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ABSTRACT

Understanding the role played by genetic variations in diseases, exploring genomic variants, and 
discovering disease-associated loci are among the most pressing challenges of genomic medicine. A 
huge and ever-increasing amount of information is available to researchers to address these challenges. 
Unfortunately, it is stored in fragmented ontologies and databases, which use heterogeneous formats 
and poorly integrated schemas. To overcome these limitations, the authors propose a linked data 
approach, based on the formalism of multilayer networks, able to integrate and harmonize biomedical 
information from multiple sources into a single dense network covering different aspects on 
Neuroendocrine Neoplasms (NENs). The proposed integration schema consists of three interconnected 
layers representing, respectively, information on the disease, on the affected genes, on the related 
biological processes and molecular functions. An easy-to-use client-server application was also 
developed to browse and search for information on the model supporting multilayer network analysis.

Keywords
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Neoplasms, Rare Diseases, Semantic Information Integration

1. INTRODUCTION

The last few years have marked the explosion of data in the field of biomedicine. Several key events, 
such as the completion of the Human Genome Project, the advent of next-generation sequencing 
technologies and the Internet of Things, have led to a significant increase of the volume and variety 
of available biomedical data including medical records, imaging data, sequencing data, sensor data, 
etc. (Kamdar, Fernández, Polleres, Tudorache, & Musen, 2019).
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Ontologies and open databases are widely used in biology and medicine to store this huge and ever-
increasing amount of information. Unfortunately, this often results in hundreds of large, fragmented, 
isolated, and heterogeneous data sources, each using a different format and scheme. As a matter of 
fact, healthcare professionals and biomedical researchers are facing serious difficulties in finding the 
information they need and even in mastering the enormous amount of available data. Furthermore, it 
should be considered that, while some information sources are primary (i.e., they collect data directly 
from articles published in biomedical journals), others are the result of systematic reviews. Without a 
method of critical evaluation and synthesis of this information, its integration, analysis, visualization 
and, in other words, translation into knowledge is almost impossible.

To overcome these limitations, new tools are needed, capable of querying multiple databases 
behind the scenes and providing researchers with integrated biomedical information and semantically 
interconnected entities (Fathalla, 2018). This integration must be transparent for researchers who would 
no longer have to worry about finding information sources, interpreting their syntax and schemas or 
mapping elements to reconcile concepts, relationships, and entities (Kamdar, 2018).

The research described in this paper goes exactly in this direction, aiming at the definition and 
implementation of a linked data application for the analysis, aggregation and study of available data 
related to Neuroendocrine Neoplasms (NENs), which are relatively rare neoplasms with 6.4-times 
increasing age-adjusted annual incidence during the last four decades (Grigoris Effraimidis, 2021). 
The developed system harmonizes the way information is stored in the existing biomedical information 
sources, thus contributing to the interoperability between these sources and improving the work of 
scientists in investigating these rare diseases.

The proposed solution interconnects information sources, representing a wide spectrum of current 
studies and expertise, by means of a single and robust ecosystem, thus providing the researcher with 
a quick access point to a dense network of information. Connected information include the National 
Cancer Institute Thesaurus, the Mondo Disease Ontology, the MedGen database, the Disease Ontology, 
the Orphanet Rare Disease Ontology, the DisGeNet database and the Gene Ontology.

Given the heterogeneity of interconnected information, the multilayer network formalism 
(implemented with semantic web languages and technologies) has been adopted to semantically 
link the available data sources (Hammoud & Kramer, 2020). Such networks are made up of distinct 
“layers” (each grouping concepts and relations), corresponding to different “aspects” of the domain, 
which are in turn connected with interlayer relationships. In particular, three interconnected layers 
have been designed that represent, respectively, information on diseases, affected genes, and biological 
processes and molecular functions of such genes and related gene products.

To the best of our knowledge, this is the first example of a multilayer network based on linked 
data and semantic web and the first tool for analyzing, aggregating, and studying data on rare tumors. 
By querying the system, researchers and healthcare professionals can obtain, through a user-friendly 
interface, answers to scientific questions such as relations between pathologies, involved genes and 
their mutations.

The paper is organized as follows: in section 2 the related work on biomedical data integration 
is summarized and the work is contextualized in the relevant literature; in section 3 background 
information on NENs and related biomedical data sources is provided; in section 4 the knowledge 
base architecture and the related integration issues are presented; in section 5 the developed prototype 
is described. The last section summarizes the conclusions and outlines the ongoing work.

2. RELATED WORK

The difficulty in using biomedical data is mainly due to the great heterogeneity of the data sources: 
querying them and exploiting the wealth of information they contain is a complex task full of obstacles. 
The problems that the researchers are required to face are mainly due to syntactic and semantic conflicts 
between data sources (Messaoudi, Fissoune, & Hassan, 2016). Syntactic conflicts are related to the 
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diversity and multiplicity of models (structured, semi-structured, unstructured) and data formats. 
These can be represented, for example, with a relational, object-oriented, or semi-structured XML 
model. Semantic conflicts are due to the presence of data from multiple sources, that may lead to 
different interpretations depending on local contexts, causing misunderstandings.

This is a problem also felt in other areas including cultural (Capuano, Gaeta, Guarino, Miranda, 
& Tomasiello, 2016), formative (Capuano, Longhi, Salerno, & Toti, 2015), legal (Hasan, et al., 
2021), etc. but particularly relevant in biology and medicine. To address this, researchers need to 
have advanced skills and knowledge to find relevant data and perform their research effectively. Such 
skills can sometimes range from learning multiple systems’ configurations and requirements up to 
coding. This process can greatly increase the complexity and time of scientific research so that, in 
many cases, the researcher ends up simply looking at the web portals and using the available search 
engines (e.g., PubMed) to retrieve, as best as possible, information they need.

Being a deeply felt problem in biomedicine, several projects for the integration of biological data 
sources have been proposed over time. For example, the Gene Expression Data Warehouse (GEDAW) 
project developed an object-oriented data warehouse to store and manage relevant information on 
liver gene expression data and related biomedical resources (Guérin, et al., 2005). It systematically 
integrates gene information from a multitude of structured data sources including GenBank, BioMeKe, 
and an internal database with detailed experimental data on liver genes.

Bio2RDF is an open-source project aimed at transforming a vast collection of heterogeneously 
formatted biomedical data into linked data through semantic web technologies (Belleau, Nolin, 
Tourigny, Rigault, & Morissette, 2008). With Bio2RDF, public bioinformatics database documents 
including Kegg, PDB, MGI, HGNC etc. are made available in RDF. The third edition of Bio2RDF 
is made up of 11 billion triples in 35 datasets and constitutes one of the largest collections of linked 
data for life sciences. It also includes scripts to automatically convert data from various formats (e.g., 
text, XML, SQL, etc.) into RDF (Dumontier, et al., 2014).

Bio2RDF, together with other biomedical ontologies (most of which are collected in the BioPortal 
repository2) constitutes the Life Sciences Linked Open Data (LSLOD), part of the wider Linked Open 
Data initiative (Bizer, Heath, & Berners-Lee, 2009). Figure 1 shows the LSLOD cloud where data 
sources are represented as circles while semantic relationships between data sources are represented 
with gray lines.

The Knowledge Base of Biomedicine (KaBOB) is another project aimed at integrating 18 
biomedical data sources using 14 ontologies from the Open Biomedical Ontologies (OBO) initiative3, 
thus facilitating the interaction of these sources with data and tools that already rely on these ontologies 
(Livingston, Bada, Baumgartner, & Hunter, 2015). In KaBOB, identity between data sources is 
maintained through the generation of a single biomedical entity for each set of equivalent data 
source-specific identifiers. These entities, connected with the ontology concepts, serve as building 
blocks for common biomedical representations, which can be simultaneously modeled and queried 
at multiple abstraction levels.

The Genomic and Proteomic Knowledge Base (GPKB) integrates several biomedical data sources 
including Entrez Gene, UniProt, IntAct, Expasy Enzyme, GO, GOA, BioCyc, Kegg, Reactome and 
OMIM (Masseroli, Canakoglu, & Ceri, 2016). Like other initiatives described so far, it adopts a 
global schema based on the abstraction and generalization of the integrated sources. It also includes 
a set of procedures for the integration and maintenance of data, capable of updating the knowledge 
base considering the evolutions of the integrated sources, ensuring coherence, and performing the 
semantic closure of the hierarchical relationships of the adopted ontologies. The system also provides 
a web interface4 for the composition of queries on the knowledge base.

The Software for Flexible Integration of Annotation (SoFIA) is a framework for workflow-
driven integration of omics information from multiple sources (Childs, Mamlouk, Brandt, Sers, & 
Leser, 2016). To avoid the information overload caused by similar software, returning all available 
information related to a given query, SoFIA applies a goal-oriented approach. It conceptualizes a 
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set of workflow templates that cover different integration goals. Given a specific integration task, 
consisting of a goal, a set of data sources and required outputs, SoFIA composes a minimal workflow 
that completes the task and returns only the subset of information that is really needed.

SysCancer is a research project aimed at developing an integrated system that combines all stages 
of cancer studies (Bensz, et al., 2016). The central data warehouse, developed as part of the project, 
is used to support multidimensional analysis starting from local databases after the data, intended for 
public access, has been gathered and integrated. A computational cluster is responsible for performing 
complex analysis on this data with advanced algorithms.

Based on the analysis of existing systems and in accordance with (Messaoudi, Fissoune, & 
Hassan, 2016), the current approaches to biomedical data integration, like those described so far, can 
be broadly classified into three categories: data warehouse (i.e., databases that integrate a selected 
set of data into a common schema); linked data integration systems (i.e., based on the adoption of 

Figure 1. The Life Sciences Linked Open Data cloud1 in May 2021
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semantic web standards); workflow-based integration systems (i.e., integrating external data sources, 
based on a predefined pattern, to respond to a specific request).

In this work we propose a hybrid integration approach based on linked data supporting multilayer 
network analysis. Furthermore, like workflow-based systems, our approach is also capable of 
integrating external, non-semantic data sources according to specific integration patterns. Since the 
integration of data from these external sources is made “on the fly” on a frequently updated local 
copy, according to user requests, an advantage of this approach is that there is no danger of using 
obsolete data.

3. BACKGROUND

As we are interested in the definition and development of a linked data application for the analysis, 
aggregation and study of existing information about Neuroendocrine Neoplasms (NENs), in this 
section some background information about such rare diseases (section 3.1) is provided, followed by 
a brief overview of the main related biomedical information sources used for the semantic integration 
task (section 3.2).

3.1. Neuroendocrine Neoplasms
NENs can arise in most of the epithelial organs of the body, in pure endocrine organs, in nerve 
structures or in the diffuse neuroendocrine system. They can be organized in two different groups: 
poorly differentiated Neuroendocrine Carcinomas (NECs) and well-differentiated Neuroendocrine 
Tumors (NETs). Figure 2 (Rindi & Inzani, 2020) shows sections of NEN cancerous tissue (stained 
with hematoxylin and eosin) including NET samples such as lung carcinoid (A), pheochromocytoma 
(B) and insulinoma (C), as well as NEC samples such as synaptophysin (D), gastric NEC (E) and 
cutaneous NEC (F).

The classification of NENs into NECs and NETs has only recently been proposed by the 
World Health Organization (WHO) with the aim of allowing specialists to manage these diseases 
consistently, regardless of anatomical location, thus reducing inconsistencies and contradictions 

Figure 2. Sections of different types of NEN cancerous tissue



International Journal on Semantic Web and Information Systems
Volume 18 • Issue 1

6

among the organ-specific system previously in use (Rindi, et al., 2018). This classification, based 
on a consensus conference held at the International Agency for Research on Cancer (IARC) in 2017 
and subsequently enriched in 2019 (Nagtegaal, et al., 2019), suggests distinguishing NENs based on 
their degree of differentiation, which is inferred from the appearance of cancer cells observed under 
the microscope. In particular:

•	 NETs are well-differentiated neoplasms classified into three levels as G1, G2 and G3, 
corresponding to low, intermediate, and high grade.

•	 NECs are poorly differentiated neoplasms and are always high grade i.e., G3.

As reported in Table 1, the grade and cell differentiation depend, in turn, on other factors such 
as mitotic count and Ki-67 cell labeling index. Furthermore, according to the type of cells that 
characterize them, NECs can in turn be divided into small- and large-cell type NECs. As described 
in section 4, this information was used to retrieve and characterize the NENs within the medical 
information sources used by the proposed integration model.

Despite the ongoing standardization process, the current nomenclature on NENs, while including 
established and accepted definitions, still presents variants related to the different anatomical sites. 
This heterogeneity in terminology and classification creates confusion and hinders the integration of 
information from different data sources. This justifies the creation of a tool, such as the one proposed 
in this work, aimed at supporting researchers and specialists who collect, organize, and systematically 
analyze the existing biomedical data on these diseases (which, being rare, are almost ignored the 
industrial sector). The aim is to provide them with a global and unified view of this data in a single, 
well-harmonized knowledge base.

3.2. Biomedical Information Sources
Integrated information sources include existing biomedical ontologies and databases, storing 
heterogeneous data, often overlapping and poorly connected (or not connected at all), about diseases 
(cancers and rare diseases), genes, gene products, biological processes, and molecular functions as well 
as known gene-disease and disease-disease associations. Relevant information for study and research 
on NENs has been extracted from these sources (which are currently only accessible independently) 
and connected into a single multi-layered knowledge model accessible through an easy-to-use client-
server application. The list of integrated sources is shown in Table 2 with a reference to the official 
website, more details are provided below.

The National Cancer Institute Thesaurus (NCIT) is an open-source medical ontology aimed at 
providing a controlled vocabulary usable by researchers and specialists in the various subdomains 
of oncology (Kumar & Smith, 2005). It provides stable and unique codes for biomedical concepts, 
preferred terms, synonyms, research codes and other information. At a high level, the NCIT ontology 
includes the concept of disease that describes several cancers with their properties including cellular, 

Table 1. Classification and grading criteria of NENs

Class Subclass Differentiation Grade Mitotic rate Ki‐67 index

NET

G1

Well-differentiated

Low < 2 < 3%

G2 Intermediate 2–20 3–20%

G3 High > 20 > 20%

NEC
Small-cell type

Poorly differentiated High > 20 > 20%
Large-ce l l  type
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anatomical, morphological, and clinical characteristics. It also includes molecular concepts such as 
genes, proteins, pathways, expression of fusion proteins and chromosomal translocations, used both 
for data encoding and as links that relate diagnostic and therapeutic concepts. It includes over 100,000 
definitions and over 400,000 cross-links between concepts and is updated frequently by a team of 
experts (Merabti, Joubert, Lecroq, Rath, & Darmoni, 2010).

The Orphanet Rare Disease Ontology (ORDO) provides information on rare diseases 
(i.e., occurring in less than 1 in 2000 people) and aims to help improving their diagnosis 
and treatment. It captures relationships between the following main classes: clinical entities 
(diseases, groups of disorders, syndromes, etc.), epidemiology (annual incidence, cases/
families etc.), genetic material (genes with proteins product, non-coding RNA, etc.), geography 
(diffusion in countries), and inheritance (autosomal dominant, autosomal recessive, etc.). 
It includes a multi-hierarchical thesaurus consisting of more than 7,000 entries and 4,000 
synonyms (Vasant, et al., 2014).

The Disease Ontology (DO) provides consistent, reusable, and sustainable descriptions 
of human disease terms, phenotype characteristics and disease concepts. DO terms are well 
defined and use references to established terminologies including NCIT and the Unified Medical 
Language System (UMLS) thesaurus (Bodenreider, 2004). DO includes concepts representing 
types of diseases, anatomical entities, cells, phenotypes, symptoms associated with anatomical 
areas, inheritance patterns, and transmission processes. It currently includes more than 10,000 
terms (Schriml, et al., 2012).

The Mondo Disease Ontology (MONDO) is a semi-automatically constructed ontology aimed 
at harmonizing disease definitions across different data sources (including NCIT, ORDO and DO) 
to address the lack of unified disease terminology. Its ontological scheme provides a hierarchical 
structure that can be used to classify diseases. It provides the representation of various concepts that 
identify the disease (acute, degenerative, etc.), its characteristics (rare or common, syndromic, or 
isolated, etc.), and its relative susceptibility (e.g., inheritance).

The Gene Ontology (GO), part of the larger Open Biomedical Ontologies (OBO) project, aims 
to develop and maintain a controlled vocabulary (including more than 40,000 terms) for describing 
genes and gene products in all species. It consists of three domains: cellular components (describes 
the parts of a cell, or its extracellular environment, where a gene product is active), molecular 
functions (describes the elementary activities of a gene product at the molecular level, such as ligand 
or catalysis), and biological processes (describes the biological molecular operations or events to 
which a gene or gene product contributes). Each GO-term (an ontology class) has a unique identifier, 
a definition, and several relations to other terms. The additional GO Annotation File (GOF) is a CSV 
file including more than 8 million statements about the function of genes and gene products, resulting 
from genome annotation studies (Ashburner, et al., 2000).

Table 2. List of integrated biomedical information sources

Information Source Format Website

National Cancer Institute Thesaurus (NCIT) OWL, OBO ncithesaurus.nci.nih.gov

Orphanet Rare Disease Ontology (ORDO) OWL www.ebi.ac.uk/ols/ontologies/ordo

Disease Ontology (DO) OWL, OBO disease-ontology.org

Mondo Disease Ontology (MONDO) OWL, OBO mondo.monarchinitiative.org

Gene Ontology (GO) OWL, OBO, CSV geneontology.org

MedGen database CSV www.ncbi.nlm.nih.gov/medgen

DisGeNet database RDF, CSV www.disgenet.org

http://www.ebi.ac.uk/ols/ontologies/ordo
http://www.ncbi.nlm.nih.gov/medgen
http://www.disgenet.org
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The MedGen database organizes medical genetic information, including terms and their relations, 
through stable unique identifiers. It is a comprehensive resource for accessing essential information 
on phenotypic health topics related to human medical genetics, gathered from established, high-
quality sources. Among the functions performed by MedGen is the mapping of terms from different 
ontologies and data sources (including NCIT, ORDO and UMLS). As described in the next section, 
this is the main MedGen feature that was used in this work (Louden, 2020).

The DisGeNet database integrates and standardizes data on disease-associated genes and 
variants from multiple sources including scientific literature. It covers the entire spectrum of human 
diseases as well as normal and abnormal traits, including over 30,000 diseases and traits, 20,000 
genes, and 1 million gene-disease associations. DisGeNet can be used to study the molecular basis 
of human diseases and their comorbidities, the properties of the disease genes, the hypotheses on the 
therapeutic action and adverse effects of drugs, etc. It is also useful for extrapolating gene-disease, 
variant–disease and disease-disease associations i.e., similarities between diseases based on shared 
genes and variants (Piñero, et al., 2020).

4. INTEGRATION AND HARMONIZATION APPROACH

The first aim of this research was to obtain a uniform classification framework for NENs within the 
three main ontologies currently in use in most medical applications: NCIT, DO and ORDO (see 
section 3.2). This was done by reducing the inconsistencies and contradictions between schemes and 
instances through a linked data approach that also relies on the integration of further sources, namely 
MedGen and MONDO. Then, on the harmonized model, additional information sources covering 
NENs-related genetic and molecular information (i.e., DisGeNet and DO) were integrated through 
a semantic-based multilayer network model.

The diagram in Figure 3 summarizes the proposed harmonization approach with integrated 
(above) and supporting (below) data sources for each step. First, the alignment of the NCIT, 
ORDO and DO disease descriptors is carried out using the information included in MONDO 
and MedGen. Then (step 2) only the information relating to the NENs is selected, exploiting 
the properties of NCIT. In the third step, the genetic information related to the selected diseases 
(coming from DisGeNet) is integrated with the information of the same type already gathered 
from NCIT and ORDO. Finally (fourth step), also the biological information (coming from GO) 
is integrated with the information of the same type collected from NCIT, thus obtaining the 
complete integrated model.

Based on this approach, in this section we formally characterize the layered structure of the 
defined integrated knowledge model (section 4.1), then we describe the composition and integration 
issues related to the definition of each layer (sections 4.2 onwards).

Figure 3. Flow diagram of the proposed integrated approach
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4.1. Multilayer Network Model
Complex domains, like the one we are modelling, are characterized by heterogeneous entities related in 
different ways and include multiple subsystems and levels of connectivity. Multilayer networks are an 
emerging formalism able to represent this complexity through a generalization of the graph structure 
where the nodes and edges are distributed on different layers, each representing an “aspect” of the 
domain (Kivelä, et al., 2014). Multilayer networks are particularly effective for modeling biological 
systems such as gene co-expression networks, protein-protein interaction networks or pathways. Their 
importance in biomedicine has been thoroughly investigated in (Hammoud & Kramer, 2020) where 
several variants of this model have also been formalized.

According to (Boccaletti, et al., 2014) we define a multilayer network as a triple M V E L= ( ), ,  
where the sets V  and E  represent, respectively, the nodes and edges of the network while 
L L L

d
= …{ }1

, ,  is the set of network layers. In turn, each L L
i
∈  is a subgraph L V E

i i i
= ( ),  

composed by the nodes V
i
 and the edges E

i
 such that V V

i

d

i
=

=1
∪  and E E

i

d

i
=

=1
∪ .

In this version (also called multilevel or multidimensional network) each node can appear in 
several layers but have direct connections only with the nodes of the same layer. Therefore, there are 
no explicit interlayer connections, but these are implicitly represented by the projections of the same 
node in different layers. A further constraint of our model is that each pair of adjacent layers shares 
at least one node while non-adjacent layers have no shared nodes i.e., L L

i j
∩ ≠ ∅  iff i j− = 1 . 

This allows to better encapsulate the entities and relations of a domain aspect into a single layer using 
shared nodes as bridges between related aspects.

As shown in Figure 4, our model is made of three interconnected layers that represent, respectively, 
information on diseases, affected genes, and their functions (i.e., biological processes and molecular 
functions). A linked data approach was used to harmonize information at each level across the selected 
data sources (shown in the figure) within a single ontology. This process is detailed in the following 
sections. Then specific concepts are used as bridges between layers (i.e., shared nodes). In particular, 
the disease class (and its subclasses) is used to move from layer 1 to layer 2 while gene class (and 
their subclasses) are used to move from layer 2 to layer 3.

Figure 4. Visual representation of the defined three-level network model
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Interlayer relations, which link the same concept in different ontologies, are implemented with 
the equivalent-class OWL statement. The same statement has been used to link the defined ontologies 
with the original sources (when these are ontologies themselves). Navigation and search within and 
between layers have been implemented at the application level as described in section 5.

4.2. First Layer: Diseases
The first layer was obtained by extrapolating and harmonizing information on NENs from NCIT, 
ORDO and DO ontologies (see section 3.2). A first issue of this task concerns the absence, for 
most of the diseases described by NCIT and ORDO, of a uniform identification code. The lack of 
such a code hinders the integration between these sources and with external information. To solve 
the problem, disease names of these ontologies were mapped to UMLS codes using two additional 
external resources: the MONDO ontology and the MedGen database (see section 3.2). Luckily, the 
DO ontology already includes the UMLS codes of the described diseases.

A first mapping of the codes was carried out using the MONDO ontology (whose purpose is 
precisely to unify the nomenclatures of known diseases). All the subclasses of the OWL class cell-
proliferation-disorder were retrieved from MONDO. Then, UMLS and NCIT codes associated with 
the resulting neoplasms were retrieved and used to build such mapping. Unfortunately, this search 
was not exhaustive: in fact, several NCIT NETs and NECs still lacked UMLS code. The MedGen 
database was used to obtain the missing disease identification codes. In addition to providing UMLS 
code mappings, this database also includes weekly updated information on the validity of those codes. 
Data within the names archive was used to obtain the non-suppressed UMLS codes associated with 
NCIT codes, data within the ordo-cui-history archive was used to obtain the non-suppressed UMLS 
codes associated with ORDO codes. Archive schemas are summarized in Table 3.

Once the neoplasm descriptors were aligned, only the NENs were extrapolated from the three 
ontologies starting from their properties and molecular characteristics. Given that only NCIT contains 
this detailed information, reflecting the results of more recent studies, NENs are first retrieved on 
NCIT and then, thanks to the obtained alignment, retrieved also on ORDO and DO.

For the extraction of the NETs from NCIT, the following properties of the disease class were used: 
disease-has-abnormal-cell (which allows to carry out a first filtering considering only neoplasms that 
present anomalies in the neuroendocrine cells) and disease-has-finding (which allows to select only 
neoplasms that present the appearance of tumor cells with well-differentiated lesions). In this way 
all NETs were extrapolated, regardless of their grade (which ranges from 1 to 3). For the extraction 
of the NECs from NCIT the following properties of disease were used: disease-has-finding (which 
allows to carry out a first filtering by considering only neoplasms that have a poorly differentiated 

Table 3. MedGen archives and fields used for identifier harmonization

Archive Field Description Example

names

CUI UMLS disease or medical resource identifier C4054192

name Name that the disease or medical resource has within the 
data source indicated in the source field

Peritumoral Brain 
Edema

source Data source name (e.g., SNOMED CT, NCIT, OMIM, GTR) NCIT

suppress Flag indicating whether the UMLS code-resource 
association is still valid or has been suppressed (Y or N) N

ordo-cui-history

ORDO-id Name that the disease or medical resource has in ORDO Orphanet_247353

CUI UMLS disease or medical resource identifier C0343055

is-current Flag indicating whether the association is currently in use 
(0 or 1) 1
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appearance under the microscope as well as high mitotic rate) and disease-is-grade (which specifies 
the degree of cell diffusion and proliferation that, in the case of NECs, must be 3).

The retrieved diseases were annotated as NETs and NECs, respectively, and the associated UMLS 
codes were used to retrieve and associate the same diseases in ORDO and DO. During this association, 
the presence of some neuroendocrine carcinomas not correctly classified in the ORDO ontological 
scheme was found. Figure 5 represents some high-level classes and relations of the harmonized 
model. The NCIT classes inside the dotted box were used for the identification of NETs and NECs, 
the gray classes, and the relations in bold were introduced by the level 1 integration schema to group 
and reorganize NETs and NECs under the harmonized ontologies.

4.3. Second Layer: Genes
The second layer provides information on the variations in the human genome that lead to the NENs 
described at the first level, such as permanent mutations or changes in the structure of a gene. Various 
genetic information is collected in this layer, including: the genes involved in the pathogenesis of the 
diseases and their characteristics; the cytogenetic anomalies, the potential molecular anomalies, the 
single-nucleotide polymorphism (SNP) or variants (SNV) i.e., the variations of the genetic material 
in a single nucleotide. Disease-disease associations (DDA) are also included which represent the 
result of studies that relate human diseases through their molecular causes based on the network of 
associations between genes, proteins, environmental factors, etc. This information may also be useful 
to specialists in assessing the comorbidity index.

Part of this information is already included in some of the biomedical data sources considered 
(i.e., NCIT and ORDO), further information has been extracted from DisGeNet (see section 3.2). Using 
the disease-mapped-to-gene property applied on NENs within NCIT, it was possible to extrapolate 
the genes associated with these diseases. Additional information of each gene was then retrieved 
including the observed anomalies (gene-has-abnormality property) and the related cytogenetic 
anomalies (disease-has-cytogenetic-abnormality property). From the latter information (if present), 
the chromosome to which the anomaly is connected was also obtained (cytogenetic-abnormality-

Figure 5. First layer - some relevant classes and relations of the harmonized model
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involves-chromosome property) as well as the related molecular anomalies (disease-has-molecular-
abnormality property), if present. The left part of Figure 6 shows the top-level classes and relations 
involved, as well as the mappings with that introduced by layer 2 integration schema (in gray). A 
similar process was also applied for the extraction of genetic information from ORDO where all the 
properties, that lead from a disease to the connected genes, have been considered.

As anticipated, information from NCIT and ORDO has been connected with information from 
the DisGeNet database which includes and integrates data on genes and diseases from various sources 
such as biomedical ontologies and scientific articles. The main archive fields used to this aim are 
summarized in Table 4. To obtain the gene-disease associations, the DisGeNet gene-disease archive 
was considered by extracting, starting from the UMLS codes of NENs, the genes whose association 
with the disease has been confirmed in at least 6 studies (n-of-pmids-association field) from 2010 on. 
In addition, only the associations reporting an evidence index of 1 were considered, thus indicating 
that all papers support the association.

The genetic variation-disease associations were obtained from the corresponding archive in a 
similar way, including the variation that causes the onset, the chromosome, and the chromosomal 
position in which it is located. In this case only variations confirmed by at least 30 field-based studies 
with an evidence index of 1 were considered. Through the genetic-variation-gene archive it was also 
possible to obtain the gene associated with this variation starting from the variant identifier (snp-id 
field). Finally, from the corresponding archive, the disease-disease associations for NENs were also 
obtained by considering diseases that have at least 3 genes in common (a similar association could 
also have been obtained considering the number of variations in common).

The right part of Figure 6 represents the top-level classes (in gray) used to encode the information 
gathered from DisGeNet and connected to the other classes of the layer 2 integration schema (in gray). At 
the end of this phase, the sets of genes most involved in the onset of NETs and NECs are also obtained. 
To this end, genes were considered whose association with these diseases has been confirmed since 2010 
by at least 30 scientific publications or biomedical data sources. These sets constitute a useful reference 
for researchers and sector specialists and their finding is an original result of this data integration project.

4.4. Third Layer: Gene Functions
The third layer provides additional information on genes and gene products responsible for the onset of 
NENs including their molecular functions (the elementary activities of a gene product at the molecular 

Figure 6. Second layer - some relevant classes and relations of the harmonized model
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level, such as binding or catalysis) and biological processes (operations or sets of events relevant to 
the functioning of integrated living units: cells, tissues, organs, and organisms). Molecular functions 
correspond to the activities that can be performed by single gene products (i.e., a protein or RNA) or 
by molecular complexes composed of several gene products. Biological processes include both specific 
processes such as glucose transmembrane transport and broad processes such as DNA repair. It should 
be noted that the relations between gene products (or groups of gene products) and biological processes 
or molecular functions are one-to-many, reflecting the biological reality that a particular protein can 
function in different processes, contain domains that perform different molecular functions and participate 
in multiple interactions with other proteins, organelles or locations in the cell (Magee, 2011).

The information used to build the third layer comes from NCIT and GO (see section 3.2). In a 
first step, the products encoded by genes are retrieved on NCIT following the gene-encodes-product 
relation. Then, the GO Annotation File (GOF) is used which contains a large set of statements 
associating gene products with molecular functions and biological processes. Table 5 shows the main 
fields used to this end: in particular, the db-object-symbol field identifies a gene product while the 
GO-id field identifies the activity within the GO ontology. The aspect field qualifies this association 
as a biological process or a molecular function while the db-object-type field provides a description 
of the gene product. It should be noted that GOF statements must be semantically interpreted. In fact, 
the association described so far can be modified based on the optional value of the qualifier field 
which can be one of the following:

•	 The value “not” indicates that it has been experimentally demonstrated that a gene product does 
not perform a particular activity, or it has been shown to have had a loss of function over the 

Table 4. DisGeNet archives and main fields used for the extraction of NEN genetic information.

Archive Field Description Example

gene-disease

gene-id NCBI Entrez gene identifier 4221

gene-symbol Gene symbol MEN1

disease-id Disease UMLS code C0238462

n-of-pmids-association Total number of publications reporting the gene-
disease association 4

ei Evidence index for the gene-disease association 1

genetic-variation-
disease

snp-id dbSNP variant Identifier rs794728640

chromosome Chromosome of the variant 11

position Position in chromosome 64807914

disease-id Disease UMLS code C0025267

n-of-pmids-association Total number of publications reporting the variant-
disease association 6

ei Evidence index for the gene-disease association 1

genetic-variation-
gene

snp-id dbSNP variant Identifier rs794728640

gene-id NCBI Entrez gene identifier 4221

disease-disease-
association

disease-id-1 UMLS code of the first disease C0238462

disease-id-2 UMLS code of the second disease C0007131

n-genes Genes in common among diseases 1

n-variants Gene variants in common among diseases 1
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course of evolution. The entry must therefore be interpreted as a “non-association” between the 
gene and the GO-term.

•	 The value “contributes-to” is used only for molecular functions when a function of a protein 
complex is facilitated, but not directly performed by one of its subunits. It is particularly useful 
for annotating molecular functions in cases where a complex has an activity, but not all the 
individual subunits are involved.

Once the GO-terms corresponding to a function or process are retrieved, the main GO ontology is 
queried to obtain information on such activities, including the name, the type, and the description. For 
molecular functions, the processes, or functions of which it is a part are also extrapolated through the 
part-of property. Then, the regulated biological processes are obtained through the regulates property. 
Figure 7 represents some high-level classes and relations of the harmonized model obtained for the 

Table 5. The main fields of the GO Annotation File (GOF) used for gene product association

Archive Field Description Example

annotation

db-object-symbol A unique and valid symbol identifying the gene product PHO3

db-object-name Gene product name Toll-like receptor 
4

db-object-type Gene product type description protein

GO-id Unique identifier of the GO ontology representing the 
activity associated to the gene product GO:0003993

aspect Activity type (P for biological process, F for molecular 
function) F

qualifier Optional item that modifies the interpretation of an 
annotation (not, contributes-to) not

Figure 7. Third layer - some relevant classes and relations of the harmonized model
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third layer. It also takes care of harmonizing GO biological processes with those described by NCIT 
and connected to genes through the gene-plays-role-in-process property.

5. DEVELOPED PROTOTYPE

This section describes the client-server application developed to browse and search for information 
on the integrated model described in section 4. The system architecture is described in section 5.1 
as well as the functions provided and the user interface. Section 5.2 discusses system performance 
and includes some considerations on validating the system and the underlying knowledge model.

5.1. Architecture and User Interface
The Virtuoso Universal Server was selected as the middleware to store the original biomedical 
ontologies and databases; it is an open-source solution able to manage different data formats and 
access protocols simultaneously. The original datasets are copied to the server, which is also in charge 
of updating them periodically, starting from the original endpoints (which were not directly used for 
better performance). Moreover, the same server also includes the defined multilayer integration model.

End users can access server information via a lightweight Java desktop application. Based on 
a query specified via an easy-to-use visual interface, a SPARQL query sequence is generated and 
forwarded to the server via HTTP. Then, the results obtained by the server are used to compose the 
answer that is shown graphically to the user. The Java client uses the Jena framework to manage RDF 
graphs and query them via SPARQL. OWL APIs were also used for the client-side manipulation of 
OWL ontologies. Figure 8 summarizes the main components of the system architecture.

Figure 9 shows the “diseases” section of the client application. It is the first view presented to the 
user and allows to obtain the classification of NETs and NECs in each of the three ontologies considered 
(NCIT, ORDO and DO). The diseases obtained for each ontology are the result of the integration 
work described in section 4.2 which also considers information from MONDO and MedGen. The 
interface has been designed to provide the user with both a broad view of the information and a partial 
view: in fact, he will be able to select only some pathologies that will be stored for subsequent steps.

Figure 10 shows the “genetic information” section of the application. It allows to obtain 
information relating to the genes involved in the diseases selected in the first phase, including: 
gene-disease, variation-disease and disease-disease associations, cytogenetics anomalies, molecular 

Figure 8. Client-server architecture of the developed prototype
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anomalies, etc. The obtained information is the result of the integration work described in section 
4.3 between NCIT, ORDO and the DisGeNet database. The interface also allows to obtain the genes 
most involved in NETs and NECs or the genes whose association with diseases has been confirmed 
in at least 30 data sources or research studies.

Figure 11 shows the “biological information” section of the application. It allows to obtain 
information on molecular functions and biological processes associated with genes whose variation 
causes the diseases selected in the preceding phases. The information obtained is the result of the 
integration work between NCIT and GO described in section 4.4. The interface allows to obtain a 
detailed description of the activities of the selected gene or gene product and to move on the related 
activities following the existing has-part and regulates properties, thus navigating the GO graph.

5.2. Performance and Validation
A server-side test installation was set on an Ubuntu machine with a 2.3GHz quad-core Intel Core 
i7 processor and 16Gb of RAM. With this hardware configuration, most queries are answered by 
the server in a split second and just the most complex (mixing information from semantic and non-
semantic sources) take longer, rarely more than 2 seconds. These results are in line with the recent 
benchmarks on RDF stores (Atemezing & Amardeilh, 2018) that rank Virtuoso Universal Server 
as one of the fastest triple stores both for instant queries (i.e., those used to generate dynamic views 
on the client) as well as for analytical ones (i.e., those used for validation and mapping purposes).

Figure 9. “Diseases” section of the client application
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The system validation was performed qualitatively by involving a domain expert with the aim 
of verifying the consistency and correctness of the ontological knowledge as well as the quality 
of the alignment between the data sources. An iterative approach was adopted in which the expert 
was asked to use the system and provide feedback which was in turn used to improve the level of 
alignment (Dragisic, et al., 2016). In the specific case, two validation iterations were enough to obtain 
a satisfactory result.

To measure the quality of the integrated knowledge model, the metrics defined in (Tartir & 
Arpinar, 2007) were also considered. In this regard, it should be noted that, during the harmonization 
process, no new classes were added with respect to those already included in the source models. 
The only exception is the Activity class introduced in the third layer to group the related concepts of 
Molecular Function and Biological Process (already existing in NCIT and GO). This also applies to 
most relations, except those introduced in the second and third layers for the incorporation of non-
ontological data sources (i.e., disease-disease, disease-gene, variant-gene, and disease-gene-variant 
from DisGeNet as well as does-activity, does-not-do-activity and contributes-to from GOF).

These properties ensure that the main quality metrics of the source schemes, such as Relationship 
Richness, Attribute Richness, and Inheritance Richness, are only marginally affected by the introduced 
semantic elements. The same is also true for Instance Metrics since no instances have been added 
or changed from the original ones. On the other hand, we found that the evaluation of such metrics 
on the whole integrated model is challenging task given its hybrid nature, including ontological and 

Figure 10. “Genetic info” section of the client application



International Journal on Semantic Web and Information Systems
Volume 18 • Issue 1

18

non-ontological information, the latter integrated “on the fly” based on user requests. As also reported 
in section 6, exploring this issue could be a promising direction for future research.

6. CONCLUSION AND FURTHER WORK

In this paper, we have described a research work aimed at designing and implementing a domain-
specific linked data application for the analysis, aggregation, and study of existing information on 
neuroendocrine neoplasms: a type of rare tumors. The application uses a knowledge base obtained 
by aligning and integrating existing semantic and non-semantic biomedical sources within a single 
multilayer network model.

Beyond the specific domain, the paper analyzes how to aggregate the results from the most recent 
studies with omics databases, genomic data repositories, data sources expressed in an ontological 
language, and traditional database schemes. The work is capable of being adapted to other domains, 
thus facilitating the rapid integration of heterogeneous data sets, reducing the time spent on data 
management and prioritizing its analysis.

The directions of extension of the proposed system are manifold. The design of additional 
information layers of the model is already underway, with the aim to integrate more domain aspects. 
In particular, an additional layer would be responsible for adding information about disease related 
phenotypes including morphology, development, biochemical and physiological properties, etc. 
Indeed, phenotypic data, combined with ever-increasing amounts of genomic data, have enormous 

Figure 11. “Biological info” section of the client application
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potential to accelerate the identification of clinically viable prognostic or therapeutic implications 
and to improve our understanding of rare diseases.

Additional layers may include human tissue information associated with disease-causing genes. 
Such information can help to find common features between different organs and further elucidate the 
function of genes associated with neuroendocrine neoplasms. An additional layer may also include 
information on drugs currently approved and in use for neuroendocrine neoplasms. Extrapolating the 
information on this point could be very complex because the treatment of this type of rare tumors 
still represents an important clinical problem. They are in fact biologically heterogeneous and contain 
subpopulations of cells with different angiogenic, invasive and meta-static properties. Therefore, their 
response to therapeutic agents is also heterogeneous.

In general, thanks to the approach based on linked data, there is no limit to the possible 
aggregation of omics information. Each information level would broaden the field of applicability 
of the system, making it increasingly complete and useful for supporting researchers and specialists 
in the biomedical sector. On the other hand, the multi-layer organization would help to deal with this 
vastness of information in an organized and governable way.

As anticipated in section 5, another promising research direction is the extension of existing 
ontology quality metrics to hybrid, workflow-based knowledge bases, as the one proposed. Moreover, 
to help anticipating the evolutions of the integrated schemas, the possibility of incorporating automatic 
ontology alignment approaches (Abayomi-Alli, et al., 2021) and methods for learning taxonomic 
and non-taxonomic relations (Hassan, Ali, Fathalla, Kholief, & Hassan, 2021) will be also explored.
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