., 1990; Han & Ma, 
2007; Mallat, 1989; Randen & Husy, 1999), invariant texture feature description methods (Alata et 
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al., 1998; Cohen et al., 1991; Manian & Vasquez, 1998; Wu, 1995), fractal-based methods (Varma 
& Garg, 2007; Xi & Zhang, 2014), and deep learning-based methods (Andrearczyk & Whelan, 
2016; Bu et al., 2019; Chan et al., 2015). The local binary pattern is a relatively simple and effective 
image local texture description operator. In the book Computer Vision Using Local Binary Pattern 
by Pietikainen et al. in 2011, the basic theory of local binary pattern (LBP) and various applications 
in pattern recognition and computer vision are introduced (Ojala et al., 2002). Local binary pattern 
has been widely studied and applied recently. Many researchers have done effective research on it to 
improve the performance of local binary patterns. The dominant local binary pattern (DLBP) selects 
the rotation invariant pattern of higher frequency to construct the feature vector, which reduces the 
length of the feature vector and maintains the discrimination ability of the feature vector (Liao et 
al., 2009). Considering that the local binary pattern only considers the symbol characteristics of the 
local difference in pixels, the complete local binary pattern (CLBP) (Guo et al., 2010) considers the 
symbol, amplitude, and central pixel information of the local difference at the same time. Rotation 
invariant texture feature extraction is also a key element of improvement (Mehta & Egiazarian, 2015). 
El Merabet et al. (2019) obtained the texture information about microstructure and macrostructure 
by considering four triples corresponding to the vertical and horizontal directions and two diagonal 
directions. Chakraborty et al. (2018) proposed a center symmetric quadruple pattern (CSQP), which 
effectively encodes the large neighborhood of the face with the best binary digits in the quadruple 
space. Some researchers converted the original image into multiple images with the aid of some 
high-pass and low-pass filters, then calculated the local descriptor of each filtered image, and finally 
connected it into a single descriptor (Dubey, 2019a). Ding et al. (2016) proposed a new scheme for 
multidirectional multistage double crossover pattern (MDMLDCPS). Specifically, the MDMLDCPS 
scheme uses the first derivative of the Gaussian operator to reduce the impact on lighting, and then 
calculates dual cross patterns (DCP) features on the overall and component levels. Dubey et al. (2016) 
proposed a local plane transformation scheme to calculate the local plane transformation value of each 
image pixel from the bit plane binary content of each adjacent pixel. Dubey (2019b) also used the 
relationship between the central pixel and the encoded directional neighborhood to form the proposed 
local directional relationship pattern (LDRP). Local directional number (LDN) pattern calculated 
each local microstructure information using a significant direction index (direction number) and 
symbols (Rivera et al., 2013). Jin et al. (2004) considered the local shape and texture information 
rather than the original gray information, so they proposed a local binary pattern (ILBP) with improved 
robustness to illumination changes. Sucharitha and Senapati (2019) proposed the local direction edge 
binary pattern (LDEBP) algorithm, which collects information from all possible directions, and then 
calculated the direction information according to the symbol code size of the local difference from the 
central pixel to its direction pixel. The local optimal direction pattern encodes the rotation invariance 
of the local microstructure, which improves the accuracy and time complexity (Chakraborti et al., 
2018). Verma and Raman (2017) proposed a local neighborhood difference mode (LNDP) algorithm 
complementary to the traditional LBP, which converts the relationship of all adjacent pixels in the 
binary mode. The local binary pattern can also be combined with other algorithms, such as filtering 
the image with a two-dimensional Gabor filter, and then encoding the filtered result from the local 
binary pattern (Zhang et al., 2007). It can also reduce the dimensions of histogram feature vectors 
in a local binary pattern (Chan et al., 2007). Local binary pattern essentially describes the first-
order differential information of image pixels, and some researchers have studied the second-order 
differential properties of the images based on local binary pattern, such as two typical local pattern 
algorithms based on second-order differential: local differential mode (LDP) (Zhang et., 2010) and 
local convex and concave pattern (Alpaslan & Hanbay, 2020; El Merabet & Ruichek, 2018; Xi et al., 
2016). In the paper published in 2016, they proposed a local convex-and-concave pattern algorithm 
to describe the second-order texture features of the image, then El Merabet and Ruichek proposed 
a similar local convex and concave microstructure pattern (LCvMSP) algorithm in 2018, and then 
Alpaslan and Hanbay proposed a multi-scale local convex and concave pattern algorithm in 2020, 
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and encoded the local convex-and-concave features of the texture with “shape index”(SI-LCvMSP). 
The multiscale local convex and concave pattern algorithm proposed by Alpaslan and Hanbay only 
considers the two-order gradient of the image at different scales, and does not consider the two-order 
gradient of the image in different directions. As the gradient of the image has obvious directionality, 
considering the gradient of the image in different directions and scales simultaneously, more image 
texture information can be extracted.

Based on the work of Alpaslan and Hanbay (2020), this paper uses a modified shape index 
to encode two-order gradient of images in different orthogonal directions, and maps the encoded 
features to the linear discrimination subspace to reduce the length of the feature vector and improve 
the discrimination ability of the feature vector. The rest of this paper is organized as follows. Section 2 
describes the scheme of multidirectional two-order gradient features of an image. Section 3 introduces 
the basic method for multidirectional shape index, and Section 4 describes the method for producing 
the texture local microstructure pattern based on the multidirectional shape index. Experimental 
results verify the proposed texture feature extraction and matching method in Section 5, where a 
brief description of the database, the comparison and analysis of several related algorithms using the 
cumulative matching characteristic curve, the comparison of the recognition rate of several related 
algorithms, and the analysis of the recognition rate after dimension reduction of the eigenvector is 
included. Section 6 introduces the weighted multidirectional shape index. The last section summarizes 
the paper.

2. BACKGRoUNd

The gradient of an image I  in a certain direction q  and a certain scale s  is defined by the directional 
derivative. The specific steps are as follows:

1.  The Gaussian function G x y, ,s( )  is used to smooth the image I , where s  is the scale parameter 
of the Gaussian function and “* ” is the convolution operator:

I I G x y' , ,= ∗ ( )s  (1)

The Gaussian function is:

G x y
x y

, , expσ
πσ σ

( ) = −
+









1

2 22

2 2

2
 (2)

According to the differential property of convolution, the second-order directional derivative in the 
direction q  of the smoothed image I '  is as follows:

I I G x yθ
σ

θ σ= ∗ ( ), ,  (3)
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where Iθ
σ  is the second-order directional derivative of the image I '  at direction q  and scale s . 

G x yθ σ, ,( )  is the second-order directional derivative of the Gaussian function in the direction q  and 
scale s , which is defined as follows:
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one gets:

G x y G G G
xx xy yyθ σ θ θ θ θ, , cos sin cos sin( ) = + +2 22  (5)

Figure 1 (a) is a face image; Figure 1 (b) is a gradient image of the face image with different 
directions and scales; Figure 1(c) is the shape index of the face image with different directions. As 
can be seen from Figure 1, the two-order gradient information at different directions and scales is 
clearly different. The larger the scale, the smoother the facial features.
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3. MULTIdIRECTIoNAL GRAdIENT FEATURE BASEd oN SHAPE INdEX

“Shape index” originates from differential geometry (Koenderink & Van Doorn, 1992). Researchers 
calculate the “shape index” by means of principal curvature and local second-order differentiation 
and use it for texture classification (Song et al., 2018). Alpaslan and Hanbay (2020) recently proposed 
a new and effective method to calculate the “shape index”:

S u v
I u v I u v

I u v I u v I u

xx yy

xx yy xy

,
, ,

, , ,
( ) = −

− ( )− ( )

( )− ( )( ) +
1

2

1

4
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2p
vv( )

 (6)

where I u v
xx

,( ) , I u v
yy

,( ) , and I u v
xy

,( )  represent the second derivative of the texture image at 
position u v,( )  along the X-axis, Y-axis, and the diagonal direction at the first quadrant, respectively. 
S u v,( )  is the “shape index” of the image I  at position u v,( ) . Because the above calculation for 
“shape index” only considers the second derivative of the image in the X-axis, Y-axis, and the diagonal 
direction at the first quadrant, the authors constructed the multidirectional gradient feature on “shape 
index” as following:
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Figure 1. (a) one image from Yale B database; (b) two-order gradient of one image from Yale B database at direction q = 0  and 

scale s = 0 25 0 5 1 2. , . , ,  (from left to right); (c) two-order gradient of one image from Yale B database at direction θ π=
4

 

and scale s = 0 25 0 5 1 2. , . , ,  (from left to right)
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where I u vθ σ, ,( )  represents the second derivative of the image I  at position u v,( )  at direction q  
and scale s . This second derivative can be calculated according to formula (3) and (5). According 
to formula (7), one can calculate the modified shape index at any point of image I  at direction q  
and scale s . Figure 2 shows the modified shape index of one image (b) from the Yale B database.

4. LoCAL MICRoSTRUCTURE oF TEXTURE BASEd 
oN MULTIdIRECTIoNAL SHAPE INdEX

After calculating the modified shape index of any point in the image I  at direction q  and scale s  
according to formula (7), the authors encode the “ modified shape index” by local convex and concave 
pattern. Local convex and concave pattern is an important image texture descriptor proposed by the 
authors in 2016 (Xi, 2016). Later, other researchers proposed similar methods and performed a more 
detailed analysis (Alpaslan & Hanbay, 2020; El Merabet & Ruichek, 2018). Since the convex and 
concave pattern proposed by El Merabet and Ruichek has a more complete mathematical description, 

Figure 2. (a) one image from Yale B database; (b) modified shape index of a face image at scale s = 0 25.  and direction 
q = ∗ ∗0 4 2 4 3 4, / , / , /pi pi pi  (from left to right); (c) modified shape index of a face image at scale s = 0 5.  and 
direction q = ∗ ∗0 4 2 4 3 4, / , / , /pi pi pi
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the authors used their model to construct the local convex and concave microstructure pattern based 
on multidirectional and multiscale shape index (MDSI-LCvMSP). In MDSI-LCvMSP, the local 
convex and concave microstructure pattern coding of one image at the position u v,( )  is as follows:
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where f u v
MDSI LCvMSP− ( ),  represents the MDSI-LCvMSP coding value of the image at position u v,( ) , 

and S u v,( )  represents the value of the modified shape index matrix of image I  at position u v,( ) . 
S
p

 represents the pth neighbor of S u v,( ) . S p d P+( )mod
 represents the p d P+( )mod  neighbor of 

S u v,( ) , P  is the total number of neighbors of S u v,( ) , and d  can be set to 1 or 2 or 3 (El Merabet 
& Ruichek, 2018). l  represents the average value of the modified shape index of the 3x3 adjacent 
window, and l  represents the average value of the modified shape index of the entire texture image. 
M  represents the number of rows of the image matrix and N  represents the number of columns of 
the image matrix. f x y z, ,( )  is defined as follows:

f x y z
if x y and z y

otherwise
, ,( ) =

≥ ≥
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 (9)

The calculation method of MDSI-LCvMSP is introduced through formulas (7), (8), and (9). 
Next, the authors further introduce our design of MDSI-LCvMSP. This scheme can be summarized 
as follows:

Step 1: Suppose that an image I  is evenly divided into nonoverlapping 4 4´  subblocks, which are 
represented as I i( )  i =( )0 1 2 15, , , , , respectively.

Step 2: It is assumed that a total of 4 scales s s s s
0 1 2 3
, , ,  and 5 directions q q q q q

0 1 2 3 4
, , , ,  are used in 

our scheme. Suppose that the second-order directional derivative of subblock I i( )  at direction 
q
m

 and scale s
n

 is I m ni m n( ), , , , , , , , , ,q q = =( )0 1 2 3 0 1 2 3 4  where m  denotes the index of scale, 
n  denotes the index of direction, and i  denotes the index of subblock.

Step 3: Calculate the second-order directional derivative of each subblock at different directions and 
scales and the modified shape index matrix of each subblock in light of formula (7).

Step 4: Calculate the texture local microstructure features of the image in light of formula (8). The 
result is assumed to be f

MDSI LCvMSP

I i m n

-
( ), ,θ σ  i =( 0 1 2 15, , , , , s s s s s

n
=

0 1 2 3
, , , , q q q q q q

m
= )0 1 2 3 4

, , , , .
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Step 5: Calculate the histogram feature vector of f
MDSI LCvMSP

I i m n

-
( ), ,θ σ  i =( 0 1 2 15, , , , , s s s s s

n
=

0 1 2 3
, , , , 

q q q q q q
m
= )0 1 2 3 4

, , , ,  as H
MDSI LCvMSP

I i m n

-
( ), ,θ σ . Then, the histogram feature vectors of different subblocks 

are connected to generate the histogram feature vector of image I :

H H H H
MDSI LCvMSP
I
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vvMSP
I ( )15
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Step 6: Assuming that the feature vectors of MDSI-LCvMSP of two images are H
MDSI LCvMSP
I

-  and 
H
MDSI LCvMSP
J

- , respectively, the distance between vectors H
MDSI LCvMSP
I

-  and H
MDSI LCvMSP
J

-  is 
defined as the histogram cross distance:

c2 H H
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where K  is the length of the vector H
MDSI LCvMSP
I

-  or H
MDSI LCvMSP
J

- , and eps  is a very small normal 
number to ensure that H i H i eps

MDSI LCvMSP
I

MDSI LCvMSP
J

− −+ +( ) ( )  is not zero.

5. EXPERIMENTAL EVALUATIoN

To verify the effectiveness of MDSI-LCvMSP, the authors conducted a series of tests on two texture 
databases: Kylberg (The Kylberg Texture Dataset, 2011) and Brodatz texture database (Wang et., 
2020). Considering that palmprint is also a picture with rich texture information, relevant tests are also 
carried out using a palmprint image database (Khalid et., 2003) provided by Hong Kong Polytechnic 
University. The recognition rate of the proposed MDSI-LCvMSP is compared with that of a series 
of related algorithms. To directly reflect the ability of texture feature extraction of each algorithm, a 
relatively simple nearest neighbor classification method is adopted.

5.1 database
The Kylberg texture image database contains 28 kinds of texture images, each of which contains 160 
different texture images. The size of each image is 576×576 pixels and the image format is PNG. Figure 
3 (a) shows 10 images of one texture in the Kylberg texture database. In the following experiment, 
the authors selected 28 kinds of texture samples, and 20 pictures of each kind were selected to form 
the experimental picture library. The palmprint database is taken from the PolyU palmprint image 
database provided by Hong Kong Polytechnic University. A total of 3000 palmprint images of 300 
kinds of palmprint were selected, with 10 palmprint images of each subject. In our experiments, by 
using a similar preprocessing approach described in the literature (Zhang et al., 2003), the central 
128x128 part of each palmprint image is cropped for further processing. Fig. 3 (b) is 10 pictures of 
one palm. Brodatz texture image database is a widespread natural texture image database, from which 
100 kinds of textures are selected, 9 pictures of each kind; 900 pictures constitute the experimental 
image database, and the selected pictures are transformed into gray images. Fig. 3 (c) shows 9 pictures 
of a Brodatz texture. All pictures were resized to 64×64.



International Journal on Semantic Web and Information Systems
Volume 18 • Issue 1

9

5.2 Cumulative Matching Characteristic Curve
When measuring the performance of an image classification/recognition system, the index of 
cumulative matching curve (CMC) is often used. To calculate the cumulative matching characteristic 
curve of the system, it is usually necessary to build a “Gallery” library set and a “probe” library set. 
A Gallery set can be constructed by randomly choosing one image from each class of images in the 
database, and the probe set can be composed of the remaining samples after the gallery set is removed 
from the database. The calculation of the cumulative matching characteristic curve is introduced in 
detail (Ziqing(2004)). When calculating the CMC curve of the Kylberg image database, select one 
image from each class texture in the Kylberg image library constructed in Section 5.1 to form the 
“Gallery” image library, and the remaining images form the “probe” image database. When using 
Brodatz texture and palmprint images to calculate CMC, the authors also chose one image of each 
class to form the “Gallery” image library, and the rest to form the “probe” image database. The 
proposed MDSI-LCvMSP is compared with LCvMSP, SI-LCvMSP in CMC.

Figure 3. Preprocessed sample images (a) 10 samples of one kind of texture in Kylberg texture image database, (b) 10 samples 
of one kind of textures in Brodatz texture database, and (c) 10 samples of one palm in PolyU palmprint image database

Figure 4. Cumulative matching characteristic curve of each image database (a) Kylberg image database, (b) Brodatz image 
database, and (c) PolyU palmprint image database of Hong Kong Polytechnic University
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As can be seen from Figure 4, MDSI-LCvMSP explores shape index with more directions than 
classical LCvMSP and obtains a higher recognition rate than LCvMSP and SI-LCvMSP. The rank 1 
recognition rates of LCvMSP, SI-LCvMSP and MDSI-LCvMSP in the Kylberg image database are 
58.52%, 58.65%, and 61.47%, respectively. The rank 1 recognition rates of LCvMSP, SI-LCvMSP, 
and MDSI-LCvMSP in the Brodatz image database are 43.26%, 44.70%, and 47.73%, respectively. 
The rank 1 recognition rates of LCvMSP, SI-LCvMSP, and MDSI-LCvMSP in the palmprint database 
are 93.56%, 94.85%, and 96.67%, respectively. As the difference between within-class samples from 
Kylberg database or Brodatz database is huge, the recognition rate on two such databases are low. 
We can use the color information of two such databases to enhance the recognition rate. Because 
palmprint is a relatively stable texture image, the recognition rate in palmprint database is excellent 
compared with other the recognition rates in other databases.

5.3 Comparison of Correct Recognition Rate
The recognition rate of the system is an important index to measure the system performance. This 
section compares and analyzes the recognition rates of the proposed MDSI-LCvMSP algorithm and 
some related algorithms, including LCvMSP (El Merabet & Ruichek, 2018), SI-LCvMSP (Alpaslan & 
Hanbay, 2020), CLBP (Guo et al., 2010), and LCCP plus LBP (Xi et al., 2016). The authors randomly 
selected three images from each class texture image in the Brodatz image database, the Kylberg 
texture image database, and the PolyU palmprint database of Hong Kong Polytechnic University to 
construct the training image set, and the rest of each training set is the corresponding testing image 
set. Since the Brodatz image database contains nine pictures of each class, there are three training 
pictures of each class and six testing pictures of each class. The Kylberg image database contains 20 
pictures of each class, three training pictures of each class, and 17 testing pictures of each class. The 
palmprint image database used in our experiments contains 10 images of each class, three training 
images of each class, and seven testing images of each class. The test is repeated for five times, the 
average recognition rate and standard deviation of each algorithm are calculated, and the recognition 
results are listed in Table 1. It can be seen from Table 1 that the average recognition rates of MDSI-
LCvMSP algorithm on Kylberg, Brodatz, and palmprint databases are 62.57%, 47.27%, and 96.75% 
respectively, which have certain advantages compared with other algorithms. In addition, it can be seen 
from table 1 that SI-LCvMSP has better recognition performance than LCvMSP, which indicates that 
shape index is indeed a powerful tool for texture description, which is consistent with the conclusion 
in the literature (Alpaslan & Hanbay, 2020). In addition, the recognition performance of LCCP plus 
LBP algorithm also has certain advantages compared with other algorithms.
Table 1. Comparison with related algorithms (average recognition rate (%) and standard deviation)

Methods Datasets

Kylberg Brodatz PolyU palmprint

MDSI-LCVMSP 62.57±1.8 47.27±1.9 96.75±2.0

LCvMSP (Koenderink & Van Doorn, 1992) 61.25±2.3 45.73±2.2 95.42±1.9

SI-LCvMSP (El Merabet & Ruichek, 2018) 62.73±2.1 46.85±1.9 96.54±2.1

ARCS-LBP (Chakraborty et al., 2018) 60.38±2.3 44.35±1.8 95.28±2.1

CLBP (Guo et al., 2010) 53.12±1.8 40.28±2.1 93.34±1.9

CSQP (Dubey, 2019b) 56.21±2.2 41.73±1.7 93.26±2.0

FDLBP (Ding et al., 2016) 59.65±1.8 44.18±1.9 95.35±2.3

LCCP plus LBP (Alpaslan & Hanbay, 2020) 61.13±1.7 45.27±2.0 94.48±1.9

LBDP (Dubey, 2019a) 53.56±1.8 41.63±2.2 93.45±2.1

Table 1 continued on next page
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We compared the computational complexity of the first five algorithms with better performance 
in Table 1. The time consumed on the feature extraction of an image with MDSI-LCvMSP, LCvMSP, 
SI-LCvMSP, ARCS-LBP, and LCCP plus LBP are considered. Experiments were implemented on 
a computer system of PIV 3.3 GHz and 8 GB RAM with Matlab 2014b. The times consumed of 
MDSI-LCVMSP, LCvMSP, SI-LCvMSP, ARCS-LBP, and LCCP plus LBP are 0.4415s, 0.0059s, 
0.0224s, 0.0013s, and 0.0106s, respectively. Because four scales and five directions are used in 
MDDI-LCvMSP algorithm, the time consumed by MDSI-LCvMSP algorithm is almost 20 times 
that of SI-LCvMSP. Of course, a delay of 0.4415s is tolerable in the actual system.

5.4 Performance Analysis of Feature Vectors Under different dimensions
The proposed MDSI-LCvMSP algorithm first extracts the two-order gradient features in each direction 
and scale of the image, then calculates the modified shape index of each gradient feature matrix, then 
finally calculates the LCvMSP histogram feature vector of each shape index matrix and connects 
each histogram feature vector to obtain the final matching feature vector. The size of the image used 
in the experiment is 64x64 pixels, and then the two-order gradient of the image under different scales 
and directions is calculated. In the experiment, four gradients and five directions are used, so 20 
two-order gradient matrices can be obtained for each image, and then the modified shape index of 
each gradient matrix is calculated to obtain 20 modified shape index matrices. Next, each modified 
shape index matrix is divided into nonoverlapping 4×4 blocks and the feature vectors of the local 
convex and concave microstructure pattern of each subblock are calculated. In the experiment, if the 
length of histogram feature vector of local convex and concave microstructure pattern is set to 128, 
the length of the final feature vector of an image is 20 × 4 × 4× 128=40960. Clearly, the final feature 
vector is too long, which brings more burden on save and matching of feature vectors, and too long 
feature vectors inevitably introduce noise. Therefore, reducing the length of feature vectors can save 
the storage space and reduce the computing power required for feature vector matching. Simultaneously, 
it should also improve the recognition rate of the feature vectors. In the experiment, principal 
component analysis plus linear discriminant analysis (PCA plus LDA) is used to reduce the dimension 
of feature vector (Martınez & Kak, 2012). In the PCA plus LDA method, PCA firstly is used to reduce 
the dimension of all eigenvectors to N cT - , and then LDA is used to obtain the c-1  eigenvectors, 
where NT  represents the total number of training samples and c  represents the number of classes 

Methods Datasets

Kylberg Brodatz PolyU palmprint

LOOP (Verma & Raman, 2017) 53.65±2.2 40.14±1.9 93.23±2.0

LBP (Ojala et al., 2002) 58.25±1.8 43.17±2.2 95.15±2.1

DRLBP (El merabet et al., 2019) 57.34±1.9 42.36±2.3 94.38±2.1

ILBP (Sucharitha & Senapati, 2019) 53.26±2.0 41.17±1.7 93.27±1.8

LDN (Jin et al., 2004) 54.74±2.2 41.25±2.1 93.56±1.9

LDRP (Rivera et al., 2013) 54.33±1.9 40.36±2.2 93.78±1.8

LDEBP (Chakraborti et al., 2018) 53.35±2.3 41.34±2.2 93.83±2.1

DCP (Dubey et al., 2016) 55.38±1.7 41.86±1.8 93.23±1.9

LNDP (Zhang et al., 2007) 54.15±2.3 40.23±1.9 93.13±2.1

Table 1 continued
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in training samples (Martınez & Kak, 2012; Xi & Zhang, 2010; Xi et al., 2012). The feature vectors 
obtained from MDSI-LCvMSP are projected into the projection subspace constructed by the c-1  
feature vectors to obtain the dimension-reduced feature vectors. The feature vectors after dimensionality 
reduction are matched by Euclidean distance and classified by the nearest neighbor classifier. In the 
Kylberg database, Brodatz database, and the PolyU palmprint database of Hong Kong Polytechnic 
University, the authors randomly selected 3 pictures of each subject to construct the training set, and 
other pictures to construct the testing set, then used MDSI-LCvMSP to obtain the feature vector of 
each picture, and finally used PCA plus LDA to reduce the dimension of the feature vector to obtain 
the recognition rate and draw the relationship between the recognition rate and the dimension of the 
feature vector in Figure 5. In Figure 5, it can be seen that the highest recognition rates of the kylberg 
database, Brodatz database, and the PolyU palmprint database of Hong Kong Polytechnic University 
are 52.33%, 65.00%, and 100.00%, respectively. Compared with the results in Table 1, it can be seen 
that the recognition result of MDSI-LCvMSP with dimension reduction is better than that of MDSI-
LCvMSP, which indicates that dimension reduction reduces the redundant information between 
different directions of MDSI-LCvMSP.

6. WEIGHTEd MdSI-LCVMSP

For image classification/recognition, the importance of different regions in the image is different. If 
the sub-area of an image has rich information, its histogram should have a large weight. Our proposed 
weighted MDSI-LCVMSP (Weighted MDSI-LCVMSP) is listed as follows:

Figure 5. Recognition rate (%) versus the dimension of feature vectors (a) Kylberg database, (b) Brodatz database, and (c) PolyU 
palmprint database
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1.  Suppose that an image I  is evenly divided into nonoverlapping L regions, which are represented 
as I i( )  i L=( )0 1 2, , , , , respectively.

2.  Calculate MDSI-LCVMSP feature of the ith sub-region of image in light of formula (8). The 
result is assumed to be f

MDSI LCvMSP

I i m n

-
( ), ,θ σ  i =( 0 1 2 15, , , , , s s s s s

n
=

0 1 2 3
, , , , q q q q q q

m
= )0 1 2 3 4

, , , , .

The weighted histogram feature vector of f
MDSI LCvMSP

I i m n

-
( ), ,θ σ  can be defined as follows:
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where W x y
c c
,( )  is the weight of image I  at position x y

c c
,( )  and r  is the index of the histogram 

bin. There are two ways of designing the weight matrix W . One is to directly specify the value of 
the weighted matrix, which can be used for face recognition as different parts of the face play different 
roles in face recognition (Zhang et al., 2007). Another method is to design a weight matrix by using 
information entropy. The weight matrix based on the information entropy of the ith block can be 

calculated by W E E
i i j

j

t

=
=
∑/

1

, where E
i
 is as follows:

E H r H
i Weighted MDSI LCvMSP

I i

r

K

Weighted MDSI LCv
= − − −

=
− −∑ ( ) ( ) log

1
MMSP

I i r( ) ( )  (14)

K  is the number of bins in the histogram vector. The weighted histogram feature vector of the 
ith sub-block is WH

i Weighted MDSI LCvMSP
I i

- -
( )  and the final histogram feature vector for matching is as 

follows:

H WH W H
Weighted MDSI LCvMSP
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1
2

( ) ,
hhted MDSI LCvMSP

I
L Weighted MDSI LCvMSP

I LW H− − − −






( ) ( ), ,2
  

(15)

To verify the effectiveness of Weighted MDSI-LCvMSP, some experiments have been done on 
the Kylberg database. The authors randomly select three images from each class texture image in the 
Kylberg texture image database to construct the training image set, and the rest of each training set 
is the corresponding testing image set. Information entropy based Weighted MDSI-LCvMSP is 
validated and image I  is divided evenly into L  blocks L =( )1 4 9 16 25, , , , . The right recognition 
rate along the L  is plotted in Figure 6.
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It can be seen from Figure 6 that the recognition rates of weighted MDSI-LCvMSP algorithm 
on kylberg databases with the number of sub-blocks one, four, nine, 16, and 25 are 62.57%, 64.39%, 
65.16%, 65.78%, and 65.83%, respectively, which have apparently enhanced the recognition rate of 
MDSI-LCvMSP. However, with the increase of the number of blocks, the increase of the recognition 
rate becomes smaller. Considering the computation complexity and recognition rate, it is better to 
take 16 as the number of blocks.

7. CoNCLUSIoN

In this paper, an efficient MDSI-LCvMSP texture descriptor is proposed, which encodes the gradient 
information of an image in multiple directions and scales. Two extensions of MDSI-LCvMSP have also 
been proposed, such as Weighted MDSI-LCvMSP and projecting feature vector of MDSI-LCvMSP 
onto a discriminant subspace. Extensive experiments have been conducted to evaluate the performance 
of MDSI-LCvMSP and its extensions. Some major conclusions can be drawn:

1.  MDSI-LCvMSP has a more powerful ability than SI-LCvMSP when considering multiple 
directions and scales of gradient, which can be seen from Figure 4, Figure 5, Figure 6 and Table 
1.

2.  As the size of feature vector of MDSI-LCvMSP is larger than SI-LCvMSP and there is 
redundant information between eigenvectors of SI-LCvMSP in different directions and scales, 
the eigenvectors of MDSI-LCvMSP can be projected onto a discriminant subspace to obtain 
shorter and more discriminative MDSI-LCvMSP feature vectors.

3.  Weighted MDSI-LCvMSP with weight assignment improves the performance of MDSI-LCvMSP, 
which is shown in Figure 6.

Although MDSI-LCvMSP consumes more time than SI-LCvMSP, it can be improved by pre-
allocating memory for Gaussian filter template, which is also the direction of the authors’ next 
improvement. Another future direction is to explore more extensions of multidirectional shape index.
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