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ABSTRACT

The application of semantic web technologies such as semantic inference to the field of the internet of 
things (IoT) can realize data semantic information enhancement and semantic knowledge discovery, 
which plays a key role in enhancing data value and application intelligence. However, mainstream 
semantic inference engines cannot be applied to IoT computing devices with limited storage resources 
and weak computing power and cannot reason about uncertain knowledge. To solve this problem, 
the authors propose a lightweight semantic inference engine, Tiny-UKSIE, based on the RETE 
algorithm. The genetic algorithm (GA) is adopted to optimize the Alpha network sequence, and 
the inference time can be reduced by 8.73% before and after optimization. Moreover, a four-tuple 
knowledge representation method with probability factors is proposed, and probabilistic inference 
rules are constructed to enable the inference engine to infer uncertain knowledge. Compared with 
mainstream inference engines, storage resource usage is reduced by up to 97.37%, and inference time 
is reduced by up to 24.55%.
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INTRODUCTION

List of Notations and acronyms:

•	 IoT: Internet of Things
•	 GA: Genetic Algorithms
•	 GSMA: Groupe Speciale Mobile Association
•	 OWL: Ontology Wed Language
•	 DL: Description Logic
•	 DS: Direct Style
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•	 RDF: Resource Description Framework
•	 RDFS: Resource Description Framework Schema
•	 RS: RDFS Style
•	 JVM: Java Virtual Machine

The IoT plays an important role in the new generation of information and communication 
technology. As more and more devices are connected to the Internet, the data generated by these IoT 
devices is also increasing. According to the report released by Groupe Speciale Mobile Association 
(GSMA) in 2019, the total number of global IoT connections reached 9.1 billion in 2018. The total 
number of global IoT connections is expected to reach 25.2 billion by 2025 (GSMA, 2019). Therefore, 
the effective use of data has become a research focus in recent years. More and more researchers are 
introducing Semantic Web technologies into IoT cloud servers to transform IoT data into knowledge. 
To solve the problem of semantic computing overload, in recent years, many researchers have tried to 
apply semantic web technology to IoT computing devices to share the computing tasks of servers. For 
example, semantic ontology is used in smart medical systems to improve the interoperability between 
medical devices and sensors (Rahmani, 2018); Semantic rules and sensor-based semantic ontology are 
used in an intelligent medical system to improve the robustness, efficiency, and comprehensibility of 
medical and health care system(Radhika, 2022) Semantic annotation and inference technologies are 
used in gateways (Al-Osta, 2019), and an event-driven model is designed to improve the efficiency of 
data processing. In the gateway system, the researchers realize the annotation and reasoning of sensor 
data streams and the real-time processing of events. Due to the limited resources of the IoT gateway, 
to reduce the weight of the annotated sensor data on networks, Urkude et al. (2021) established 
semantic data management by using semantic reasoner rules to reduce the number of triples from 
the semantic sensor data employing the unambiguous latent context information of a triple term. 
Kalatzis et al. (2019) propose a design principle for the specification of interoperability enabling 
solutions and verify the design principles in the experiment. Semantic annotation technology and the 
ontology are used in the edge devices of IoT to realize early warning of fire; Ali et al. (2017) design 
a lightweight ontology, which describes smartphones and sensors from different aspects, including 
platform, deployment, measurement functions, and attributes, data fusion and context modeling to 
realize the design of a smartphone sensor body for context-aware applications; the semantic inference 
technology is used in edge devices and cloud devices to realize stand-alone reasoning, distributed 
reasoning, mobile reasoning, and their synthetic reasoning (Ai, 2017), etc. There are many advantages 
to using Semantic Web technologies on IoT devices: 1) Reduce semantic computing tasks in the 
Cloud; 2) Reduce energy consumption in data transmission; 3) Improve the real-time performance 
of data processing; 4) Improve data security; 5) Enhance interoperability between IoT devices; 6) 
Develop more IoT solutions based on Semantic Web technologies, such as local event detection and 
early warning, fault handling, etc.

However, IoT computing devices usually have fewer storage resources and lower computing 
power, which cannot meet the operation of current inference engines that require higher storage 
resources and computing power. Therefore, current inference engines cannot be directly ported into 
IoT computing devices. On the other hand, IoT systems usually contain uncertain knowledge, and 
current reasoning engines do not support the representation and reasoning of uncertain knowledge, 
especially online real-time reasoning. Based on the above problems, the authors propose a lightweight 
semantic reasoning engine Tiny-UKSIE, which can realize the reasoning of uncertain knowledge, 
and is well suitable for resource-constrained IoT computing devices.

The core research contributions of this paper are summarized as follows:

•	 Since the mainstream semantic inference engines occupy more computing and storage resources 
and are not suitable for resource-constrained devices, a lightweight semantic inference engine 
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(Tiny-UKSIE) is proposed, which is very suitable for resource-constrained IoT devices and solves 
the problem that no inference engine is available for resource-constrained devices.

•	 Aiming at the difficulty of expressing uncertain knowledge, a four-tuple representation method 
with probabilistic factors is proposed, and the probability value is calculated by using the Bayesian 
formula and the total probability formula, which can well solve the problem of expressing 
uncertain knowledge in IoT applications.

•	 The proposed Tiny-UKSIE adopts the GA to optimize the alpha network of the RETE 
algorithm, and its inference time is shorter than that of the traditional inference engine based 
on the RETE algorithm.

BACKGROUND

Inference Engine of Semantic Web Technologies
Since the birth of the Semantic Web, many different inference methods have been represented. 
According to different ways of inference, they mainly can be divided into two types including 
Description Logic (DL) tableau inference engine and forward chaining rule-entailment 
inference engine.

DL tableau inference engine converts established OWL entailments to DL which satisfies the 
checking based on semantic connections between the two (Horrcks, 2003). The principle of the DL 
tableau is to convert the OWL ontology into a DL knowledge base. If a set of consistent conversion 
rules can be used to convert the DL knowledge base into a consistent model, then the conversion 
rules meet the DL knowledge base, otherwise, it is not. HermiT (Motik, 2009), Pellet (Evren, 2008), 
and FaCT++ (Tsarkov, 2006) are DL tableau inference engines. DL tableau inference engine uses 
hard coding in the execution process, which hinders the flexibility and scalability of this inference 
(Li F., 2020).

In the field of Semantic Web, the reasoning object of rule-entailments inference engines is 
usually ontology. In the process of reasoning, the rule-entailments inference engine uses a set of OWL 
semantic profiles to generate rules through forward-chaining and calculates the schema relationship 
between the OWL ontology triples and the rules. These rules are often termed semantic entailment 
rules (Tai, 2015). Moreover, the ontology inferred by the inference engine can be replaced at any 
time according to the needs of the application. As long as the inference rules are given, it can infer 
the given ontology. Therefore, this kind of inference engine has strong scalability and high flexibility. 
In addition, the rule-entailments inference engine is easy to understand, obtain and manage, and 
is widely adopted in the application field of Semantic Web. According to the different ways of 
interpreting OWL semantics, the rule-entailment inference engine can be regarded as direct style (DS) 
and RDFS style (RS). DS rules are mainly used for reasoning assertional data; however, RS rules can 
reason both terminological and assertional data, which is the reason that the authors chose to design 
a rule-based inference engine. O-DEVICE (Meditskos, 2008) and DLEJena (Meditskos, 2010) are 
Rule-entailment inference engines. Other inference engines usually combine the characteristics of 
the DL tableau inference engine and the Rule-entailment inference engine. Such as Minerva (Zhou, 
2006), which combines a DL table approach with a resolution-based approach, Jena (Carroll, 2004), 
which incorporates a rule-implication approach with a resolution-based approach, and the Pellet rule 
processing engine, which incorporates forward linking rules.

Semantic Inference Engine Based on RETE Algorithm
Among the rule-based reasoning methods, the RETE algorithm is used in a variety of inference 
engines, including Drools, JESS, Jena, O-DEVICE. Every rule can be described by the formula (1), 
P
r

 represents the premise of the rule and C
r
 representing the conclusion of the rule:
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 → 	 (1)

RETE algorithm is a fast rule matching method, and its matching speed is independent of the 
number of rules (Bonatti, 2020). As long as the rule set is set sufficiently comprehensive, the 
relationship between knowledge in the ontology can be deeply explored. This is very suitable for the 
IoT application scenario with large amounts of data. The RETE algorithm transforms the ruleset into 
a RETE network for rule matching, and its network can be divided into Alpha network and Beta 
network. There are five types of nodes in the network: root nodes, filter nodes, alpha nodes, beta 
nodes, and terminal nodes (Forgy, 1982). As shown in Fig. 1, The root node is the entrance of the 
network, and all instance objects to be reasoned must enter the network based on the root node. The 
Alpha network consists of many α  nodes, which are mainly used to find all triple instances that 
satisfy the premise of the rule. Each α  node has a memory for storing triplet instances. In addition, 
each α  node corresponds to a filter node, and these filter nodes are used to filter out incomplete 
triplet instances. The Beta network consists of β  nodes, where β  nodes are gradually constructed 
by α  nodes. During the rule matching process, if the rules defined by the beta network are satisfied, 
the corresponding rules will be activated. The activated rules are stored in the terminal nodes.

Before describing the RETE algorithm, some Notations are defined. LetU denote the set ofURI
constants, B  represents the set of blank nodes, V  represents the set of variables, L  represents the 
s e t  o f  l i t e r a l s ,  a n d  T U V B= ∪ ∪  r e p r e s e n t s  t h e  s e t  o f  t e r m s .  L e t 
TPI {(s,p,o) | s U B,p U,o U B L}= ∈ ∪ ∈ ∈ ∪ ∪  denote the set of triple instances and 
TPP s p o s U V p U V o U V L= ∈ ∪ ∈ ∪ ∈ ∪ ∪{( , , ) | , , }  denote the set of triple patterns. Let R  
denote the set of rules andr denote one of the rules. So r PRS CNS= ( , )  denotes a rule including 
a premise sequence (PRS) and a conclusion sequence (CNS), where PRS tpp TPP

i
= ∈{ }  and 

CNS tpp TPP
i

= ∈{ } . The notation r PRS i. .  denotes the i-th premise of rule r , and similarly, the 
rCNS i. .  denotes the i-th conclusion of rule r. Let O tpi tpi TPI

i
= ∈{ | }  denote the ontology. Next, 

the Alpha node and Beta node are defined.
tokenize()  is a function that turns a triple instance into a token. An Alpha node corresponds to 

a specific token that comes from the return value of the tokenize tpp( )  function, written as α
i
tpp , 

Figure 1. The structure of the RETE network (Forgy, 1982)
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where i represents the i-th Alpha node. Then the α
i
tpp  is defined as for formula (2). The Alpha Network 

can be obtained by operating formula (2) on each tpp  in the ruleset:

α
i
tpp tokenize tpp tpp r PRS r R= ∈ ∧ ∈{ ( ) | . } 	 (2)

The i-th Beta node of rule r is defined recursively as for formula (3), where ⊕  represents 
the joining operation, which means that adds the current Alpha node to the other network. The 
authors can see that each Beta node is composed of the previous Beta node and the next Alpha 
node in the network:

β
α α

β α
r i

r PRS i r PRS i

r i r PRS i

i
.

. . . .( )

.( ) . .( )

,

,
=

⊕ =

⊕

+

− +

1

1 1

1   

     2 1≤ ≤






 i r PRS. -

	 (3)

After the Alpha network and the Beta network are constructed, the rule matching can be performed. 
The steps of rule matching include:

Step 1: 	 tpi  enters the RETE network through the root node, and is stored in the alpha cache after 
being filtered by the filter nodes.

Step 2: 	 If the current α  node is the starting point of the match, skip to step 3, otherwise skip to step 4.
Step 3: 	 Find its public node based on an alpha node and another alpha node with a common 

connection, which is the β  node, and put the matched triple instance into the β  memory. If 
there is a matching complete rule, then activate the rule.

Step 4: 	 Find the next connection node of the current β  node and the next α  node with a matching 
relationship, whose common connection node is the next β  node, and put the matched triple 
instance into the β  memory. If there is a complete rule that matches, then activate the rule.

Step 5: 	 If there is no next matching β  node, then the matching ends. Otherwise, repeat step 4.

The Improved Method for RETE Algorithm
The node sharing and state caching of the RETE algorithm greatly improve the matching efficiency, 
but it also has many disadvantages:(1) There is a problem of repeated state storage. For example, 
the fact that patterns A and B have been matched must be stored in the node caches of pattern A 
and pattern B at the same time, which will take up more space and affect the matching efficiency. 
(2) The processing logic is limited, only supporting first-order Boolean logic. (3) It is inefficient 
when dealing with large-scale data and rapidly changing data. In the study (Tai, 2015), an inference 
engine composition approach is proposed for problem (1) which includes a selective rule loading 
algorithm and a Two-phase RETE algorithm. The selective rule loading algorithm is that only when 
each premise of a rule exists in the target ontology or as a follow-up premise of other rules, the rule 
can be regarded as a candidate rule to be selected. Through this algorithm, unnecessary rules can be 
reduced, thereby reducing the complexity of the RETE network. The Two-phase RETE algorithm 
includes a most specific condition first and a pre-evaluation of join connectivity to diminish the 
RETE network. The study in (Van Woensel, 2019) proposed an OWL2 RL optimization including 
leaving out redundant rules, dividing the rule set based on rule purpose and references, and removing 
resource-heavy rules to reduce the size of the Beta network. The researchers in (Xin, 2017) propose 
an improved RETE algorithm using a shared degree model. This method gives each Alpha node 
a share value by counting the number of occurrences of Alpha nodes in the Alpha network and 
arranges the Alpha network in descending order of the share value. However, when there are a large 



International Journal on Semantic Web and Information Systems
Volume 18 • Issue 1

6

number of Alpha nodes with the same shared degree value, the effect of this shared degree model 
will be significantly reduced. To solve this problem, the authors have carried out in-depth research 
and proposed improvement strategies.

Methods of Uncertain Knowledge Representation and Reasoning
The traditional Semantic Web technologies are not able to represent and reason with uncertain 
knowledge which is one of the characteristics of the world. The study (Li, 2019) shows an evolutionary 
reasoning method of emergency plan based on ontology clustering and using a Bayesian network 
to realize conditional probabilistic reasoning. The researchers in (Fareh, 2019) propose a method 
of modeling incomplete knowledge in the classical OWL ontology using Bayesian networks, which 
include five steps: (a) Extracting terminological and assertion parts. (b) Constructing structure of 
Bayesian network. (c) Constructing statistical table with incomplete knowledge. (d) Learning parameter 
with EM algorithm. (e) Inference in Bayesian network. The study in (Hlel, 2018) shows a new method 
of constructing probabilistic ontology by integrating uncertainty to elements of an OWL ontology, 
which includes four phases: (a) Specification of requirements which means determining the domain 
and the purpose of ontology. (b) Building classic ontology. (c) Determination of probabilities that 
will be associated with the knowledge of classic ontology. (d) Integration of uncertainty to classic 
ontology. The researchers in (Setiawan, 2019) represent a framework called ByNowLife, which is a 
novel approach for integrating BN with OWL by providing an interface for retrieving probabilistic 
information through SPARQL queries. They think that the system must use a separate knowledge 
base, separate processing, or third-party applications so that adapts to systems that already have a 
running ontology. The study (Riali, 2019) shows a fuzzy probabilistic ontology (FPO) which copes 
with probabilistic events even with incomplete evidence and models events whose results cannot 
be predicted with certainty (randomness) and provides a fuzzy probabilistic inference under fuzzy 
evidence. To sum up, the above researches are devoted to extending the existing ontologies and 
realizing the representation of uncertain knowledge. However, their disadvantage is that they cannot 
reason about uncertain knowledge dynamically. To solve this problem, the authors optimize the 
RETE network structure and add a probability calculation module to realize the dynamic inference 
of probability.

THE DESIGN OF TINY-UKSIE

Optimizing Alpha Network by Using GA
As mentioned in section “The Improved Method for RETE Algorithm”, although the shared degree 
model in (Xin, 2017) can reduce the size of the Beta network, when there are a large number of Alpha 
nodes with the same shared degree, this method cannot determine the specific order of these Alpha 
nodes. Therefore, in Tiny-UKSIE the authors adopted the shared degree model and used a GA 
algorithm to optimize the order of the wnodes with the same sharing degree. the GA contains six 
processes:(1) Encoding; (2) Initializing the population; (3) Evaluating the individual; (4) Selecting 
individual; (5) Cloning individuals; (6) Crossover among individuals; (7) Individual variation. Before 
the GA algorithm is described, notations are defined: Firstly, let α = … −( , , , , , )tpp tpp tpp tpp tpp

n n1 2 3 1
 

denote a normal sequence of an Alpha network, and α
std

 denote the sequence of an Alpha network 
which is obtained by sorting α  using the shared degree model. Moreover, define EQsubseq

i
 as the 

i-th subsequence of α
std

, where each triple pattern in the EQsubseq
i
 has the equal shared degree, 

i m= 1 2, , ,� , and m  is is the number of subsequences of α
std

. Lastly, let Chrs  denote the set of 
chromosomes, Chrs i.  represent the i-th chromosome, and N

chr
 denote the size of the population.
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•	 Encoding: The encoding result is to treat the sequence of α
std

 as a chromosome and a triple 
pattern as a gene.

•	 Initializing the population: In this step, N
chr

 chromosomes are initialized based on α
std

. 
Specifically, these chromosomes can be obtained by changing the order of all triple patterns in 
an EQsubseq

i
 respectively, where i m∈ { , , , }1 2� .

•	 Evaluating the individual: In this step, a fitness function is used to evaluate the chromosome 
and return a percentage denoting the fitness of the current chromosome. In this evaluation, the 
running time of one matching and the memory consumption of the IoT device are recorded. The 
shorter the time and the smaller the memory consumption, the higher the fitness score of the 
current chromosome.

•	 Selecting individual: In this step, individuals with high fitness are selected, while those with 
low fitness are eliminated.

•	 Cloning individual: In this step, individuals are randomly cloned to expand the population 
size to N

chr
.

•	 Crossover among individuals: At this stage, individual pairs and crossover points are 
randomly selected and the two chromosomes in the individual pair are crossed to generate a 
new chromosome.

•	 Individual variation: In this step, individuals are randomly selected and random genes in 
EQsubseq

i
 are changed to generate new individuals, where i m∈ { , , , }1 2� .

Before describing the process of GA, the authors define α
targ

 as the optimal Alpha network, 
F

exp
 as the expected value of the fitness evaluation, F

cur
 as the fitness valule of the current 

individual, and F
best

 as the best fitness value of the current population. Moreover, let N
cur

 
represent the current size of the population and P

cur
 denote the current population. Let Ite

cur
 

represent the current number of iterations and Ite
max

 the maximum number of iterations. The 
steps of GA optimized Alpha Network are shown in Algorithm 1. To obtain the α

targ
, firstly, 

the shared degree of Alpha nodes is counted to obtaine a sequence α '  (corresponding function 
statisticsShareDgree( )α ), and the α '  sequence is sorted in descending order (corresponding 
function descendingSort( )'α ) to generate the α

std
 network. Then the number of population is 

expanded from one to N
chr

 by using α
std

 (corresponding function generateChromosome
std

( )α ), 
and the current population P

cur i Nchr
= { , , , , }α α α α

1 2
� � , where i N

chr
= 1 2, � . Furthermore, 

a fitness evaluation function for each individual is performed (corresponding function 
fitnessEvaluation

i
( )α ). Once the value of the fitness evaluation reaches F

exp
 or the number 

of iterations reaches the upper limit, the algorithm terminates. Otherwise, it continues. Next, 
the roulette wheel selection method is adopted to eliminate individuals (corresponding function 
eliminatePopulation P

cur
( ) ), and the individuals are randomly cloned until the number of 

populations is up to N
chr

 (corresponding function clone P
cur

( ) ). Then, two chromosomes and 
an intersection of the two chromosomes in the population are randomly selected. Subsequently, 
the two chromosomes are crossed (corresponding function crossover P

cur
( ) ). In the next step, 

two genes on a chromosome are arbitrarily chosen and exchanged as a way to mutate 
(corresponding function variation P

cur
( ) ). Finally, each individual is evaluated again and the 

steps are looped until the loop conditions are not met. Then the algorithm ends.
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Table 1. Algorithm 1: GA optimized Alpha Network

Input: α , the original Alpha sequence generated by rule set

Output: α
targ

, the optimal Alpha network

1:   α α
1
= statisticsShareDgree( )

2:   α α
std

descendingSort= ( )
1

3:   N
cur
= 1

4:    for N N
cur chr
≤  do

5:             α α
N stdcur

generateChromosome= ( )

6:             N N
cur cur
= +1

7:    end for

8:   Ite
cur
= 1

9:   F
best
= 0

10: endwhileflag false=

11:  while Ite Ite
cur
≤

max
do

12:            i = 1

13:            for i N
chr

≤  do

14:                      F fitnessEvaluation
cur i
= ( )α

15:                      ifF F
cur
≥

exp
 then

16:                                α α
targ i
=

17:                                endwhileflag true=
18:                                break

19:                      end if

20:                      if F F
cur best
> then

21:                                F F
best cur
=

22:                             α α
targ i
=

23:                      end if

24:                      i i= +1

continued on following page
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Proposed Four-tuple With Probability Factors and Probability Rules
The representation and reasoning of uncertain knowledge can better express the real IoT system. Many 
methods have been proposed and studied described in section “Methods of Uncertain Knowledge 
Representation and Reasoning”. However, current research is insufficient. For example, (Li, 2019) and 
(Riali, 2019) respectively studied the Bayesian network and ontology for OWL DL, rather than OWL 
RS. Moreover, they calculate and store the probability value through documents. This is not suitable 
for IoT application scenarios where data changes dynamically. In our study, the authors propose a 
method of using the four-tuple to express possibility knowledge and define novel probability rules 
to realize online probability calculation in the semantic inference engine.

In the classic semantic technologies, the triples are used to represent the knowledge, such as 
? , : , ?c rdf subClassOf d  representing that subject c is a subclass of predicate d, ? , : , ?x rdf type c  
representing that the type of x is the same as c, and ? , : , ?x rdf type d  representing that the type of 
x is the same as x. Therefore, these three triples make up a rule seen as formula (4), where the left 
side of the arrow indicates the premises (PRS ) and the right side indicates the conclusions (CNS ):

(? , : , ? ) (? , : , ? ) (? , : , ? )c rdf subClassOf d x rdf type c x rdf type d∧ → 	 (4)

However, the triples cannot represent uncertain knowledge, so the authors proposed a method 
that uses the four-tuple to represent uncertain knowledge. Let ftp {?s,?p,?o,?pb}=  denote the 
four-tuple. Compared with the triples, the four-tuple add a probability factor at the end. For example, 
?a,leadto,?b,?pb  represents that the occurrence of the subject (a) can lead to the occurrence of the 
object (b), and the probability value of occurrence of b under the condition that a occurs is pb. In 
mathematics, the probability factor is defined as pb P(b | a)= . To be compatible with triples, the 
authors split the four-tuple into two parts: the triple part and the probability factor part. the authors 

Table 1. Continued

25:            end for
 

26:            if endwhileflag true==  then
 

27:                      break
 

28:            end if

29:            eliminatePopulation Pcur( )

30:            clone Pcur( )

31:            crossover Pcur( )

32:            variation Pcur( )

33:            Ite Ite
cur cur
= +1

34:  end while
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can also express ftp  as  ftp {(?s,?p,?o),(?pb)}= .  Therefore,  these two equations 
ftp.left tpp (?s,?p,?o)= = , ftp.right (?pb)=  are established.

Let’s introduce the method with an example. The authors assume a scenario that the robotic arm 
is malfunctioning. And the authors define the concept of causing robotic arm failure and the problems 
caused by robotic arm failure. And the simple Bayesian network of this scenario is shown in Fig. 2.

Next, the authors describe the method for constructing the probabilistic rule. These can be seen 
that three factors, the event A

1
 (denoting locating sensor failure), A

2
 (representing program bug), 

A
3

 (denoting controller output failure) can lead to the event B  (denoting robotic arm location failure). 
Similarly, the event B  is also a factor that can lead to C

1
 (denoting unqualified product) and C

2
 

(denoting production accident). Therefore, the authors can define two types of rules to calculate the 
probability. One is, when event B occurs, used to calculate these probabilities of the event set (
A A A

n1 2
, �� ) which can lead to the occurrence of event B. The other is, when event B does not 

occur, used to calculate the probability of event B resulting from the occurrence of every event in the 
set A A A

n1 2
, �� . The rules are shown in Tab. 2.

To calculate the value of the probability factor in probability rules, the authors divide the 
probability rules into two categories: (1) Total probability model; (2) Bayesian rule model. The 
total probability model is used for multiple causes (multiple events) leading to one result (one event) 
(Mughal, 2021), and the Bayesian model is used for the analysis of each cause under the condition 
that the result occurs (Cantone, 2021). The probability calculation formula is as follows:

P B P A P B A
i i

i

n

( ) ( ) ( | )=
=
∑

1

	 (5)

When the set (A A A
n1 2

, �� ) is the complete set leading to event B, the formula (5) can be used 
to calculate the probability of event B. When looking for the cause of event B under the condition 
that event B has already occurred, formula (6) can be used to calculate the probability:

P A B
P A P B A

P A P B A
i

i i

j jj

n
( | )

( ) ( | )

( ) ( | )
=

=∑ 1

	 (6)

In the probabilistic rule, the authors use the four-tuple pattern ? ,: Pr ,? ,?s has obabilityValueOf pb pb  
to represent the probability of the occurrence of the subject ?s  and use ? ,s leadTo o pb: , ? ,?  to 

Figure 2. The relationships of robotic arm failure concepts
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indicate that the event ?s  can lead to the event ?o  and the probability of the event ?o  occurring 
under the condition that the event ?s  occurs is ?pb. To simplify the representation, probability 
symbols are used in the probability rules to represent the corresponding value of probability.

The authors have designed two probability rules, Rule 1 and Rule 2, as shown in Tab. 1. They 
correspond to the Bayesian model and total probability model respectively. When calculating the 
probability rule, Rule 1 uses the formula (6), and Rule 2 uses the formula (5). For the example shown 
in Figure 2, when calculating the probability of occurrence of A1 under the condition that B occurs, 
the formula (7) can be used. The method for calculating the probability of occurrence of other factors 
such as A2 is the same as that for A1. Ruler 2 implement the reasoning from the causes (A

1
, A

2
, A

3
) 

to the result(B ), and the probability formula (8) is used to calculate the probability of the result B :

P A B
P B A P A

P B A P A P B A P A P B A P A
( | )

( | ) ( )

( | ) ( ) ( | ) ( ) ( | ) ( )1
1 1

1 1 2 2 3 3

=
+ +

	 (7)

P B P B A P A P B A P A P B A P A( ) ( | ) ( ) ( | ) ( ) ( | ) ( )= + +
1 1 2 2 3 3

	 (8)

Table 2. Rule 1 (Left) and Rule 2 (Right)

Rule1 Rule2

PRS: PRS:

?A
1

,:leadTo, ?B, ?pb∧ ?A
1

,:leadTo, ?B, ?pb∧

?A
2

,:leadTo, ?B, ?pb∧ ?A
2

,:leadTo, ?B, ?pb∧

?A
3

,:leadTo, ?B, ?pb∧ ?A
3

,:leadTo, ?B, ?pb∧

?A
1

,:hasprobabilityValueOf, ?pb, ?pb∧ ?A
1

,:hasprobabilityValueOf, ?pb, ?pb∧

?A
2

,:hasprobabilityValueOf, ?pb, ?pb∧ ?A
2

,:hasprobabilityValueOf, ?pb, ?pb∧

?A
3

,:hasprobabilityValueOf, ?pb, ?pb∧ ?A
3

,:hasprobabilityValueOf, ?pb, ?pb∧

?B,:ishappened, true ?B,:ishappened, false

CNS: CNS:

?B, causedBy, ?A
1

, ?P(A
1

|B) ?B,:hasProbabilityValueOf, ?P(B), ?P(B)

?B, causedBy, ?A
2

, ?P(A
2

|B)

?B, causedBy, ?A
3

, ?P(A
3

|B)
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The Implementation of Tiny-UKSIE
The implementation of the classic RETE network requires some modifications due to the introduction 
of quaternions and probabilistic rules. These changes mainly include three aspects:

1. 	 Adjusting the storage structure of nodes: Due to the introduction of the four-tuple with the 
probability factor, it is necessary to build Alpha and Beta networks suitable for the four-tuple. 
Specifically, the α  memory corresponding to the α  node will store the matched four-tuple, and 
the β  memory corresponding to the β  node will also store the matched four-tuple. Therefore, 
the authors adjusted the storage structure of two types of nodes α  and β , respectively, and 
realized the storage of quadruples.

2. 	 Adding a probability calculation module: To realize the reasoning of uncertain knowledge, 
the authors add a probability calculation module based on Fig. 1, which is used to calculate the 
probability of uncertain knowledge. As shown in Fig. 2, the structure of the proposed RETE 
network remains unchanged, and still includes two parts: alpha networks and beta networks. 
Moreover, the probability calculation module is linked with the rule activation module. In the 
process of rule matching and inference, probabilistic rule detection is performed immediately 
after the rule is activated. If the activated rule is probabilistic, the corresponding probability 
model is selected for probability calculation.

3. 	 Tailoring and Designing Inference Engines: Based on the mainstream inference engine 
architecture, auxiliary functions are tailored to achieve a lightweight design. Specifically, the 
authors removed these functions including ontology construction, knowledge graph storage, and 
consistency check, then implemented the inference engine using C++ language1. All the source 
codes are available in GitHub2.

EXPERIMENT AND EVALUATION

In this section, the authors implement Tiny-UKSIE and apply it to an edge gateway in IoT for 
performance comparison tests such as resource usage and inference time, and then analyze the 
experimental results.

Figure 3. The proposed structure of the RETE network
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Experimental Environment and Architecture
The architecture of the experimental system is shown in Fig. 4, including the wireless sensor network, 
gateway, and server. The gateway is designed based on an EXYNOS-4412 processor with 2G memory, 
1.5GHz clock frequency, 4G eMMC, and running Linux 3.5 operating system. The server model is 
A840-G1012, with 512 GB of memory and running CentOS 6.5 operating system. Data from the sensor 
network is transmitted to the gateway via wireless communication, and the data is processed by the 
gateway and transmitted to the server. Specifically, the gateway includes modules for multi-protocol 
adaptation, data collection, ontology module, inference engine (Tiny-UKSIE), event processing, 
etc. Based on semantic processing technology, it realizes the update of sensor network ontology and 
industrial equipment ontology, data annotation, and inference based on built-in rules and custom 
rules. In addition, the ontology used in the gateway is built on the server-side.

Experimental Preparation
Building Ontology
The underlying sensor network mainly detects AGV robot status data including speed, rotation 
angle, load, etc., the mechanical arm status data includes six-axis angle data and torque data, etc., 
the station status data includes load, power, working status, etc., and environmental status including 
temperature, humidity, harmful gas, etc. The construction tool of ontology is Top Braid Composer 
(TBC)3. The ontology view of sensor networks and industrial equipment based on Gruff software 
(a visualization software for RDF) is shown in Fig. 5. In the construction of the ontology, some 
semantics standards of W3C4 were cited, such as using the Web Ontology Language 2 (OWL25) and 
the related concepts defined in Semantic sensor network (SSN6) ontology, and the name-space like 
the SOSA7, SSN, and Time8.

Conversion From Triples to Four-Tuples
In the section “Proposed Four-tuple with Probability Factors and Probability Rules”, the concept of 
the four-tuples is proposed, but the ontology constructed by TBC software is a classic representation 

Figure 4. The structure of the low-speed wireless sensor network gateway based on IPv6
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of triples, so it is necessary to convert the triple ontology into the quadruple ontology. The conversion 
principle is to set the probability factor in the possible knowledge to its true probability value, while 
the probability factor in the non-possibility knowledge is set to a constant “1”. Tab. 3. Shows the 
example for the conversion from triples to four-tuples. Specifically, choosing one of them from the 
table, such as A leadTo B

1
, ,  and A leadTo B

1
0 005, , , . , the probability factor in the non-possibility 

knowledge has been set to “0.005”.

Data Annotation and Rule Set Settings
The gateway receives data transmitted from the underlying sensor network every 100 milliseconds and 
performs data annotation and inference once, which in turn uses the inference results as a reference 
for policy execution. Data annotation is the process of combining sensor data with the corresponding 

Figure 5. Ontology-based on experimental environment

Table 3. Example for the conversion from Triples to Four-tuples

Triples Four-tuples Element type

tempSenor1,instanceOf,tmepSensor tempSenor1,instanceOf,tmepSensor,1 instance

tempSensor,subClassOf,Sensor tempSensor,subClassOf,Sensor,1 class

hasOutput,type,DatatypeProperty hasOutput,type, DatatypeProperty,1 property

tempValue,owl:maxCardinality,125 tempValue,owl:maxCardinality,125,1 relation

rdf:type,rdfs:range,rdfs:Class rdf:type,rdfs:range,rdfs:Class,1 constraint

rdfs:domain,rdfs:range,rdfs:Class rdfs:domain,rdfs:range,rdfs:Class,1 axiom

A leadTo B
1
, , A leadTo B

1
0 005, , , . instance

A ishappened true
1
, , A ishappened true

1
1, , , instance

B,hasprobabilityValueOf,0.005 B,hasprobabilityValueOf,0.005,1 instance
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data variables of four-tuple knowledge. In the implementation, the hash map is used to store the 
sensor ID and the corresponding value. When the ontology knowledge needs to be updated, the value 
(current sensor data) is obtained by looking up the corresponding key in the hash map. The setting 
of rule set follows the semantic Standard Specification of W3C, uses the relevant basic reasoning 
rules stipulated by W3C, adds custom probability rules, and finally converts it into an expression 
suitable for four-tuple reasoning.

Genetic Algorithm Settings
Before each execution of rule inference, Tiny-UKSIE first determines whether there is an unoptimized 
rule set, and if not, executes rule inference directly. Otherwise, the GA algorithm optimizer will be 
started to optimize the Alpha network. During the execution of the GA algorithm, to reduce the impact 
of computer resource allocation on the inference time, 10 inferences will be executed for each fitness 
evaluation, and the number of iterations is set to 200. The parameters of the related GA algorithm are 
set as follows: there are 8 individuals in the population, the selection rate is set to 0.25, the crossover 
rate is set to 0.25, and the mutation rate is set to 0.125.

Program File Preparation and Execution
During the experiment, programs such as Tiny-UKSIE inference engine and data annotation will 
be executed, and these programs will run in the gateway shown in Fig. 4. First, the inference engine 
and other programs will be compiled by the cross compiler to generate executable programs suitable 
for running on the ARM-32-bit gateway. At the same time, the ontology files and rule files required 
for the inference engine execution will be copied to the gateway. In addition, when the Tiny-UKSIE 
inference engine runs, it also needs to record the time and memory it consumes. In the experiment, two 
mainstream reasoning engines, Jena9 and RDF4J10, are selected for comparison. The same functions 
need to be implemented when these reasoning engines are running, including data annotation, rule-
based reasoning, and calculating their time and memory consumption.

Tiny-UKSIE Evaluation
Optimization Effect Evaluation of GA Algorithm
The GA algorithm is used to find the optimal Alpha network structure to optimize the RETE algorithm. 
The experimental conditions were set as follows: the authors formulated three rule sets, and the 
number of rules contained in the three rule sets was 450 (RuleSet1), 210 (RuleSet2), and 49 (RuleSet3), 
respectively. Moreover, the number of EQsubseq  in the three rule sets was 82 (RuleSet1), 35 
(RuleSet2), and 7 (RuleSet3), respectively. Furthermore, the number of iterations was set to 200 for 
all three experiments, and in each experiment, the best individual was counted once every 10 iterations.

Fig. 6 shows the variation curve of the inference time with the number of iterations for the three 
rule sets. It can seen that the change of reasoning time tends to be stable after about 150 iterations. 
Specifically, the GAvalgorithm has an obvious optimization effect on the RuleSet1, and the reasoning 
time varies greatly between the beginning and end of optimization. Especially in the first 50 iterations, 
the reasoning time decreases significantly. However, when the number of iterations reaches about 
120, the reasoning time decreases slowly. Compared with RuleSet1, the optimization effect of the 
GA algorithm on RuleSet2 is less significant. After the first 30 iterations, the reasoning time begins 
to change slowly. Unfortunately, the GA algorithm has the worst optimization effect on RuleSet3. 
After 200 optimization iterations, the change of inference time is still not significant.

The authors counted the time before and after optimization of the GA algorithm for the three 
rule sets, and the statistical results are shown in Tab.4. To reduce the impact of dynamic allocation 
of computing resources on the inference time and memory consumption of the inference engine, 
each time in the experiment is the sum of the time to perform 100 inferences. From the table, it can 
be seen that the more the number of patterns with the same degree of sharing in a rule set, the more 
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effective the GA algorithm is in optimizing the rule set. On the contrary, the fewer the number of 
patterns with the same degree of sharing, the less effective the GA algorithm is in optimizing the rule 
set. After statistical analysis, the authors can conclude that when the rule set contains a large number 
of four-tuples with the same degree of sharing, such as RuleSet1, the inference time is reduced by up 
to 8.73% when the rule set is optimized by GA algorithms.

Comparison of ROM Occupation
In current IoT applications, most IoT nodes are resource-constrained. Especially in terms of storage 
capacity, there is a big gap with cloud servers. Therefore, to realize the semantic IoT application, the 
resource occupation of the inference engine, especially the storage resource occupation, is the focus 
of attention. The authors compare the designed Tiny-UKSIE inference engine with Jena and RDF4J, 
two mainstream inference engines, and the ROM occupation is shown in Tab. 5. The comparison 
of ROM occupation of the three inference engines is shown in Fig. 7. It can be seen that the ROM 
occupation of the Tiny-UKSIE inference engine is extremely small, only 882KB. Compared with 
the other two mainstream inference engines, the storage resource occupation is reduced by as much 
as 97.2%.This is due to two reasons: first, the authors cut some non-essential functions for the target 
usage scenarios; second, Tiny-UKSIE is implemented in C++ programming language, which can 

Figure 6. Optimization results of GA algorithm for inference time

Table 4. Comparison of time optimization of three rule sets

Ruler set The number 
of rules

The number of 
EQsubseq

Inference time 
at the beginning 

(ms)

Inference time 
at the ending 

(ms)

Optimization 
ratio (%)

Rule set 1 450 82 2141 ms 1954 ms 8.73%

Rule set 2 210 35 1436 ms 1342 ms 6.55%

Rule set 3 49 7 657 ms 644 ms 1.98%
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be directly run in Linux OS or IoT devices without OS, reducing the additional storage resource 
occupation due to the running environment configuration. However, both Jena and RDF4J inference 
engines are implemented in Java language programming, which requires the configuration of the 
running environment. This will result in more storage resource usage, such as Jena and RDF4J, which 
both require 43.4MB of additional storage space. In practical applications, when the device ROM 
resources are fixed, the smaller the program code of the inference engine, the lower its occupancy of 
the device ROM resources. That is, Tiny-UKSIE has a low ROM resource occupancy rate. The device 
will have more ROM resources to store other functional program code, which is more conducive to 
the function expansion of the application device. Therefore, overall, Tiny-UKSIE is more suitable to 
run on IoT edge computing devices with limited ROM resources.

Comparison of Inference Time
Inference time is a key metric for evaluating inference engines, which reflects the execution efficiency 
of inference engines. Especially in application scenarios with dynamic data changes and high real-
time requirements, which have high requirements on inference efficiency. For this experiment, the 
authors use three numbers of ontology instances, and the number of four-tuples is 806, 1263, and 2406, 
respectively. Since the single inference time of each inference engine is small, to reduce the impact 
of resource allocation on the single inference time in the gateway system, the authors set the number 
of inferences for each ontology by the three inference engines to 100 and record the total time of 100 

Table 5. Comparison of ROM occupation of three inference engines

Inference Engine ROM occupation Runtime environment

Jena 30.8 MB Corresponding JRE environment (43.4MB)

RDF4J 27.4 MB Corresponding JRE environment (43.4MB)

Tiny-UKSIE 882 KB No need for the additional runtime environment

Figure 7. Comparison of ROM occupation of three inference engines
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inferences. The statistical results are shown in Fig.8. It can be seen from the figure that Jena has the 
longest inference time and tiny-UKSIE has the least inference time in all three experimental scenarios, 
and the inference time of tiny-UKSIE is reduced by 20.77%, 24.55%, and 17.82%, respectively. 
This reflects that due to the optimization effect of the GA algorithm on the RETE network and the 
lightweight design of the inference engine, the inference time of Tiny-UKSIE is reduced compared 
with both Jena and RDF4J under the same conditions. In other words, the inference efficiency of tiny-
UKSIE is higher, which is more suitable for IoT application scenarios with dynamic data changes.

Comparison of RAM Consumption
In terms of the storage resource requirements and usage of the inference engine, in addition to the 
ROM size occupied by itself, the runtime RAM consumption is a more critical indicator. During the 
experiment in Section “Comparison of Inference Time”, the authors counted the RAM consumption 
of each inference engine during operation, including inference RAM consumption, extra RAM 
consumption, and total RAM consumption. Specifically, the inference RAM consumption refers to the 
RAM occupied by the inference algorithm when it is running; and the additional RAM consumption 
refers to the RAM occupied by the operating environment on which the inference engine depends, such 
as the RAM occupied by the Java Virtual Machine (JVM), here the JVM is the running environment 
on which the Jena and RDF4J inference engines depend. Total RAM consumption refers to the sum 
of the first two types of memory consumption.

Table 6 shows the statistical results of RAM consumption when the three inference engines are 
running with different numbers of four-tuples. Moreover, the RAM consumption comparisons under 
the three experimental conditions are shown in Fig. 9, Fig. 10, and Fig. 11, respectively. It can be 
seen that under the three conditions, Tiny-UKSIE consumes less RAM than the other two inference 
engines, with minimum consumption of 4.2MB, and the inference RAM consumption is reduced by up 
to 17.65%; moreover, in terms of total RAM consumption, Tiny-UKSIE is even more advantageous, 
the total RAM consumption is reduced by up to 97.37%. In practical applications, There are two main 
reasons for the RAM consumption advantage of Tiny-UKSIE. One is that the programming languages ​​
used by the three inference engines are different. Tiny-UKSIE is written in C++ language, while 

Figure 8. Comparison of the inference time of three inference engines
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the other two are written in Java language. In contrast, C++ has an advantage over Java in reducing 
RAM consumption. Another reason is that both Jena and RDF4J inference engines rely on JVM, 
which brings more RAM consumption, while Tiny-UKSIE does not. In practical applications, when 
the RAM resources of the device are fixed, the less RAM the inference engine occupies, the lower its 
RAM resource usage. That is, Tiny-UKSIE has a low RAM resource occupancy rate. This will free 
up more RAM resources of the hardware device for other functional calculations, which is beneficial 
to improve the computing performance of the hardware device. This is particularly important for the 
semantic application of the IoT, which can ensure that the hardware device can process and transmit 
monitoring data while performing semantic reasoning, which is beneficial to the real-time nature of 
network data transmission. Therefore, Tiny-UKSIE consumes less RAM when running, and is more 
suitable for IoT applications where device RAM resources are limited.

Table 6. Inference RAM consumption under different four-tuples

Inference Engine 
Type

Number of Four-
tuple Instances

Inference RAM 
Consumption (MB)

Extra RAM 
Consumption (MB)

Total RAM 
Consumption (MB)

Jena

806 5.1 154.4 159.5

1263 5.7 154.4 160.1

2406 7.4 154.4 161.8

RDF4J

806 5.1 147.3 152.4

1263 5.6 147.3 152.9

2406 7.5 147.3 154.8

Tiny-UKSIE

806 4.2 0 4.2

1263 4.9 0 4.9

2406 6.5 0 6.5

Figure 9. Comparison of RAM consumption (Number of four-tuples:806)



International Journal on Semantic Web and Information Systems
Volume 18 • Issue 1

20

CONCLUSION

Applying semantic reasoning technology to the IoT field can enhance the value of data and improve 
the intelligence of applications. The current mainstream inference engines cannot be applied to the IoT 
field due to high storage resource usage. Moreover, these inference engines, such as Jena, RDF4J, etc., 
do not support the reasoning of uncertain knowledge. Based on the RETE reasoning algorithm, this 

Figure 10. Comparison of RAM consumption (Number of four-tuples:1263)

Figure 11. Comparison of RAM consumption (Number of four-tuples:2406)
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paper proposes a lightweight reasoning engine Tiny-UKSIE. The GA algorithm is used to optimize the 
Alpha network of the RETE algorithm, which reduces the storage resource usage and the reasoning 
time, as well as improves the reasoning efficiency. Aiming at the problem that uncertain knowledge 
cannot be expressed and reasoned, this paper proposes a four-tuple knowledge representation method 
with probability factors, constructs four-tuple-based probabilistic inference rules, and realizes the 
adaptation to four-tuple patterns by improving the RETE network so that the inference engine can 
reason about uncertain knowledge. The results of multiple comparative experiments show that Tiny-
UKSIE supports uncertain knowledge reasoning. Moreover, it has more advantages in terms of storage 
resource occupation and inference efficiency and is suitable for resource-constrained IoT application 
scenarios, which can drive the semantic applications and development of IoT.

In future work, the authors plan to conduct comparative experiments with more inference engines. 
In addition, the authors will perform more experiments on more hardware platforms and make 
optimizations to improve the generality of the inference engine. Moreover, to expand the feasibility 
of the uncertainty knowledge representation method, it would be of great significance to study the 
efficient conversion method from triples to four tuples. Furthermore, the authors are planning to study 
algorithm optimization methods in the case of the fewer number of patterns with the same degree of 
sharing, to further reduce storage resource usage and improve inference efficiency.
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