
DOI: 10.4018/IJCINI.309991

International Journal of Cognitive Informatics and Natural Intelligence
Volume 16 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Semantic Network Model for Sign 
Language Comprehension
Xinchen Kang, Beijing Union University, China

Dengfeng Yao, Beijing Union University, China*

Minghu Jiang, Tsinghua University, China

Yunlong Huang, Tsinghua University, China

Fanshu Li, Beijing Union University, China

ABSTRACT

In this study, the authors propose a computational cognitive model for sign language (SL) perception 
and comprehension with detailed algorithmic descriptions based on cognitive functionalities in 
human language processing. The semantic network model (SNM) that represents semantic relations 
between concepts is used as a form of knowledge representation. The proposed model is applied in 
the comprehension of sign language for classifier predicates. The spreading activation search method 
is initiated by labeling a set of source nodes (e.g., concepts in the semantic network) with weights 
or “activation” and then iteratively propagating or “spreading” that activation out to other nodes 
linked to the source nodes. The results demonstrate that the proposed search method improves the 
performance of sign language comprehension in the SNM.
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INTRODUCTION

Sign language (SL) comprehension is a fundamental task for computational linguists. Two types of 
algorithms have been proposed: (1) rule-based methods (Supalla, 1982), and (2) statistical methods 
(Bauer & Heinz, 2000; Huenerfauth, 2005). Rule-based methods lack the capability of planning the 
elements in the entire scene (Liddell, 2003). The method of modeling infinite natural language input 
through finite rules, especially minor rules, barely meets all requirements of SL processing (Yao et 
al., 2017). Therefore, statistical methods are the preferred type of algorithm for SL comprehension. 
Statistical models can be applied to spoken languages. Given the abundant data resources of spoken 
languages in the digitalized Internet age, statistical models can be applied readily. However, the 
raw and annotated corpora of SLs are insufficient because collecting and annotating SL videos are 
tedious and difficult. Data sparsity consequently remains as the most serious problem when applying 
statistical models onto SLs. For example, the real-time factor (RTF) of the SL video corpus is 100; 
that is, an hour corpus requires at least 100 hours of annotation (Dreuw et al., 2008b).

Simulating SL comprehension using traditional statistical models and machine-learning methods 
is difficult. Thus, reliable methods for establishing a signer’s 3-D model (which is the process of 
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developing a mathematical representation of any three-dimensional surface of moving trajectories 
of signers in the space for SL via specialized software) for SL corpus building and technologies for 
annotating a large-scale SL video corpus automatically must be developed. Unlike the spoken language 
that is “a set of values that change with the passage of time” (Huenerfauth, 2005), SL does not have 
a writing system and thus cannot be saved in any form of written texts.

The natural language-processing system relies on texts to process spoken languages. This system 
records only the written text that corresponds to speech flows and relies only on the literacy of the 
user. On the other hand, the SL system comprises information from multiple modalities. Examples of 
such information are the hand shape, hand location, hand movement, hand orientation, head tilting, 
shoulder tilting, eye gazing, body gestures, and facial expressions. The considerable information 
from multiple channels in SL conveys linguistic meaning. This multi-modality nature of SL poses 
difficulties for the coding of SLs into a linear single-channeled character string. In addition, SLs 
have writing systems, such as the Sign Writing system (Sutton, 2010), ASL-phabet (Supalla et al., 
2008), and HamNoSys (Prillwitz et al., 1989). However, these systems have a limited number of 
users (Johnston, 2004).

Many linguistic details are lost because of the multi-modality nature of SL during the translation 
of SL into its corresponding writing system. SLs may be understood by directly matching the visual–
spatial characteristics of SL with the semantic units in the brain rather than applying written texts as an 
interpreting medium. Here, semantic units are generally used for processing natural languages; these 
units or nodes contain some information, which are used as knowledge representations form semantic 
units (Geva et al., 2000). Such direct matching also represents the most natural way of comprehending 
SLs in the brain. From this perspective, the authors present a computational cognitive model for SL 
comprehension that is based on the cognitive functionalities of the human brain combined with a 
knowledge representation theory of artificial intelligence (Shuklin, 2001).

Visual–spatial mechanisms are exploited to express the grammatical structures and functions in 
SL. Visual–spatial perception, memory, and mental transformations are prerequisites to grammatical 
processing in SL (Emmorey & Corina, 1990) and are central to visual mental imagery (Farah, 1988). 
A series of experiments have been conducted to investigate visual attention (Neville et al., 1998). 
Movement recognition in peripheral vision is important in sign perception because the signers mainly 
look at the face instead of tracking the hands when they communicate through SL (Siple, 1978). 
Therefore, identification of lexical-level information depends on the peripheral vision system when 
signs are produced. The recognition of movement directions is the selective function of peripheral 
vision (Bonnet, 1977).

Whether deaf people only have a strong peripheral vision or efficiently allocate attention to 
peripheral vision remains unclear. Stivalet et al. (1998) showed that visual attention processing can be 
changed by auditory deprivation. They determined that deaf people do not shift their attention when 
processing the information (i.e., alphabet set) presented in the central vision field, whereas hearing 
subjects must shift their attention to search for the alphabet set continuously. Smith et al. (1998) also 
found that lack of auditory input causes weak and selective (or highly distributed) visual attention 
among deaf children. Stivalet et al. (1998) proposed that effective visual processing is caused by 
intermodal sensory compensation; that is, the strong allocation of visual attention can be attributed to 
neuron reorganization caused by auditory deprivation from birth. Recent magnetic resonance imaging 
evidence supports this hypothesis (Bavelier et al., 2000).

These findings are selective attention cases, in which attention selectively processes certain 
stimuli but ignores other stimuli. The cases refer to the selective orientation and concentration of the 
senses (i.e., visual, auditory, taste, and tactile senses) and consciousness (i.e., awareness) of people on 
certain targets (towards other factors). Studies on attention have failed to describe human attention at 
the biological level in detail, as a person cannot focus continuously because the brain automatically 
suppresses activity when attention reaches its limits.
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Emmorey and Reilly (2013) determined that when locations in a signing space (SL expressions 
streaks the space) function topographically, spatial changes tend to be noticed easily. Thus, location 
information indicating the spatial position of associated referents can be encoded and stored 
semantically in memory. However, spatial locations with a primary distinguishing function of referents 
are encoded in a different way and tend to be discarded from memory once the referential function 
is no longer required by context (Emmorey & Reilly, 2013). Bavelier et al. (2001) claimed that only 
the posterior middle temporal gyrus and the medial superior temporal cortex of deaf signers are 
highly active while perceiving movements in peripheral vision. This phenomenon is unobservable 
in hearing signers who have skillfully grasped signs, indicating that auditory deprivation results in 
a shift to stronger movement attention in the visual periphery. Deaf people can easily reply to the 
attention and visual monitoring of their peri-personal space (Bavelier et al., 2001).

Neville et al. (1998) determined that the classic language area in the left hemisphere, particularly 
the left perisylvian, of both deaf and hearing subjects is activated when reading English sentences. 
The right hemisphere, including the right perisylvian, of deaf people is also activated. They argued 
that spatial processing is of great importance to sign grammar. Thus, the SL comprehension process of 
deaf people employs neurons at both high and low levels in the neural network, which are connected 
with each other by edges, and generates high-level features via feature combination processes that 
are realized by combining the weight on the edges. For example, low-level visual edge features are 
assembled, processed, and sent to the high level to form the angle, shape, and other higher features 
(Bertasius et al., 2015). High-level neurons form features that gradually approximate the semantics 
in turn, such as simple shapes, simple targets, and real objects. The activation of high-level neurons 
during the reconstruction process also reacts with the low-level neurons and adjusts and corrects 
deviations and losses (Bertasius et al., 2015); a temporal pattern appears in the horizontal structure 
connection. The neurons can make predictions of the state at the next point of every time point through 
a horizontal connection based on the information of their current status (Hawkins et al., 2009).

SEMANTIC NETWORK MODEL (SNM)

Model of semantic networks (SNs) are generally used for processing natural languages (Shuklin, 2001). 
SNs, as knowledge representations, are extensible and have been used to model mental disturbances 
(Geva et al., 2000). The semantic network (which is a network that represents semantic relations 
between concepts, is used as a form of knowledge representation, here it is based on SL information 
processing of human brain cortex. The edges connect different nodes in the network and represent the 
strength or weakness of the correlation. After being set up, the semantic network is stored in long-
term memory for future retrieval and extraction to be encoded as semantic memory. Outside stimuli 
at a certain time can be the demand of a person on specific knowledge and information to activate 
the demand on the extraction of useful information of long-term memory (Sedikides & Skowronski, 
1991). The activation process of the stored network works in a form of spreading in the memory 
(Collins & Quillian, 1972).

The semantic model, which is based on SL information processing of human brain cortex, is 
developed accordingly. Different areas of the brain cortex are involved in the processing and are 
connected in a hierarchical manner. Low-level information from sense organs is first processed in the 
primary information-processing regions of the brain cortex and is then transferred to high-level regions 
for further processing, such as abstracting, integrating, and interpreting. The detailed description and 
illustration of this hierarchical structure are summarized in Figure 1.
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In SL communication, both substantial and semantic information (substantial information includes 
hand shape, hand location, hand movement, hand orientation, head tilting, shoulder tilting, eye 
gazing, body gestures, and facial expressions, and semantic information is represented into semantic 
concepts by these substantial SL information) almost exclusively relies on signs. However, accurate SL 
information analysis and prediction remain as challenging tasks in the field of natural SL processing. 
Three main tasks are, namely, capturing, decoding, and extracting the physical characteristics and 
relationship of signs (perception stage), matching the decoded cognitive representations with the 
stored semantic information (memory stage), and completing the machine translation process of SL 
information (judgment stage). This process of cognitive processing and understanding during SL 
communication is based on the PMJ principle of “from the definition and extraction/annotation of 
cognitive representation (Stage P) to the feature storage in line with the cognitive economy principles 
(Stage M), and then to the output of the classification and judgment (Stage J).”

The P‒>M‒>J (PMJ) principle exhibits a complete fine processing frame, the detailed illustration, 
and description of SL comprehension frame based on the PMJ principle is summarized in Figure 2.

Figure 1. Hierarchical structure. Low-level areas in the hierarchy generate specific information that increases speed and contain 
further details, whereas high-level areas form stable spatial invariance, change slowly, and show high-level semantic object 
expression (Adapted from Yao et al., 2015)

Figure 2. SL comprehension frame based on the PMJ principle. Perception refers to acquiring sign information through selective 
attention. The information is limitedly processed by the brain if prominence is given to useful and important information. Other 
information may be filtered out or suppressed when sources for information processing are limited. Memory refers to the 
spreading activation process, in which input information is coded, and one intends to store the information for a short period. 
Judgment refers to the process in which the perceived information or the information stored in memory is compared, matched, 
or classified, and a decision or prediction is made. After the spreading activation, the network records the attention features of 
users and activates their future preferences (Yao et al., 2015)
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Concepts are in the form of network storage. The different concepts are stored in different 
functional areas in both hemispheres of the human brain. The same or similar concepts are stored in 
same or adjacent regions of brain. Specific information of entities in the outside world, such as humans, 
animals, or tools, is represented by the concept network in the human brain. This concept network 
(A concept is an abstract idea representing the fundamental characteristics of what it represents. 
Concept network consists of these abstract concepts) is, in turn, connected with the lexical network 
from mental lexicon in the left temporal lobe. Such specific information from mental lexicon will 
be employed to facilitate SL production during which the SL users generate classifier hand shapes 
under the guidance of the knowledge and rules of SL classifier predicates (Valli & Lucas, 2000). 
Here, classifier predicates are made by combining small meaningful unites to create bigger units, the 
main units being the hand shape and the movement. This condition implies that findings from brain 
research can provide knowledge and guidance for the cognitive computational modeling of classifier 
predicate comprehension. In order to obtain a deep understanding of sign lexical semantics, a cognitive 
processing model, which is based on the cognitive mechanism of human brain, is established. The 
cognitive processing model would activate the concept network of the associated classifier hand shapes 
in the brain. Here, classifier predicates differ from traditional linguistic units. Traditional methods, 
such as the syntactic tree, cannot satisfy the generation of the classifier predicates (Huenerfauth et 
al., 2006).

DECISION-TREE BASED ALGORITHMIC METHODS

The authors use SNs as the knowledge representation and organization mode of SL. The relationship 
in semantic networks represents a type of information among nodes. Nodes with a complicated 
relationship with other nodes contain additional information. Such nodes require further effort to be 
understood. Consequently, the authors simulate selective attention (i.e., the processing of visual or 
auditory input based on whether it is relevant or important). They selected particular representations 
to enter perceptual awareness and therefore guide behavior. Through this process, less relevant 
information is suppressed by humans using the proposed algorithmic methods to accentuate the nodes 
selectively and suppress the unessential nodes (Chelazzi et al., 2013).

The emergence of 3-D-based sensors, such as Kinect by Microsoft and Leap Motion (Yao et al., 
2014), has improved studies on sign recognition from video-based to 3-D-based sign recognition. 
However, this transformation makes traditional video-based SL recognition methods inapplicable 
to 3-D-based SL recognition technologies. Large training data are required for valid recognition 
in 3-D-based SL recognition technologies because of the low operation efficiency of the rotatable 
joint-based sorter and the matching techniques for sign signal recognition. Yao et al. (2014) proposed 
a decision tree-based algorithm. The algorithm aims to achieve a high-precision and real-time 
performance of SL automatic perception according to the features of Leap Motion. The authors 
adopted this method as the first step of SL comprehension.

Attention Function

The authors propose the following attention function:

P I
x

all x ij
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x

=
∑

∑
 
Λ

Λ
	 (1)



International Journal of Cognitive Informatics and Natural Intelligence
Volume 16 • Issue 1

6

where ∑
all x ij 
Λ  denotes the sum of the semantic relation weights around the semantic node x, 

∑Λ
ij

 denotes the sum of all semantic relation weights, and I
x

 represents the activation value on 
the semantic node x after the spreading activation process.

Semantic Matching

Cognitive units in the memory network compete with one another based on certain rules to obtain 
more of the limited attention resources and more energy for a more active state. SL comprehension 
supports interactive activation models (Gutierrez et al., 2012). Therefore, judgment is the outcome of 
the attention competition game in the spreading activation, which is a search algorithm. The search 
algorithm is initiated by labeling a set of source nodes (e.g. concepts in a semantic network) with 
weights or ”activation,” and then iteratively propagating or “spreading” that activation out to other 
nodes linked to the source nodes processes of the human brain (Crestani, 1997; Preece, 1981).

A semantic matching algorithm based on activation spreading modes is proposed to determine 
the most appropriate semantic information. Activation starts to spread from the corresponding 
nodes of the signs presented by the signer. The activation value of the stimulus node (i.e., signs to be 
perceived before the start of spreading) must be calculated first. In particular, the increment in the 
interest value of object concept must be calculated, and this concept node must be used as an initial 
node for the spread study.

Activation spreads to the neighboring nodes, which usually have a lower activation value than 
the source value. Therefore, introducing an activation attenuation factor for decreasing activation 
over the path length in the closed interval [0…1] is mandatory. That is, for every propagation through 
an edge a loss of activation is considered (Neumann et al., 1993; Rocha et al., 2004). The activation 
spreading process can be expressed as follows:

�I t O t
y x xy
+( ) = ( ) −( )1 1Λ d 	 (2)

where �I t
y
+( )1  represents that the value is spread from node x to y at time, t+1, O t

x ( )  represents 
the activation value that was spread at node x at time, t,  L

xy
 signifies the link between nodes x and 

y, and δ is an attenuation factor used to describe the energy loss caused in the activation spreading 
process (Jiang & Tan, 2006).

Spreading activation theory states that the activation of human memory “chunks” (the content of 
any buffer is limited to a single declarative unit of knowledge, called a chunk) is determined by two 
factors (Anderson et. al., 2004; Anderson, 2013), namely, the use history of the memory chunk and 
the correlation between the memory chunk and the current retrieval information. These two factors 
calculate the weights and determine whether the chunk is activated and selected. This assumption has 
been verified by experimental cognitive psychology, and the calculation model has been established 
(Roelofs, 1992). The authors must use moments to express the distance in each activation time with 
the current time. Time units may be per hour as a unit and may also be the day. With the day as a 
unit, we can count the historical value in the previous day as the activation value of the first day. 
The algorithm based on the theory of memory activation can improve SL understanding, which is 
sometimes highly sensitive to time.

At node y, the largest number of neighbor nodes is (n-1); thus, the maximum of �I t
y
+( )1  can 

be expressed as:
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i.e., the initial value of the semantic network. Where I1, I2, …, In are these activation value of 
neighbor nodes.

If activation spreads from a node in many directions, then its adjacent nodes obtain a low activation 
value. The adjacent nodes give a feedback value of their resonance energy (i.e., contributing structure 
with the lowest potential energy) to the co-adjacent nodes after they absorb the activation value. The 
following equation is therefore used:

I t O t O t
z z all actived x x xz
+( ) = ( )+ ( ) −( )∑1 1› ´ 	 (3)

where O t
z ( )  denotes the activation value of node z at time t. 

Given that the quantity of activated information is limited, the nodes that obtain less resonance 
information are equivalently inhibited and are less likely to be activated. The activation value 
distribution in the resonance process conforms to the human attention model.

Attention Game Process

Cognitive units in memory network compete with one another by certain rules to increase the possibility 
of obtaining more human attention resources and more energy that will improve activity. This 
phenomenon is called a game process. The authors use game theory (Myerson, 1997), which is the 
study of mathematical models of conflict and cooperation between intelligent rational decision-makers 
and attempts to achieve the largest cognitive gains with the least energy possible, as a reference to 
simulate the attention enhancement and suppression processes that are selective attention processes. 
In other words, when visually searching for a non-spatial feature or a perceptual feature, selectively 
enhancing the sensitivity to that specific feature plays a role in directing attention. When people are 
told to look for motion, then motion will capture their attention, but attention is not captured by 
motion if they are told to look for color (Reynolds & Chelazzi, 2004). Activated results consistent 
with cognitive features can then be obtained. The authors assume that the game contains n nodes. s

i
'  

and s
i
"  are the two selectable strategies for node i, and they represent the acceptance and non-acceptance 

of the change in the attention function (i.e., s s S
i i i
' ", Î ). The corresponding gain can be represented 

by u
i
'  and u

i
" , and u u U

i i i
' ", Î . N nodes are assumed to reach an agreement before participating in 

the game to introduce the Nash equilibrium (i.e., each node only selects a specific strategy). The 
authors let s s s

n
* * *, ,= …( )1

 represent the agreement, where s
i
*  is the strategy of the node i specified 

in the agreement. Nodes comply with this agreement only when the benefit from complying with the 
agreement is larger than that from not complying. This agreement constitutes Nash equilibrium if 
any node abides by this agreement. Thus, the Nash equilibrium is written as follows:

� s S* * *
i i

u s s u s s
i i i i i i
, , ,���������������− −( ) ≥ ( ) ∀ ∈ 	 (4)

where the combination of strategy s s s
n

* * *, ,= …( )1
 is a Nash equilibrium. Given that other nodes 

select s s s s s
i i i n− − += … …( )* * * * *, , , , ,

1 1 1
, s
i
*  is the optimal strategy of each node i (Myerson, 1997). 
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The attention game process determines whether the nodes need adjustment or need to be changed 
on the basis of the attention function. The activation energy distribution will reach a state consistent 
with the human attentive distribution after adjusting the activated value distribution. Nodes of the 
spread SNs have their own activation energy threshold values. The source node in the attention game 
process that represents a presented sign has the maximum activation value O in the present SNs. All 
equidistant nodes will participate in the game based on the attention function. The nodes with low 
activation energy (defined as the minimum energy required to start a chemical reaction) of a reaction 
is denoted by Ea and given in units of kilojoules per mole (kJ/mol) or kilocalories per mole (kcal/
mol)), threshold must be removed through a screening process to prevent them from participating 
in the enhancement and suppression processes of activating the most likely node. In the proposed 
screening, the authors ignore the nodes with a significantly low activation value to be activated in the 
enhancement process instead of lowering the possibility for other nodes to be activated.

The difference between the attentive readjustment in the present attention game process and the 
previous attentive allocation causes the instability in the overall cognitive structure of users to decrease 
knowledge credibility. Thus, a new cognitive structure must be determined at a cost as follows:

Cost t i s u SN n I t O t
i i

i

n

i i
, , , ,( ) = +( )− ( )( )−

=
∑1
1

2
1 	 (5)

where I t
i
+( )1  denotes the activation value that is conveyed from one node at time t+1 to node 

i, and 0i (t) denotes the activation value of node i at time t. Therefore, the total cost is attributed to 
the change in the activation energy of all nodes in the SN. The goal of judgment is to achieve the 
overall optimal gain with a minimal computing cost. The gain function in the attention game process 
must then be determined. As the optimal strategy for node i, s

i
*  must minimize the distribution change 

that refers to the distribution change in the activation values of the overall network changed by the 
decision. The amount of spreading activation energy is fixed in the total process of activation spread 
in the SN; thus, the semantic node energy enhancement must be accompanied by reduced node energy. 
The attention parameters are affected by the overall distribution change in activation energy. The 
activation energy enhancement increases the impossibility of activating this node. Such activation is 
the ultimate purpose of each node (i.e., the node obtains the gain). Accordingly, the gain function is 
presented as follows: 

Gain t i s u SN
I t

i i

j

num all x

x neighbor node j
, , , ,( ) =

+( )−
=

( )
∈{ }∑ 1

1
==

( )
∈{ }∑ ( )






 −( )

1
1

num all x

x neighbor node
O t

num all x

´

(( )
�	

(6)

where SN represents the current semantic network, num(all x) represents the number of neighbor 

nodes x of node i, 
j

num all x

x neighbor node
O t

=

( )
∈{ }∑ ( )

1
 denotes the sum of the activation value that was 

spread of all node i neighboring nodes at time t, the gain function is expressed as the attention gain 
of neighbor nodes x of node i after the enhancement and suppression processes, it represents the 

benefit a node gets by unilaterally changing their strategy.

The utility function of the attention game process can be determined as follows:
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Max u t s s Gain t i s u SNN Cost t i s u SNN
i i i i i i i
, , , , , , , , , ,* *

−( )( ) = ( )− ( )) 	 (7)

where s
i
*  is the optimal strategy of each node i, s

i-
* is the strategies set of other nodes except 

node i. only when u t s s
i i i
, ,* *

−( )  reaches the maximum, s
i
*  is a Nash equilibrium of node i. The utility 

of the other nodes will be affected by the decision of all other nodes because of the fact that the total 
quantity of activation energy is fixed (i.e., attention is limited) in the attention game process. When 
each node selects a decision for itself, it also considers the possible decision of other nodes and selects 
the “Nash equilibrium point” with maximum utility. This scenario is consistent with classical game 
theory. The authors select a Nash equilibrium decision for each node through the utility function of 
the attention game that is defined by Equation (7).

METHODS

Data Sets and Experimental Settings
All data from the authors’ experiments are obtained from the Tsinghua University–Chinese SL 
Corpus (TH–SLC). The data mainly comprise SL expressions of idiom stories and life fragments of 
deaf students. No automatic annotation software based on videos is currently available because the 
annotation process for SL videos is time consuming and requires expert knowledge in dual language 
(i.e., Chinese language and Chinese SL). Video annotation is also time consuming. Specifically, it 
takes about 30 hours for the annotation RTF (real-time factor) of a parliamentary speech (i.e., One 
hour of speech requires 30 hours of annotation). However, the annotation RTF (real-time factor) 
for a full annotation of all manual and non-manual components of an SL video can reach up to 100 
hours (Dreuw & Ney, 2008a). Therefore, such a corpus is significantly small. For example, the 
Aachen Boston database contains American SL and has annotated 201 English sentences (Dreuw & 
Ney, 2008a). The authors spent a year collecting more than 2000 sentences, but only 416 sentences 
containing 2496 signs were marked.

The authors asked 20 deaf students to select 300 sign pairs from 2469 annotated signs in TH–
SLC and to judge the relevance of the sign pairs. The correlation values range from 0.0 to 1.0. For 
convenience, a five-point scale is used to assess the correlation. The sign pairs were obtained using a 
marked correlation. The authors establish an SN based on the word similarity computing method of 
HowNet (Liu & Li, 2002) to determine the connection weight of the network to validate the effects 
of the proposed model. The authors introduce the continuous bag-of-words (CBOW that predicts 
the current word from a window of surrounding context words. The order of context words does not 
influence the prediction (CBOW assumption) model (Mikolov et al., 2013), and the HowNet (Liu & 
Li, 2002) method as the baseline methods using the same recommended parameters. The efficiency of 
the utility function of the attention game process is evaluated in terms of word correlation computation, 
and the model complexity is analyzed.

Word Relatedness Computation
Each model in this task needs to compute the semantic correlation of the given sign pair. The 
correlation between the experimental results of the model and human judgment reflects upon the 
model’s performance. The authors selected 290 signs for the closed set and 10 signs for the open set.

Spearman’s correlation between model correlation score and human judgment correlation score 
was calculated for comparison. Spearman correlation coefficient is defined as the Pearson correlation 
coefficient among the ranked variables (Myers & Well, 2003). For a sample of size N, original data 
X Y
i i
,  are converted into grade datax y

i i
, , the correlation coefficient ρ is defined as follows:
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r = −
∑

−( )
1

6

1

2

2

d

n n
i 	 (8)

where the difference between the observations of the two variable levels is set as d x y
i i i
= − . 

If there is no duplicate value in the data, and two variables are completely monotonic correlation, 
the Spearman correlation coefficient is +1 or -1.

RESULTS

For CBOW, the correlation scores of the two words are calculated using the cosine similarity of word 
embedding (Mikolov et al., 2013). The evaluative results of the baseline methods and the proposed 
SNM method in the closed test and in all test sets are shown in Table 1.

The evaluation results show that the proposed SNM method is better than the baseline method in 
290 and 300 word pairs. This finding indicates that the cognitive mechanism of sign comprehension is 
essential to understanding the meaning of signs. The internal structure, such as location, orientation, 
hand shape, and movement, contains rich semantic information. However, deep learning methods, 
such as CBOW, consider the external context, but ignore the internal structure.

Using the computing method of word similarity based on HowNet results in only a rough semantic 
computation. For example, adding 10 new sign pairs negligibly changes the performance of these 
methods. In other words, these methods can still handle new signs with improved performance. The 
semantic correlation of these new sign pairs calculated by the proposed method is close to human 
judgment. Figure 3 shows the quantitative analysis of the attention game process for two signs. Each 
hand shape of the two signs has at least 20 related semantic lexicons. The stimulus information and 
permutation of each node are shown in the first and second columns from high to low according to the 
activated value after the activation spreading process. Only 10 semantic lexicons that are maximally 
activated are shown. The permutation of each node is shown in columns three to seven from high to 
low according to the activation value after the end of the first to fifth attention games. The top 10 
lexicons are also shown. The semantic lexicons in the blue background rank high after the games, those 
in the green background rank low after the games, and those in the white background are unchanged.

Table 1. Evaluative results

Data Set Closed Test All Test Sets 
(Including Open Test)

Spearman’s Rank Correlation 
Coefficient

Method 290 pairs 300 pairs

CBOW (baseline method) 0.4843 0.4869 0.4136

Word similarity computing 
based on HowNet 0.6157 0.6174 0.6052

Proposed SNM method 0.6951 0.7063 0.6437
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Figure 3 also shows that significant changes occur during the ranking of the semantic lexicons 
in the first and second instances after the first several games, whereas only a few changes occur in 
the following stimulus games. This trend shows that the ranking of lower semantic lexicons slightly 
change after the semantic lexicon that ranks highest becomes unchanged. This condition is due to 
the source that corresponds to the attention model being determined after several game processes. 
Attention is also assigned to other nodes in accordance with the attention game process. Humans 
reach a steady state after thinking about problems constantly, and the result negligibly changes if they 
rethink. Nearly no change is observed in the result after several rounds. Several semantic lexicons 
related to the signs are contained in the text set; thus, a few possible changes occur. The result of the 
attention game model conforms to human cognitive rules to a certain degree.

Attention is also assigned to other nodes in accordance with the attention game process (here, 
efforts have been made in modeling according to the mechanism of human attention). The result of 
the SNM conforms to human cognitive rules to a certain degree (Gutierrez et al., 2012). For example, 
the authors assume that deaf people understand the signs shown in Figure 3. Deaf people usually 
search for many familiar and specific nouns or signs in a spreading activation mode to comprehend 
classifier predicates. After all activated values are calculated; the activated nodes are graded and 
sorted. A high-activated value of the node indicates the importance of the interested object or concept 

Figure 3. Examples of attention games. The semantic lexicons in the blue background rank high after the games, those in the green 
background rank low after the games, and those in the white background are unchanged. This trend shows that the ranking of 
other semantic lexicons below slightly changes after the semantic lexicon that ranks highest becomes unchanged. This condition 
is due to the source that corresponds to the attention model being determined after several game processes.
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represented by the node. This shows that deaf people are familiar with the concept node. Similar to 
the attention game process shown in Figure 3, the high-ranked semantic lexicon is a cat or dog after 
several rounds. This result shows that the most common subjects for deaf people are typical subjects 
that represent classifier predicates.

DISCUSSION

Compared with that of existing models, the complexity of the proposed model is reflected mainly 
on the computational cost of the memory stage and the judgment stage (i.e., the computational cost 
of spreading activation and the attention game at time (t + 1)). The cost is a dynamic value and 
related to two factors, namely, the activation state of the current sign and the current cycle as the 
first activation of the sign. Therefore, the value changes regardless of the choice of the user. This 
outcome is consistent with the strong dynamics of sign information, which can reflect the influence 
of information in different periods.

In the memory stage, the time complexity of computing O t
x ( )  is unity; thus, the time complexity 

is related to the total amount N of activation energy and cycle times. The time complexity of each 
activation in each cycle is n × 1 = n. Space complexity is the storage space of each node and the 
semantic relation weight according to semantic similarity (semantic similarity can be estimated by 
defining a topological similarity, by using ontologies to define the distance between terms/concepts). 
Therefore, unlike the general model such as cobweb theorem model and vector space model, where 
the SNM increases the overhead in time complexity and space complexity. The model also increases 
the matching time of query nodes and weights in the current activation. However, the overhead at 
this time can provide more effective results than an invalid spreading and can be accepted by users.

In the judgment stage, when the node selects the game strategy to change its activated energy 
value, the convergence speed of adjusting the cognitive benefits to its own utility maximum “Nash 
equilibrium” is an important measure of evaluating the SNM (i.e., the cycle times of an attention 
game process). For the attention game, the Nash decision of different semantic nodes must minimize 
the change cost of the activation energy distribution of the entire network. The Nash equilibrium 
point decision for each node is selected using the utility function defined in the SNM. This process 
is repeated until the overall network activation energy distribution change is less than the specified 
threshold. The node needs to solve n-order nonlinear equations in every cycle. Therefore, the 
performance of the convergence speed of the SNM is indicated by the number of game cycles that 
the network requires to reach the Nash equilibrium point (i.e., the computing times of calculating the 
corresponding equation by each node in a game process). The square root of the sum of the variance 
of activation value O t

i
+( )1  of each adjusted node is directly reflected by the rate of convergence 

in the game process.
To verify its effectiveness, the attention game model is compared with the traditional model in 

terms of load balancing. In the traditional method, the activation value of each node is certain (i.e., the 
value is not enhanced or inhibited). The experimental results are shown in Figure 4. The results show 
that the load balance performance of the attention game model is better than that of the traditional 
model because the attention game model adjusts the activation strategy after the activation of each 
node. When the change cost of the energy distribution of the entire network activation is larger than 
the specified threshold, the human brain adjusts the strategy to inhibit the activation energy value in 
the next cycle. In doing so, the free competition and distribution of attention for each node according 
to the attention game model can be assured. The result is obtained through the overall competition. 
The load of attention of the network is balanced. The traditional model assumes that the activation 
energy value of each node is certain because the brain activation energy resource amount is constant 
in a period of time. The brain selects the node with a low activation energy value and performs the 
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allocation of attention. This allocation causes the attention load of several nodes to be excessively 
large or unutilized.

The proposed SNM model used Nash equilibrium to simulate the energy activation process. In 
order to quantitatively analyze the effects of Nash equilibrium, the authors compared the SNM with 
the cobweb theorem model (Pashigian, 2008) in terms of different activation energy amounts. The 
cobweb theorem is expressed as follows:

O t I t r D O t S O t+( ) = ( )+ ( )( )− ( )( )( )′1 	 (9)

where r is the adjustment parameter of the activation value, D O t( )( )  is the activation function 

of a node, O t( )  is the activation value at time t, S O t( )' ( )  is the attention allocation function, ′ ( )O t  

is the expectation activation value at time t, and D O t S O t( )( )− ( )( )'  is the excessive demand function 
that represents the actual gaps between the activation value and activated allocated value. A large 
gap indicates a high activation value of the Nash Equilibrium of node. The parameter (r) indicates 
the actual speed and strength of adjusting the activation value according to the attention distribution 
condition in the last moment. When r > 0 it indicates that the adjustment direction of the activation 
value is consistent with the direction of the demand function.

The amount of activation energy Ea is assumed to be 100 kJ/mol. Figure 5 shows the result of 
comparing the attention utilization between the game model and the cobweb model. The attention 
amount (attention is the behavioral and cognitive process of selectively concentrating on a discrete 
aspect of information, while ignoring other perceivable information. Attention amount refers to as 
the allocation size of limited processing resources), is less than 100 kJ/mol. If the attention amount 

Figure 4. Comparison of load balance. The load balance performance of the SNM is better than that of the traditional model 
because the SNM adjusts the activation strategy after the activation of each node
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is insufficient, then attention resources can only meet part of the node demand, and the resource 
utilization rate of the SNM will become higher than that of the cobweb model. When attention supply 
exceeds the demand of a node, the cobweb model achieves balance to meet the needs of several nodes 
after a repetitive cycle. The SNM meets the needs of all nodes, and the utilization rate of attention 
resources is higher than that of the cobweb model.

Figure 6 shows the cycle times of the SNM and the cobweb model that needs to achieve the Nash 
equilibrium. As shown in the figure, the equilibrium activation energy value of the nodes is 20 kJ/
mol in the SNM, and the activation energy is 120 kJ/mol in total. If the initial value of the activation 
energy is changed, then the initial activation energy value of the cobweb model is higher than the 
energy equilibrium value and requires abundant cycle time. The SNM in each cycle can adjust the 
activation energy according to the variance of the activation energy. The variance and adjustment 
range are large, and the SNM eventually reaches the Nash equilibrium point.

Figure 5. Comparison of activation energy values. After the change in the initial value of the activation energy, the number of 
iterations increases depending on the difference between the initial activation energy value in the cobweb model and the balanced 
energy value. The iteration of the attention game model can be adjusted according to the difference in the activation energy 
between supply and demand. A sizeable adjustment is required to reach the Nash equilibrium state if a large difference exists 
between the supply and demand
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Conclusion

The authors presented a new model for SL comprehension based on spatial information. This process 
uses game theory to simulate the human attention suppression and enhancement process. This 
process also joins the forgetting function of human memory traces to compute the initial state of the 
node. Memory is encoded with specific (semantic) meaning, or refers to information that is encoded 
along a spatial and temporal plane. Although the semantic network provides a functional view of 
how knowledge may be organized in the brain, it does not provide a clear model of how semantic 
memory might be presented in the brain (see Cacha et al., 2017). Spreading activation reveals that 
information can be stored in SNs for a long time, in which a network node is a linguistic concept 
and the nodes are connected through the correlation. An algorithmic method is proposed according 
to selective functions, and its effectiveness was verified using an example. The results show that the 
proposed method improves the performance of SL comprehension.
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