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ABSTRACT

Internet of things (IoT) and cloud computing are used in many real-time smart applications such as 
smart healthcare, smart traffic, smart city, and smart industries. Fog computing has been introduced 
as an intermediate layer to reduce communication delay between cloud and IoT devices. To improve 
the performance of these smart applications, a predictive maintenance system needs to adopt an 
anomaly detection and root cause analysis model that helps to resolve anomalies and avoid such 
anomalies in the future. The state-of-the-art work on data-driven root cause analysis suffers from 
scalability, accuracy, and interpretability. In this paper, a multi-agent-based improved data-driven root 
cause analysis technique is introduced to identify anomalies and their root causes. The deep learning 
model LSTM autoencoder is used to find the anomalies, and a game theory approach called SHAP 
algorithm is used to find the root cause of the anomaly. The evaluation result shows the improvement 
in accuracy and interpretability as compared to state-of-the-art works.

KEywoRDS
Anomaly Detection, Autoencoder, Fog Computing, LSTM, Root Cause Analysis, SHAP

INTRoDUCTIoN

Internet of Things (IoT) and cloud computing are used in many real-time smart applications such 
as smart health-care, smart traffic, smart industries and smart city. To reduce communication delay 
between cloud and IoT Devices, Cisco introduced fog computing (Yousefpour et al., 2019) as 
intermediate computing infrastructure. To improve performance of fog computing, a monitoring system 
is required that keep track of all the activities and behavior of fog infrastructure with associated IoT 
Devices (Birje & Bulla, 2019). Monitoring system is also used in predictive maintenance system to 
detect and predict faulty or deviating behavior of fog nodes and IoT devices (Birje & Manvi, 2011). 
The anomaly detection and root cause analysis models play a vital role in improving performance of 
smart applications such as smart industries and smart healthcare system.

The anomaly detection techniques find unknown pattern or outliers in unlabeled data 
when something unusual occurs or when condition deviates from normal behavior. Root cause 
Analysis (RCA) is a systematic process to understand reason for anomalies or faults that helps 
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operator to diagnose the problem and solve the issue within short period of time (Singh, 2020). 
The root cause analysis allows end users to accurately identify anomalies and its root cause 
to avoid failures that may occur in future. The following requirements have to be satisfied for 
effective root cause analysis (Steenwinckel et al., 2021) i) Accuracy: the RCA should give 
accurate cause of the problem and reduce false positives, ii) Minimal human effort: the RCA 
work automatically without human involvement, iii) Context aware: the RCA should provide 
context to increase the performance, iv) Adaptive: the RCA system should be capable of 
adapting detection behavior of changing conditions, v) Interpretable: The user of system must 
easily understand the failures and its cause to plan appropriate action. vi) Scalable: The RCA 
must work efficiently even with huge data.

There are three main techniques (Steenwinckel et al., 2021, Solé et al., 2017) to find root cause 
analysis in fog computing infrastructure: i) data-driven model: it identifies anomaly and its root 
cause based on the unusual pattern using machine learning or deep learning approach ii) Knowledge-
driven techniques: it works on expert knowledge iii) Hybrid: it combines the both data-driven and 
knowledge-driven technique to meet the requirement of RCA. The above techniques suffer from 
few of the critical issues such as data-driven technique suffers from interpretability and accuracy, 
knowledge-driven technique is unable to find new types of faults and its causes and hybrid model 
consumes more computational resources.

In the new era of smart industries, Anomaly detection and root cause analysis play a vital 
role in improve the performance of machine and reduce maintainance cost. Anomaly detection 
identify abnormal behavior of production machine and outliers /quality deviation in the production 
line. The root cause analysis of anomaly may help to resolve tor fix the issue. The existing the 
anomaly detection and root cause analysis models does not meet all the requirement and are 
computationaly expansive. Therefore, there is a need of an effective root cause analysis model 
which provides high interpretability and accuracy with minimum overhead. The existing works 
have focused on data-driven root cause analysis considering the above mentioned techniques, but 
failed to meet requirements such as accuracy, scalability and interpretability. Also, no work has 
been carried out highlighting the importance of views of multi-agent in predictive maintainance 
system. Hence, this paper proposes a multi-agent based data-driven root cause analysis model 
using SHAP algorithm. The main objectives of proposed root cause analysis model are: first, 
increase the accuracy and reduce the false positives in detecting anomalies in fog computing 
environment. second, 2) To develop a light weight root cause analysis that fulfill all requirments 
of root cause analysis with reduced the overhead.

Multi-Agents System (MAS) perform well in dynamic and complex infrastructures like grid, 
fog and cloud computing. So MAS is used to perferm various operatios such as data collection, 
anomaly detection and root cuase anlaysis. The proposed system has two main folds: anomaly 
detection and root cause analysis. The anomaly detection method uses autoencoder and Long 
Short Term Memory model (LSTM) to detect and predict the anomalies. To improve the accuracy 
of anomaly detection, the autoencoder with one class support vector machine model (OC-SVM) 
is used for better classification. The LSTM model is used to predict the future anomalies based 
on historical data. Once the anomalies are identified, its information send to root cause analyzer 
and dashboard agent. The root cause analyzer uses SHAP Algorithm to identify root cause of 
the anomaly and display it on dashboard.

Contribution of the proposed work is as follows:

• Anomaly detection model is proposed using deep learning model called Autoencoder LSTM 
with one class support vector to increase accuracy and reduce the false positives.

• The root cause analysis model is introduced that uses a light weight game theory approach called 
SHAP (SHapley Additive exPlaination) to improve interpretability and accuracy with reduced 
complexity.
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The remainder of paper is organized as follows: Section 2 gives overview of state of art root 
cause techniques. The proposed model and its methodology is discusses in Section 3. The experiment 
evaluation is presented in Section 4. Section 5 summarized proposed approach.

RELATED woRK

The anomaly detection and root cause analysis helps in predictive maintenance to improve performance 
and availability of fog computing services. Three types root cause analysis found in literature. 
Knowledge based RCA, Data-driven RCA and Hybrid RCA. In this section, comparison of these 
techniques are presented.

Data Driven RCA
The Data driven approach works on analysis of existing data and its patterns. Two types of data 
driven techniques are found literature, these are tree-based RCA and log-based RCA. The tree based 
RCA works in three phases first, construct tree for anomalous service/event and second construct tree 
for current running service and lastly compare anomalous tree with current running service. If both 
tree matches then the root cause of existing matched service is considered as root cause of currently 
identified anomaly. To find root cause of performance anomalies, a application specific system called 
MicroRCA is introduced (Wu et al., 2020). The proposed model has three phases in root cause analysis: 
attributed graph construction, anomaly sub-graph construction and fault service identification. The 
initially the attributed graph is constructed for all types of Microservice. Then sub graph for various 
performance anomalies are constructed. These subgraph are matched to present microservices to 
identify anomalies. If both graphs matched then cause of existing anomaly is considered as cause 
of presently identified anomaly. The model suffers from computational overhead especially in data 
collection and graph construction. Further, model does not support for fine grained monitoring interval.

A data driven Bayesian Belief Network (BBN) with fuzzy cognitive map based root-cause 
analysis model is proposed in (Wee et al., 2015). The main objective of proposed model is to increase 
the accuracy of root cause of anomaly. It also perform other operations such as casual rezoning, 
classification and feature selection. The proposed model predict the future outcome and diagnose the 
root cause of an event. The proposed model static in nature, consume more computational resources 
and suffers from scalability issue. A log based root cause analysis model is proposed to find root cause 
of anomaly by extracting features of anomalous event from Spark logs (Lu et al., 2019). The proposed 
model uses General Regression Neural Network (GRNN) with weight assignment approach to find 
abnormal tasks and find its root causes. The experimental results show that proposed model locate 
and identify root cause of the problem/anomalies accurately. GRNN is complex and computationally 
expensive. The model works well with Spark application and may not find faults and cause accurately 
in other applications.

Knowledge Driven Model
The knowledge driven model works in two phases: 1) Knowledge acquisition, and 2) Knowledge 
transformation. The knowledge acquisition phases capture domain knowledge from experts such as 
normal behaviors of system, different types of faults occurs and its root causes. Next in knowledge 
transformation phase, transfer these information into rules. These rules gives the description of fault 
detected and its causes. Two popular techniques for knowledge acquisition are Failure Mode and Effect 
Analysis (FMEA) (Stamatis, 2003) and Fault Tree Analysis (FTA) (Lee et al., 1985). FMEA captures 
possible failures with its root cause and FTA applies Boolean login to analysis the abnormal states 
of system. The FMEA and FTA consumes more time and it suffers from computational overhead 
and misinterpretation or complicit with different experts opinions. To resolve these issues, ontology 
based risk analysis methods have been designed. Ontology based solutions provide high level classes 
with its interactions (Steenwinckel et al. 2016). The experts are not familiar with ontology design, 
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additional tools are required to understand ontology. Further, its requires more computational resources 
for knowledge extraction and streaming real time data using ontology. To reduce the computational 
resources, semantic Complex Event Processing (SCEP) in introduced. The SCEP defines various 
rules to identify faults and unwanted behaviors. These rules are easy to interpret the ontology but its 
works well for small applications.

A fuzzy cognitive maps (FCM) and particle swarm optimization (PSO) (Yue et al., 2018) 
technique are used to extract the knowledge from system experts to identify root cause of anomalies. 
The FCM is used to extract the knowledge from experts and transform it into appropriate format. The 
existing FCM techniques uses fixed incidence matric and proposed model uses dynamic incidence 
matrix. The PSO is used to calculate incidence metric and characterize various features. Three 
types of RCA model is used to predict future event, identify root cause of anomaly and presenting 
measure for abnormal event. To proposed model consumes more computation overhead to calculate 
dynamic incidence matrix. A knowledge graph and casual mining based root cause analysis approach 
is defined for Micro service applications in cloud (Qiu et al., 2020). The proposed model works in 
three phases, anomaly detection, root cause analysis and root cause diagnosis. The monitoring system 
continuously track the various Key performance indicators and identify anomalies based on pattern 
matching. The root cause analysis build knowledge graph from operational and maintenance experts 
for normal and abnormal behavior of various components in system. Next, casual graph is constructed 
using knowledge graph and casualty pattern. The current MSA are matched with casualty graph and 
identify root cause of anomalies. The root cause diagnosis list of casual path list and assign ranking. 
Based on these ranking and severity, the anomalies are resolved. The proposed model work high 
good accuracy but computationally expensive. The existing knowledge-driven approach gives good 
accuracy and interpretability, but not supports adaptively and scalability.

Hybrid Model
The hybrid root cause analysis combines data driven and Knowledge driven RCA to improve 
the performance and accuracy. A hybrid model called FLAG (Steenwinckel et al., 2021) 
is introduced to find anomalies and root cause analysis in sensor network to satisfy all the 
requirements of RCA that are discussed in previous section. Both data-driven and knowledge 
driven approaches are combined and executed parallely to get benefits. The knowledge-
driven approach extract the knowledge from experts and stored it the form of ontology. The 
data-driven approach called matrix profiling is used to find anomalies. To find root cause 
analysis, association rule mining technique are used. The complexity of proposed approach is 
higher because the adoption of two model requires more computation capabilities. To improve 
accuracy in detecting anomalies and identify its root cause (Abele et al., 2013), a Bayesian 
network based root-cause analysis model is developed. The proposed RCA model combines the 
experts’ knowledge and machine learning approach in detecting anomaly and its root causes. 
The knowledge based system collects information from experts and put in appropriate format. 
These formatted data is used to model the RCA system. Further, machine learning approach 
is used to find anomalies and its causes based on historical data and its pattern. The proposed 
model reduces false positives but consume more computational capacity for knowledge 
modeling. A hybrid root cause analysis model called interpretable logic tree analysis (ILTA) 
is proposed to improve interpretability and reduce human involvement (Waghen & Ouali, 
2021). The proposed RCA model uses knowledge discovery and fault tree analysis to extract 
useful information about root cause and construct a logic tree. A burn and build algorithm is 
used to remove redundant patterns from logic tree. The model accuracy is completely depends 
on data about system state. If the system state information is not available then its constructs 
partial interpretable logic tree. In such a situation, expert has to involve to provide necessary 
information to find root cause of anomaly. The hybrid RCA approach meet of the requirements 
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but suffers from high complexity in construction of partial logic tree. The main objectives 
of proposed root cause analysis model is to fulfill all the requirements with less complexity.

PRoPoSED MoDEL

The automation in predictive maintenance of smart industries becomes essential to improve the 
performance of the services, specifically in troubleshooting activities. The anomaly detection and root 
cause analysis are the initial phases of troubleshooting activities. The anomaly detection identifies 
abnormal behaviors and outliers in the smart machineries. The root cause analysis model finds the 
root cause of anomaly using SHAP algorithm. The anomaly detection and root cause analysis models 
are integrated in fog monitoring system. The fog monitoring system collects, filters, and analyses the 
data to find anomalies and root causes. Multiple cooperative agents are used to perform these tasks. 
In this section, the working of root cause analysis model is discussed. Figure 1 shows the architecture 
of root cause analysis in smart industrial applications.

There are three layers: cloud layer, fog layer and IoT layer. The IoT layer contains various smart 
machineries with limited amount of processing capabilities. In smart machines, various sensors are 
installed in different part of machines to keep track of the activities and act accordingly when something 
unusual happens. Most of anomalies in smart industry are due to outliers and sensor malfunction. So 
when unusual events happens, it is necessary to check which sensors data leads to critical condition. 
This information will help in troubleshooting the anomalies. The fog layer consist of fog nodes that are 
geographical distributed and these contain virtual machines with limited computational resources. The 
fog monitoring system is installed in these fog nodes. Multiple agents such as data collection agent, 
anomaly detection agent, root cause analyzer agent and dashboard agent are used to perform various 
activities of monitoring system. Data collection agent collect and preprocess the sensor data and put 
into aggregated form. The anomaly detection agent collects the data from data collection agent and 
identify the anomaly based on data pattern. Further, root cause analysis agent collects information 
about anomalies and apply SHAP algorithm to find root cause of anomaly. Finally, the dashboard 
agent display various performance metrics, anomalies detection and its root causes. Figure 2 shows 
the interaction between these agents.

The domain experts can see the information about anomalies and its causes in the dashboard and 
provide possible feedback regarding correctness of detected anomalies and its root causes. Based on 
domain expert feedback, the anomaly detection and root cause analysis agents updates its model to 

Figure 1. Fog computing environment
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improve the accuracy. The following sub sections discuss about working of these agents. Figure 3 
shows the process of detecting anomalies and its root cause analysis model.

Data Collection Agent
The collection agent collects all the sensors data and preprocess to improve the quality of data. The 
sensors in IoT Devices generates large amount of redundant data frequently that consumes more 
communication and computation capacity (Bulla & Birje, 2021). To reduce the overhead a dynamic 
interval based data collection model is introduced. The proposed data collection model collects the data 
based on User Threshold Degree (UTD) and Change Degree (CD). To avoid redundant data, the data 
collected based on Change Degree (CD) parameter. The Change Degree is defined as the difference 
between previous update value, and the new value read from sensors In IoT nodes. It is defined as:

CD
DP t DC t

MAXt
=

−
×

( ) ( )
100  (1)

where DP (t) is new value and DC (t) old value at Fog node. The User Tolerant Degree (UTD) is 
Degree of User (application) Tolerance for particular application. The collection is smaller if UTD 
is large otherwise collection interval is larger side. A sliding window mechanism is used to capture 
recent values of sensors. Let w0,w1, …, wj, j≤M, is set of recent sensor values in windows of size N. 
The average amount of changes is used to calculate update rate and it is defined as:

Avg stat window_ _ =
( )

=∑ i

N

i
w

N
1  (2)

where wi is the status value in the window, and N is the number of status values in a window. The 
dynamic UTD is derived from the current UTD and the average amount of variation for each resource/

Figure 2. Multiple agents and its interaction to find root cause of anomaly
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sensor status. Dyn Update interval_ _  is calculated using DynUTD and critical values of resources 
or IoT nodes as given below:
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if current MINCrit< = currentVal< = MAXCrit 

Figure 3. The root cause analysis model
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where UTD is the current user threshold degree, Avg_stat_window is mean of window values, and 
MAX is the resource’s maximum value. As the Avg_stat_window value increases, the Dyn_UTD 
value decreases. ∆ is a constant used to prevent the value of Dyn_UTD from approaching zero. DUI 
stands for Dynamic Update Interval, and CI stands for Current Interval. The critical values (Curr_ 
val) for each resource and IoT node are used to dynamically adjust the update period. If a specific 
resource or IoT node value is in a sensitive range, the data is periodically changed.

Data Preprocessing
The quality of data is very crucial in training the deep learning. The data preprocessing is the process 
of removing unwanted data and making it suitable for deep learning models. The proposed system 
utilizes the fog monitoring system to collect, filter, and normalize the data coming from IoT devices. 
In the proposed model, two data processing strategies: i) handling missing data ii) data normalization 
are present. To handle the missing data, the mean, median, or mode of a particular feature is calculated 
and added to missing values. The mean and median values of a particular feature is used to fill up 
the missing values in training data:

x
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= =∑ 1  (6)
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2
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The multivariate data contain different types of data with various ranges. It is essential to scale 
these data to trained machine learning / deep learning model. The data is scaled using following 
equation:

x
x x

x x
i k

scale
i

i
min
i

max
i

min
i

=
−

−
= …, , ,1  (9)

where, x x
max
i

min
i-  are the maximum and minimum values of xi in the data set, respectively. To reduce 

the storage complexity, the aggregation model is used based on requirements of application. The tree 
based data aggregation model, aggregate the data based on timestamp using standard aggregation 
functions. The aggregated sensor data is sent to cloud server through fog nodes. 

Anomaly Detection Agent
In this section, the proposed data-driven root cause analysis model is introduced. The proposed model 
works in two phases: i) Anomaly detection ii) Root cause analysis. The anomaly detection model is 
designed using Autoencoder model with Long Term Short Memory. To classify the anomalous and 
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normal values, One Class Support Vector model is used. Once the anomalous data is found, it is fed 
to root cause analysis model to identify root cause for the anomaly. Figure 4 shows the flow of root 
cause analysis model.

Long Short Term Memory Model
The Long Short Term Memory (LSTM) (Tian et al., 2018) is a special type of Recurrent Neural 
Network (RNN) that allows the network to learn temporal interference like time series data by retaining 
long-term interdependencies between data. It is stronger than RNN, as it resolves the problem vanishing 
gradient, learns from inputs that are independent of each other and can store longer memories. LSTM 
networks are well suited for analyzing, classifying and forecasting time series data. The LSTM network 
is used to build autoencoder model to find the anomalies and perform multi-step prediction. Figure 
5 shows the LSTM unit with its components.

The LSTM has three gates: input gate, forget gate, and output gate. These three gates regulate 
the information/data flow inside the LSTM cell. An input gate allows only necessary input values in 
the LSTM cell. Once the data comes inside the cell, the forget gate removes unimportant data. The 
output gate decides which values to give as the output of the LSTM cell. The input xt is fed to the 
network at time t. The forget gate identifies the output of ht−1 is relevant and irrelevant information 
w.r.t current data xt and forwards relevant information to cell state. The activation function is applied 
to (ht-1 + xt) to identify the previous value is relevant or not. If the output of activation function is 
closer to zero then it is considered as irrelevant otherwise it is considered as relevant. The forget 
Gate is determined as:

Figure 4. Root cause analysis framework
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f Wt h X bs
t f t t f
= ( 

 +⋅ −s [ ,
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 (10)

where (Wtf, bsf) are the weights and the bias of the forget gate, respectively, σ is a sigmoid curve 
(activation function), and “.” implies multiplication of the matrix. The next step is to decide which 
new knowledge is contained in the cell state using two steps. First, the input gate checks which states 
are updated; then the tanh activation function is applied to produce a vector of new values that could 
be applied:

i Wt h X bs
t i t t i
= ( 

 +⋅ −s [ ,
1

 (11)

~ [ ,C tanh Wt h X bs
t c t t c
= ( 

 +⋅ −1  (12)

where (Wti, bsi) and (WtC, bsC) are the weights and biases of the input gate and the cell state layer, 
respectively. Outputs obtained from the forget gate, the input gate, and the tanh function are then 
used to change the current cell state Ct:

C f C i C
t t t t t
= +−* * ~

1
 (13)

Finally, the output of network ht is calculated by the output gate and a tanh function, as:

O Wt h x bs
t o t t o
= 



 +( )−� � �.� , �s

1
 (14)

h O tanh C
t t t
= ( )� *  (15)

where (Wto, bso) is the input weight and the bias of the output gate, respectively. Dropout regularization 
is used to remove some neurons to avoid over-fitting problems. It is intended to train each secret unit 
in a neural network with a randomly selected sample of other units.

Anomaly Detection Using Autoencoder and OCSVM
The autoencoder (Sakurada & Yairi, 2014) is unsupervised neural network model that works on 
the concept of encoding-decoding scheme. The encoder compress input data into latent-space, 

Figure 5. LSTM Cell Structure
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whereas decoder decompresses latent-space to output data. The output of encoded-decoded data is 
compared with the initial data and the error is back-propagated to update the weights of the network. 
The difference between normal input and decoded output is called Reconstruction Error (RE). The 
autoencoder is trained with normal values and its reconstruction error is always smaller. When the 
anomalous value is fed to autoencoder, it may not reconstruct the value, so its RE is at higher side. If 
reconstruction error crosses predefined threshold, then it is considered as anomalous value. Figure 
4 presents anomaly detection and root cause analysis model using autoencoder LSTM model. The 
left side of figure shows identification of anomaly detection using autoencoder model with OCSVM. 
The autoencoder model is trained by minimizing reconstruction error:

Loss x x= ∑ −� � �
1

2
 (16)

The main purpose of the autoencoder is to learn pattern of normal data and its silent features. 
There are two parts: i) encoder and ii) decoder. The encoder reduces the dimension of data keeping 
important information and store it in latent space in encoded form. The decoder reconstruct the data 
by decoding the data it and try to approximate the pattern.

The autoencoder uses LSTM model to draw temporal inferences. The model trained with 
normal pattern say {x1,x2,…xn}, where n is number of samples and x x x x

t t t t
k= …{ }1 2, , , t = 1, 2, 

… is the multivariate time series value at time t with k number of variables. The sliding window 
mechanism is used to feed input values to the autoencoder model. The autoencoder model converts 

input data to encoded form and recreate it in the output form x x x x
t t t t
� , ,..� � � �= { }1 2 3  with i=m+1…N. 

The autoencoder learn the model by approximation and reduce the reconstruction error. The new 
streaming data are fed to the autoencoder and compare the reconstruction error (RE). The RE is 
smaller for normal values and the larger for anomalous values. The anomaly is identified based on 
these estimation error vectors. 

Figure 6 shows the sliding window mechanism used to find anomalies. Initially the input data 
(expert knowledge) is fed to autoencoder LSTM and LSTM Network. The autoencoder LSTM is 
used to find anomalies and LSTM Network is used for multi-step prediction. Any distance metric 
is used to classify normal and anomalous data such as Euclidean, Manhattan distance, Minkowski 
Distance and Mahalanobis distance (Gjorgiev & Gievska, 2020) can be used. These metrics fit well 
for sequential data patterns.

To improve the accuracy on non-linear and complex data patterns, one class Support vector 
machine model is used as classification problem to differentiate normal and anomalous values. 
OCSVM is machine learning model that classify certain values by defining a hyperplane between 
two classes of data (normal and anomalous).

Figure 6. Sliding window based anomaly detection model
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The LSTM autoencoder produced the reconstruction error for each feature of training data. Given 
a reconstruction error vector without any class information x i l

i
n∈ = … . , ,1 2  where, i is the 

number of data points in the error vector, n  is a set of input values with n dimensions. Φ(x) is a 
map function used to transforms x to the feature vector space F. A hyper-plane or linear decision 
function f(x) in the feature space F in defined as:

f x w x( ) = ( ) −. ( )Φ r  (17)

where, w is the norm perpendicular to the hyperplane and ρ is the bias of the hyperplane. The following 
optimization problem is helpful to solve w and ρ:

min
1

2

1

1

W w
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T

i

l

i
+ −

=
∑ξ ρ  (18)

subject to:

W x i lT
i i
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where x
i
 are slack variables are used to optimization of function f(x), which is the parameter that 

controls a tradeoff between maximizing distance of the hyperplane from origin(normal values) and 
number of data points contained by hyperplane. 

It is essential to tune the parameter v, if it small the error points fall on same side and difficult 
to class normal and anomalous values. To tune this parameter, Largrangian multiplier α i is defined 
for each Xi and the dual problem of the optimization problem of can be obtained. Solving the dual 
problem leads to:

w x
i

i i
= ( )

=
∑�
.
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aΦ  (19)

where, 0 1
�£ £a

i vl
 accordingly the decision function f(x) becomes a nonlinear function as:

f x K x x
I

L

i i( ) = ( )−
=∑� ,
1
α ρ  (20)

K x x e
i

x x

,( ) =
− −










1 2

2
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where K is a kernel function in the input space. The different types of functions are available for 
kernel function. In this paper Radial Basic Function (RBF), is used as it is best match for SVM. If 
the difference between normal and anomalous is high then f(x) returns negative otherwise it returns 
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positive. For any x, if f(x) returns negative then it is considered as anomaly. The anomaly score can 
calculated using following expression:

S x x x x
x

T
= −( ) −( )

−

∑ 

�

.

1

 (22)

where Σ is the covariance matrix of the training input, x is the input values and ~x is reconstructed 
value. Since the covariance matrix of the input features is unknown, we use a robust covariance 
estimator. Once the model is trained with normal values, the stream values are feed to LSTM network 
to identify anomalies in the data. In this next section, the data collection model and root cause analysis 
model is discussed.

Multi-Variate Time Series Prediction
The multivariate time series prediction mechanism is developed to predict anomalies and its root 
cause based on historical data. Let x x x x

t t t t
k= …{ }1 2, , , where t denotes timestamp and k represents 

number of variables. Here, xt is sensor value such as temperature, humidity and acceleration sensors 
etc. The LSTM network is trained based on a sequence of observed data and its interdependencies. 
At first, data is preprocessed using the equation (6) (7) (8) (9). 

The Sliding window mechanism is used to capture recent values and prediction value. The window 
slides to next level after predicting its first value. This process continuous for n steps. The size of 
sliding window n, n < M, where M is size of data. The m*k inputs are passed to LSTM network 
(Vega García & Aznarte, 2020, Davis et al., 2019) to predict the next value, say x(1). Initially, window 
contains {x1, x2,…, xm}inputs are feed to LSTM network and it predicts xm+1, at the second step 
{x2, x3,…, xm+1} are fed to network to get xm+2 as the prediction value. This process continues 
until windows reaches end of data. The weight of LSTM network are updated at each epoch to improve 
the accuracy (Gjorgiev & Gievska, 2020). The weights are updated until number of epochs reached 
or loss function reaches to optimal value. The loss function is defined as follows:

f error
loss i m

N

i
=

= +∑� 1
 (23)

where error is the difference between actual values and predicted values. The performance of LSTM 
network is evaluated using error metric:

RMSE
N M

x x
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1 1
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Once the network is trained with higher accuracy, it can be used for predicting other multi-
variate data. The performance of LSTM network can be improved by adopting various optimization 
techniques like batch normalization, unit dropout, and tuning learning parameters etc. The tuning 
sliding window size consumes more time and computation capacity. So it is essential to keep standard 
windows size based on application requirement as preconfiguration settings. For example, the smart 
sugarcane industry have different types of sensor at different machinary. These sensors have its UTD 
value and needs set windows size as sensor UTD value.
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Root Cause Analysis Agent
The root cause analysis agent reads the anomalous values from anomaly detection agent to identify 
the root cause of anomalous values. The root cause for anomaly may be either single value or multiple 
values. It is difficult to identify anomaly when anomaly is generated due to the multiple values. For 
example, two features values temperature T and vibration sensor value M are the two variable leads 
to anomaly. So, it is important to inspect both features values and find the correlation between them.

A game theory approach called SHAP (Shapley Addition Explanation) algorithm (Vega García 
& Aznarte, 2020, Kaur et al., 2020) is used to find the correlation between different features. These 
correlation values are further used to find most contributing feature for learning model. The SHAP 
algorithm calculates the marginal contribution (shap value) of each features in a given instance. It is 
the average of the marginal contributions across all permutations of features in single instance. The 
highest shap value is considered as root cause of an anomaly.

Shapley Additive exPlaination Approach
Let x = [x1, x2. . . xm] be a feature vector of analogous instance. An equivalent binary representation 
of x is  x’  ([1, 0, . . . 1]) and hx as a mapping function which maps x = hx( x’ ) that convert decimal 
data to binary. Now let z be another observation that is nearer to x . The idea of an additive 
feature attribution method is to try to ensure that g(z’) ≈ f (hx(z

’)) as z ’ ≈ x’ . We can define the 
model g(⸼) as:

g x w w z
i

m

i i
′( ) = +

=
∑0
1

� ’  (25)

where m is the number of features and wi ϵ R. Hence, given the single anomalous value x, the SHAP 
value wi is contribution of the ith feature on the anomalous instant of f (x). To approximate the 
anomalous instance the sum of all features attributions wi are used. To compute SHAP values, the 
following equation is used:

∅ = − −( ) ∪ { }( )− ( )
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where f(s) is autoencoder model with set of feature S of an instance, N is number of features (Æ
i
)  

ith feature shap value. Shap values are calculated for each features. The main idea behind shap algorithm 
is to find out feature importance of anomalous instance. It trains the autoencoder model with 
permutations of subset and total set of features to understand importance of each features. The shap 
algorithm produce a list contribution value (shap values) for each feature of an instance. If the attribute 
having highest variation in the instance, then its values is larger otherwise it smaller. The larger shap 
values indicate, maximum contribution in anomalous instance. To find expected outcome, the following 
function is used:

f s f h z E f x x
x x s( ) = ( )( ) = ( )





′ |  (27)

Root Cause Analysis Using SHAP
Given input instance X with a set of features {x1, x2 . . . xn} and its corresponding output X0 and 
reconstructed values { , , }x x x

n0 1
¼  using autoencoder model f, the reconstruction of the instance is 
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the sum of errors of each feature L X X x x
i

n
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. Let x1, x2... xn be ordering of the features 

in ErrorList, such as x x
1 1
-  >=…>= x x

n n
- , the topMfeatures = x1,x2,...,xm is a set of features 

for which the total corresponding errors topMerrors: x x
1 1
-  >=…>= x x

nm m
-  represents an 

adjustable percent of L X X,( ) . Figure 7 shows root cause analysis model using SHAP. Initially, 
select the features with maximum deviations using following equation:

X x x x Threshold
MaxDev i max

= − −( ){ }>min
 (28)

where xmax is maximum values of the feature, xmin is minimum value of feature. Threshold value can 
be set based on type of feature (sensor value). Xmaxdev gives maximum deviation values in anomalous 
instances. The equation (26) is used to calculate the shap values of all the features of an instant. There 
are two major operations in calculating shap values: i) Kernel explainer and ii) shap calculation. The 
kernel explainer convert the data into binary form and shap calculates the shapvalues of selected 
features. During shap calculation, various combination of features are trained to find the importance 
of feature. The higher shap values are the root cause of anomaly.

The shapkernel convert the feature data into appropriate form to calculate shap value and the explainer 
calculates the shap values. The SHAP produces the shapvalues for all the features of an instant. The highest 
shapvalues indicates more contribution towards model result. The root cause analysis algorithm produces 
a root cause feature for each anomalous event identified. These root causes are displayed in dynamic 
interactive dashboard to give the feedback about identified anomalies and its root causes.

Dynamic Dashboard Agent
To visualize the health and corresponding machine’ sensors value, a dynamic dashboard is created. The 
user can select certain component displayed on dashboard (Lempinen, 2012) to visualize the sensor 

Figure 7. Root cause analysis for identified anomalies
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values and give feedback for anomalies and its causes. Based on the experience, user can provide 
the feedback to improve the root cause analysis model. The feedback of user is used to optimize the 
model and update knowledge to improve the accuracy of anomaly detection and root cause analysis. 
Figure 8 shows the dynamic interactive dashboard architecture. It contains three layers: data layer, 
processing layer and presentation layer. The data layer collects the sensors data, anomalies and its 
root causes. The processing layer analyze the data that is gathered from data layer and aggregate 
data. The visualization layer display the sensors data, anomalies and its causes on the dashboard. 
The domain expert can visualize these data and provide the feedback on displayed data. The similar 
types of anomalies or faults can aggregated together to help RCA model to find similar events when 
same pattern can be found. The functions of dynamic dashboard are:

• To display concrete information without overlapping of information;
• To give the user feedback to improve the accuracy;
• Aggregate similar types of anomalies;
• Display predicted anomalies on dashboard to alert user to avoid future failures.

EXPERIMENT EVALUATIoN

This section discusses experiment setup and performance evaluation of the proposed anomaly detection 
and root cause analysis model. The proposed model is evaluated by comparing with state of the art 
anomaly detection and root cause analysis models.

Experiment Setup
The experiment was evaluated on Google Colab with Intel(R) Xeon(R) CPU (2.30GHz), 2 GB 
GPU, 16GB RAM, and 160 GB Hard disk space. The proposed model is implemented using Python 
programming language with TensorFlow Keras library.

Figure 8. Dynamic interactive Dashboard
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Dataset
The NASA Turbofan Jet Engine Data Set (NASA Dataset,2019) is used for experiment evaluation. 
The dataset consists of multiple multivariate temporal data. Each datset is divided into train and test 
dataset. The dataset contains engine numbers, three operatoinal setting that have substantial effect 
on engine performance and 21 sensors values. The setting in the datset are setting setting 1, setting 
2 and setting 3. The sensor noise is added to all 21 sensors. The sensor type is not mentioned in the 
dataset. The figure 9 shows histogram values of dataset.

The sensors values in the dataset have different numerical ranges. In order to eliminate the 
influence of ranges, a standard python library ‘sklearn’ is used. The MinMaxScaler is used to scale 
down all the sensor values to a same range. The average, mean, and median techniques is used to fill 
the missing values in the dataset.

The Performance Metrics
To evaluate the proposed model, the performance metrics: precision, recall, and F1-score are 
used. These metrics represent the accuracy and efficiency of the anomaly detection process. To 
calculate these metrics it is essential to understand statistical measures of the performance of binary 
classification: sensitivity and specificity. The sensitivity measures the percentage of correctly identified 
positive categories and specificity measures the percentage of correctly identified negative categories. 
The following terms are used to identify these measures: True Positive (TP) and True Negative (TN) 

Figure 9. Density graph for Jet Engine Sensors Dataset
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indicates correctly predicted positive and negative samples. False Positive (FP) and False Negative 
(FN) represents incorrectly predicted positive and negative samples. The precision, recall and f1-score 
are calculated using sensitivity and specificity measures as follows:

1.  Precision, P, is the percentage of correctly identified values. In other words, it is a measure of 
correctly identified anomalies:

precision
TruePositive

TruePositive FalsePositive
=

+
 

 

  
 (29)

2.  Recall, R, which is the number of positive class prediction out of all positive examples:

Recall
TruePositive

TruePositive FalseNegative
=

+
 

 

  
 (30)

and (iii) F1-score, F1, which is the harmonic mean of Precision and Recall:
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The F1-score represents the balance between precision and recall and it summarizes both. The 
detection rule with the highest F1-score indicates superior anomaly detection technique. The accuracy 
is another important key performance parameters to evaluate the anomaly detection model. The 
accuracy is defined as follows:

Accuracy
TP TN

TP TN FP FN
=

+
+ + +

  (32)

The various loss functions are defined for machine learning models such as Root Mean Squared 
Error (RMSE), Mean Squared Logarithmic Error Loss (MSLEL), and Mean Absolute Error Loss 
(MAE), etc. The RMSE is the right choice to evaluate time series prediction model, and it is defined as:

RootMeanSquaredError
n
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The larger RMSE indicates less accuracy and least RMSE indicates highest accuracy. The various 
existing works are compared to the proposed model to evaluate the performance of the model. Machine 
learning models for multi-step time series prediction includes LSTM model [21], LSTM autoencoder 
model (Davis et al., 2019). Further, to compare the proposed model with the existing model, the parameters 
computational power, resource consumption, the delay, CPU, and energy consumption are used.

Results
This section consists of two subsections i) results of the proposed model, and ii) comparison of the 
proposed model with few existing models. The accuracy of multistep prediction, anomaly detection 
and Root cause analysis are discussed.
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The proposed Data Collection Agent (DCA) model updates the sensor data based dynamic 
update interval to reduce computational and communicational capabilities. The more frequent updates 
consume more processing and storage capabilities. The update rate of a data collection model increases 
when the IoT device sensor data are in the critical range, and reduces in normal range. The proposed 
data collection model is compared with existing model. The existing models are MPP (Lempinen, 
2012), Push and Pull model (PAP) (Jiang et al., 2015), Extended Push Pull Model (PAPX) [(Jiang et 
al., 2015). The proposed model regulates the data collection based on critical and normal condition. 
The update rate is lesser in normal condition as compared other model. Becase the data updated 
based on change degree and user threashold degree. The figure 10 shows the comparison of update 
rate of various data collection model.

The anomaly detection model uses Autoencoder with OCSVM algorithm to identify anomalous 
data. The autoencoder try to reduce reconstruction error to fit the model accurately. The anomalous 
values are injected in the dataset and these dataset are used to test the model accuracy. The figure 
11 shows the reconstruction error for different epochs. The proposed anomaly detection model is 

Figure 10. Comparison of existing and proposed data collection models

Figure 11. LSTM Autoencoder reconstruction error for different epochs
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compared with existing models such as LSTM and autoencoder. The proposed model combines these 
two models to find anomalies. The proposed model has recorded reduced RMSE that indicates good 
accuracy compared to existing techniques. Figure 12 and Figure 13 shows comparison of various 
performance metrics such as RMSE (accuracy), recall, precision and F1-Score of anomaly detection. 
The existing works are based on LSTM (Zhang & Zou, 2018) and Autoencoder (Russo et al., 2020). 
The proposed model has highest accuracy in identify the anomalous data.

The anomaly detection model using deep learning techniques are divided into two catagories: 
reconstruction based methods and prodiction based methods. The proposed model uses reconstruction 
error based method to identify anomalies. To calculate computation time python library autotime is 
used. Two computation times are used for analysis, building time and inference time. The building 
time is the time taken to build deep leanring model using train dataset. The inference time is time 
taken to identify anomaly using test dataset. The reconstruction model consumes less time to detect 
anomalies compared prediction error based anomaly detection. The prediction error based model 
first predict the multistep ahead timesteps and compare current timestamp values. The difference 
between current and predicted values is greater than predefined throeashold value is considered as 
anomaly. The accuracy of anomaly detection is completely depends on the prediction accuracy. Where 
as reconstruction error based model is more accurate and consume less time. Table 1 illustrate the 
comparison of detection time for various anomaly detection model.

Building time for most of anomaly detection model consume more time as it requires multiple 
iteration. LSTM Model consume more processing time to perform back propogation on dataset. The 

Figure 12. Comparison of RMSE of anomaly detection techniques

Figure 13. Precision, Recall, and F-Score comparison of the existing and proposed system
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Autoencoder model takes lesser time to build model but the accuracy is compromized. dLSTM model 
consume less time in detecting anomaly. The proposed model consumes same time as autoencoder 
model but improves the accuracy. The top priority of proposed anomaly detection model is accuracy 
and processing time compromised for some times.

The shap values of all features are calculated for identified anomaly instant. To calculate the 
shap values, shap python library (SHAP library,2020) is used. Figure 14 shows the force plot where 
shap values are displayed for identified anomaly. The graph is generated using python shap library. 
The sensor 5 is high marginal contributing factor, so it is considered as root cause of anomaly. The 
operator can check the this sensor and its sensing environment to troubleshoot the anomaly.

The summary plot shown in figure 15 combines feature importance with feature effects. The 
x-axis represent shap values and y-axis represent features of anomalous instances. Two color are 
used to indicate contribution of feature, red color indicates high contribution and blue color represent 

Table 1. Comparison of detection time of existing and proposed models

LSTM Model 
(Davis et al., 2019)

Autoencoder 
(Gjorgiev, 2020)

dLSTM 
(Maya et al., 2019) Proposed Model

Building Time 320 ms 170 ms 235 ms 167 ms

Inference Time 1.10ms 0.238 0.130 ms 0.203 ms

Figure 14. Shap values of all features of anomalous event

Figure 15. Summary Plot for SHAP Impact values
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low contribution. The points (overlapping) in the graph represents the distribution of shap values 
per features. The features are ordered based on their importance. The sensor 5 (pressure sensor) has 
high marginal value and it is considered as root cause of anomaly.

Figure 16 shows mean of shap values of all the features that contributes for anomalous instance. 
The x axis represents the average values of shap and it describes average impact on model output 
magnitude. The Sensor 5 has highest shap values and it is considered as root cause of anomaly.

The anomaly and root cause analyze detection time is given in figure 17. The detection time 
is defined as time taken to detect anomaly and identify root cause analysis. For each dataset two 
anomalies are injected to understand the complexity of proposed model.

Figure 16. Summary plot for mean of shap values for anomalous instance

Figure 17. Time taken to detect anomaly and root cause
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The existing tree based root cause analysis approach consume more time in casual tree construction 
and parsing the tree with streamed data. The shap algorithm uses less time to identify feature 
importance of an instance. So proposed model consume less time in anomaly and root cause detection.

The proposed model is evaluated in two different configuration of the fog nodes, considered as 
minimum and maximum capacities. The Google Colab comes with two system configuration i) Colab 
and ii) Colab Pro. The Colab has 12GB RAM, 107.12 GB Disk Space with CPU 2.3 GHz. The Colab 
pro has 24GB RAM, 215 GB Disk space with CPU 2.3 GHz. The Colab pro is used for complex and 
heavy applications. These two system configurations are used as minimum and maximum capacities 
of fog node. To analyze the computation time for both configurations, the proposed model executed 
in Colab and Colab pro systems. The comparison of computation time are shown in table 2.

Two computation times are used for analysis, building time and inference time. Fog node 1 takes 
more time in detecting anomaly and its root cause compared fog node 2.

The accuracy is one of important factor in assessing data driven/model driven techniques. The 
state of art techniques are FLAG (Steenwinckel et al., 2021), Graph-Based RCA (Brandón. et.al, 2020) 
and Fuzzy congitive map with particle swarm optimization algorithm (Wee. et.al, 2015) considered 
for comparison, The FLAG is hybrid model that achive 75% accuracy from data driven technique 
and improve the accuracy knowledge driven model is used. It requires more computational resources 
to execute hybrid model.The proposed model achieve 97% accuracy and it is highest as compared to 
state of art models. The graph based RCA and FCM achives 94% and 96% accuracy respectively. But 
these model consumes more time in finding root cause analysis. Figure 18 shows the comparison of 
accuracy of existing and proposed model.

The detection time of root cause is different for data-driven, knowledge driven and hybrid 
model. The data driven techniques uses deep learning approach to identify root cause of anomaly. 
The knowledge driven techniques has two important factor knowledge acquisition and representation. 
These techniques need generation of knowledge graph that represents the interaction amoung difference 
nodes of graph. Figure 19 shows comparosion of detection time of existing model and proposed 
model. The knowledge drivn model consume more time in knowledge contruction and it need human 
involvement. Hence it takes more to detect root cause analysis. The graph based model also takes 
more time in construction of error graph. FCM with PSO model is very complex and consume more 
computation power to identify root cause of anomaly. Hnece proposed effective interms of detection 
time compared to state of art models.

Discussion
The anomaly detection model identifies certain data points as anomaly based on the variation in sensor 
values. The autoencoder model is unsupervised algorithm and it is well suited for anomaly detection. 
To improve the model approximation and accuracy, LSTM Network is proposed. The reconstruction 
error is used to classify anomalous and normal values. The root cause analyzer takes anomalous 

Table 2. Comparison of computation time in different configuration of fog nodes

Configuration
Computation Time

Time AD Time RCA Time

Fog Node 1 
CPU:2.3 GHz, 
RAM: 12GB, 
Disk Space: 107.12 GB

Building Time 167 ms 2 ms

Inference Time 0.203 ms 0.045

Fog Node 2 
CPU: 2.3 GHz, 
RAM:24 GB, 
Disk Space: 215 GB

Building Time 123 ms 1.32 ms

Inference Time 0.102 ms 0.028 ms
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instances and identify the feature of an instance that is contributing more for anomalous values. The 
SHAP is a lightweight algorithm used to find marginal contributing feature in an anomalous instance. 
The proposed model meets all the requirements of RCA that are mentioned in above sections. The 
comparison of proposed approach and state of art approach are given in table 3.

The main objectives of proposed model is to reduce the complexity and improves the accuracy of 
RCA model. Additional objective is to satisfy all the requirement of RCA model. The proposed model 
improves the anomaly detection and RCA accuracy compared to the exisiting state of art models. The 

Figure 18. Comparison of accuracy of existing and proposed model

Figure 19. Comparosion of detection time of existing model and proposed model
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precision, recall and F1-score of indicates higher accuracy. 3% false positives are recorded in our 
experiment results that is lesser compared to existing approaches. The SHAP algorithm algorithm 
identify most contributing features that leads to anomaly. The RCA model improves its accuracy 
based on domain expert feedback.

The exisiting knowledge based methods and hybrid methods requires 100% human involvement 
to provide domain knowledge. The data driven RCA model may not give 100% accuracy in dynamic 
and complex system such as cloud computing and fog computing application. The human involvement 
is second requirement of RCA and it is essential to improve the performance of the system. The 
proposed model uses expert feedback to improve the accuracy of RCA Model. The domain expert/
user check the dashboard and confirm the root cause results and give feedback about correctness.

The proposed model also meet the scalability requirement, as it uses the light-weight data 
collection and root cause analysis approaches. The proposed model works efficiently when size of 
data increases. The data collection model collects the data based on change degree and dynamic UTD 
of data which avoids redundant data collection. The RCA model uses a light weight SHAP algorithm 
to find most contributing factors in the list of features and it consume less computational resources 
(CPU and memory) compared to graph based RCA (Brandón et al., 2020) and Knowledge driven 
RCA (Liu et al., 2021). From this perspective the proposed model satisfy scalability requirement. 
The context aware expert knowledge is used to train the deep learning model and it can be modified 
based on user feedback to improve the performance of anomaly and root cause detection.

As requirements of customer changes, the proposed model adopt new requirements. The 
proposed RCA uses expert feedback to confirm correct root cause of anomaly. Based on the expert 
feedback. The model itself tune for new changes. So it also fulfill context aware and and adaptability 
requirements. The operators in smart industry may not familiar with different types of anomalies and 
its cause. It is essential to give the root causes in simple and interpreatable manner. Interpretaility is 
most important requirement of RCA as it helps in understanding cause of errors and anomalies. The 
SHAP algorithm helps to understand and interpret it results very easily. So it fufil the interpretability 
requirement of RCA.

CoNCLUSIoN

The anomaly detection and root cause analysis models are helpful for predictive maintenance 
system to improve the performance and availability. The effective anomaly detection and root 
cause analysis model must be accurate, adaptive, scalable, interpretable, and should reduce human 
involvement. The existing data-driven root cause analysis are computationally expansive and failed 
to meet the requirements. In this paper, multi-agent based root cause analysis model is proposed 
that covers all the requirements. The multiple cooperative agents are integrated in fog monitoring 

Table 3. Comparison of proposed model and state of art RCA works

RCA Requirement Data-driven Knowledge-
driven Hybrid Proposed Model

Accuracy No Yes Yes Yes

Human involvement No Yes Partially yes No*

Scalability No No No Yes

Context Aware Yes Yes Yes Yes

Adaptive Yes No Yes Yes

Interoperability No Yes Yes Yes

*only for feedback
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system to perform activities such as data collection, anomaly detection, root cause identification 
and managing dashboard. The proposed model uses LSTM autoencoder model with OCSVM model 
to find the anomalous instances. The root cause analysis model uses SHAP algorithm to find the 
root cause of an anomalous instance. The SHAP algorithm calculates marginal contribution of 
each feature and identify high marginal values as root cause of anomaly. The SHAP algorithm light 
weight and find the most contributing feature for analogous instance in short period of time. The 
experiment results shows that proposed model achieves high accuracy and interpretability with 
reduced complexity. The proposed model can be evaluated on real-time application with reduced 
complexity of agents in future work.
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