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ABSTRACT

Cuckoo search (CS) algorithm is a nature-inspired optimization algorithm (NIOA) with less control 
parameters that is stable, versatile, and easy to implement. CS has good global search capabilities, but it 
is prone to local optima problems. As a result, it may be possible to improve the classic CS algorithm’s 
optimization capability. Centered on fuzzy set theory, this paper introduces an improved CS version. 
The population of solutions has been divided into two fuzzy sets, and each solution is assigned to one 
of the sets based on its fitness. The fuzzy collection centroids, global best solution advice, and Lévy 
distribution dependent mutation are all used to boost the population’s solutions. With well-accepted 
objective functions such as Otsu inter class variance and Kapur’s entropy, the experimental analysis 
has been conducted on the CEC-2014 test suite and image multi-level thresholding domain. The 
proposed fuzzy cuckoo search (FCS) algorithm is compared to the classical CS, PSO, FA, SMA, and 
BA algorithm and provides satisfactory results.
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1. INTRODUCTION 

Natural-Inspired Optimization Algorithms (NIOAs) (Dhal, Das, Ray et al, 2020; Dhal, Das, Ray 
et al, 2021; Dhal, Ray, Das, & Das, 2019) have been proposed as an alternative to conventional 
mathematical approaches for solving complex optimization problems. These techniques are used in 
Artificial Intelligence (AI) mechanisms, in which a population works together to solve a problem. 
This inspiring nature has piqued the interest of many researchers who abstract natural phenomena 
in computational terms to solve complex engineering problems by adapting human collaboration 
to create NIOA operators and alternative mechanisms for solving them. A plethora of NIOAs have 
recently been created, based not only on natural laws but also on physical, social, and biological 
principles (Dhal, Das, Ray et al, 2020; Dhal, Ray, Das, & Das, 2019). The No Free Lunch Theorem 
(NFL) states that no single optimization algorithm can solve any optimization task (Dhal, Das, Ray 
et al, 2020; Dhal, Ray, Das, & Das, 2019). This justifies the creation of a large number of NIOAs. As 
a result, the output of NIOAs is highly dependent on the problem to be solved as well as the structure 
of the algorithm in question. In this context, the development of novel NIOAs is an accessible and 
exciting research area, as many issues such as the balance between exploration and exploitation 
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stages, self-adaptivity, parameter-less results, and convergence continue to perplex the NIOAs 
community. Cuckoo Search Algorithm (CSA) (Yang & Deb, 2009) is a simple and efficient NIOA 
that has shown to be successful on a variety of optimization tasks. However, the efficacy of CSA is 
strongly influenced by the capacity for discovery and exploitation, and it may be possible to improve 
its performance by solving complex optimization problems. There is no interaction or knowledge 
sharing between solutions in traditional CSA, and only Lévy flight with a fixed step size has been used 
for exploration and exploitation (Dhal, Das, Ray et al, 2019; Dhal & Das, 2017; Dhal et al., 2017). 
As a result, researchers are able to effectively develop the CSA by using various methods to address 
the aforementioned issues. Parameter adaptation (Mareli & Twala, 2018), integration of different 
random number generators (Yang & Deb, 2009), communication and sharing of information (Dhal, 
Das, Ray et al, 2019; Dhal et al., 2017; Yang & Deb, 2009), global and local search strategies (Dhal, 
Das, Ray et al, 2019; Dhal & Das, 2017), hybridization with other NIOA (Chi et al., 2019; Zhang et 
al., 2019), and initial population development, adaptive population size (Dhal, Das, Sahoo et al, 2021; 
Dhal et al., 2017; Mlakar et al., 2016), etc are some important strategies to boost the CSA. Parameter 
adaptation methods, including population size, have a significant impact on the efficiency of the CS 
algorithm (Mlakar et al., 2016). Particle Swarm Optimizer (PSO) (Abdelbar et al., 2005; Gaxiola et 
al., 2019; Nobile et al., 2018), Bat Algorithm (BA) (Pérez et al., 2015a; Pérez et al., 2015b), Firefly 
Algorithm (FA) (Hassanzadeh & Kanan, 2014), and CS (Guerrero et al., 2015; Yang & Deb, 2009) 
also have used fuzzy logic to derive the rules for parameter adaptation. In this research, fuzzy logic 
has been applied in a unique way. The population has been divided into two fuzzy sets, each of which 
has some belongingness, which is determined by the solution’s fitness. The solutions are improved by 
using fuzzy set centroids, global best solution guidance, and Lévy distribution dependent mutation. 
The validation of the proposed fuzzy CS has been performed over CEC-2014 test suite (Liang et al., 
2014) and multi-level thresholding (Dhal, Das, Ray et al, 2020) based image segmentation field with 
the assistance of well-known objective functions. 

According to the literature, CS has been commonly used in the thresholding-based image 
segmentation domain, but it also has some shortcomings. For example, Brajevic and Tuba (2014) 
used CS and Firefly Algorithm (FA) in multi-thresholding image segmentation with the Kapur’s 
entropy and the Otsu criterion as objective function. By considering all objective functions, CS 
and FA outperformed PSO and DE. CS and FA, on the other hand, produced competitive results. 
Considering Kapur’s entropy and the Otsu criterion in the multi-thresholding region, Alihodzic and 
Tuba (2014) improved the efficiency of the Bat Algorithm (BA) by integrating elements of the DE 
and ABC algorithms into it. Experiments showed that the improved BA outperformed many existing 
NIOAs, including classical BA, CS, PSO, DE, FA, etc. Tuba et. al. (2017) used the Elephant Herding 
Optimization (EHO) algorithm in conjunction with Kapur’s and Otsu to threshold multi-level images. 
In terms of mean and standard deviation of objective function values, the EHO algorithm outperformed 
four other swarm intelligence algorithms namely PSO, DE, CS, and FA. Suresh and Lal (2017) 
designed a Chaotic DPSO (CDPSO) for multi-thresholding that was based on a chaotic sequence and 
used Cross and Tsallis entropies as objective functions. In terms of robustness, computational time, 
stability, and fitness value, the results of the comparative study clearly demonstrated that CDPSO was 
very successful in this satellite image segmentation domain, providing better results than CS, HS, DE, 
and classical PSO. Experiments, on the other hand, showed that Cross entropy is more powerful than 
Tsallis’ entropy. According to (2015), CS had a problem with longer computation times. As a result, 
the researchers improved CS in the multi-thresholding domain. Suresh and Lal (2016), for example, 
developed a CS-based model for satellite image multi-thresholding with the help of three useful 
objective functions: Otsu, Kapur, and Tsallis. In this analysis, Mantegna and McCulloch algorithm 
based Lévy flight generation strategies were used to implement two variants of the CS algorithm. 
McCulloch was seen to generate a Lévy distribution that is more stable and computationally efficient. 
As a consequence, the CS algorithm using the McCulloch strategy outperforms the CS algorithm 
using the Mantegna method. Classical CS, ABC, and Darwinian PSO (DPSO) algorithms were all 
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used to optimize the three aforementioned objective functions. Experimental results showed that CS 
with McCulloch provided better results than its competitors in terms of computational time, values 
of objective functions and convergence rate. To segment histopathological images, Dhal et al. (2018) 
developed a Parameterless Cuckoo Search (PLCS) algorithm with a Fuzzy Entropy Model. By 
achieving better threshold values with less computational time, the PLCS significantly outperformed 
the traditional CS and PSO algorithms. Manic et. al. (2021) employed chaotic Cuckoo Search (CCS) 
with Shannon, Kapur, and Otsu criteria for the segmentation of the brain MRI images and produced 
satisfactory results. Jiao et. al. (2021) proposed an improved CS based entropic thresholding approach 
for image segmentation under different conditions. The proposed technique gave superior results to 
PSO and ant colony optimizer (ACO). Duan et. al. (2021) also proposed an improved CS (ICS) by 
incorporation parameter adaptation strategy and dynamic weighted random-walk method for better 
exploration and exploitation respectively. Numerical results clearly demonstrated that proposed ICS 
with Otsu objective function provided promising outcomes. Kalyani et. al. (2021) employed CS with 
the assistance of Kapur, Otsu and minimum cross entropies for the multi-level image segmentation. 
Experiments showed that CS with Otsu achieved the best results. Minjares et. al. (2021) developed 
an approach based on the Cuckoo Search Algorithm (CSA) and the Generalized Gaussian (GG) 
distribution to find the optimal threshold. Experiments had been performed to segments Skin lesions 
and results were satisfactory. Rahaman and Singh (2021) devised an adaptive CS (ACS) algorithm 
and applied for multi-level image segmentation with the assistance of Otsu and Tsallis entropy. 
Experimental results showed that ACS with Otsu outperformed the other tested segmentation models. 
Tan et. al. (2021) developed and improved CS (ICS) by incorporating adaptive control parameter 
mechanism and hybrid search strategy for the enhancement of global and local search ability 
respectively. The authors also developed modified fuzzy entropy for the proper image segmentation. 
Experimental results showed that the proposed ICS with modified fuzzy entropy gave competitive 
results compare to other tested segmentation strategies. As a result, this paper has used proposed fuzzy 
CS (FCS) with two common objective functions, Otsu and Kapur’s entropy, over an image multi-
level thresholding domain. In terms of optimization ability, accuracy, computational time, and image 
segmentation quality parameters, experimental results show that the FCS outperforms the classical 
CS, FA, BA, Slime mould algorithm (SMA) Li et al., (2020), and PSO. The main contribution of 
the paper is the construction of a new improved CS algorithm with the assistance of fuzzy set based 
population and centroid based searching strategies. 

The remainder of the paper is structured as follows: section 2 discusses fuzzy CS, section 3 
performs a brief mathematical implementation of objective functions, section 4 discusses performance 
assessment and experimental findings, and section 5 concludes the paper.

2. PROPOSED METHODOLOGY 

In this section, the methodology of the proposed fuzzy cuckoo search (FCS) is discussed. 

2.1. Classical Cuckoo Search Algorithm 
Cuckoo search (CS) is a powerful optimization algorithm proposed by X. S Yang and Suash Deb in 
2009, inspired by some cuckoo species’ obligate brood parasitism by laying their eggs in other host 
birds’ nests (Yang & Deb, 2009). The aforementioned parasitic behaviour in cuckoo birds refers to 
some species of cuckoo birds’ aggressive and highly active reproduction strategy, which is based on 
an evolutionary predisposition to lay eggs in the nests of the host birds. This action helped to ensure 
the survival of their species. This natural observation is implemented in the computational field 
by treating the host bird eggs as initial solutions and the cuckoo eggs as alternative solutions, with 
the aim of arriving at a near-optimal solution via efficient iterations that include the substitution of 
weaker solutions with better ones.
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As a result, there are three perfect guidelines or principles for the cuckoo search algorithm’s 
glowing action (Dhal, Das, Ray et al, 2019; Dhal et al., 2017; Yang & Deb, 2009):

a) 	 Each cuckoo lays one egg at a time, then selects a random nest to lay its egg in.
b) 	 The best nests with high-class eggs would be passed on to the next generation.
c) 	 The number of accessible host nests is limited. The host bird has a chance P

a
� ,∈ 


0 1  of discovering 

the eggs.

The following is an explanation of how the cuckoo search works. The location of the cuckoo egg 
within the search space is represented by a solution in the original cuckoo search algorithm 
corresponding to cuckoo nests. The initial population of solutions of size n  is generated mathematically 
as follows:

X low up low
i
= + −( )×∂ 	 (1)

X
i
 is the ith individual. up  and low  are the upper and lower bound of the search space of the 

objective function. ¶  is the random variable belonging to [0,1] and usually generated from uniform 
distribution. Generation of new solution signifies the exploitation of the current solutions is carried 
out by using the Lévy ñight distribution expressed as:

X X Lévy
i
t

i
t+ = +1 a. () 	 (2)

a > 0�represents a scaling factor of the step size drawn from Lévy distribution.
Lévy()  i.e. Lévy Flight is a non-Gaussian random process in which the stationary increments 

follow a Levy stable distribution. The features of this distribution are as follows (Dhal et al., 2017; 
Yang & Deb, 2009): 

a) 	 Lévy Flight’s mean and variance are both infinite.
b) 	 Since it is a heavy-tailed random walk, the tail of the Lévy distribution falls off much more 

gently than a Gaussian distribution. Furthermore, the distribution of heavy tailed data is not 
exponentially bounded.

c) 	 The Lévy distribution’s variation has divergence characteristics. As a consequence, extremely 
long jumps could be possible. Therefore, it is capable of exploring a large amount of search 
space. 

d) 	 Since the probability of repeating the same area is lower in the Lévy distribution than in the 
Gaussian distribution, it allows for faster algorithm convergence. By integrating the ability to 
escape from local minima, the algorithm’s efficiency is improved.

Different algorithms, such as the Rejection algorithm, McCulloch’s algorithm, Mantegna’s 
algorithm, and others (Yang & Deb, 2009), can be used to produce Lévy Flight. Mantegna’s algorithm 
was used in this research. As mentioned below, it generates random numbers using a symmetric Lévy 
stable distribution. 
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Where, “  is the gamma function, 0 < ²  £ 2. Ã is the standard deviation. As per Mantegna’s algorithm, 
the step length v  can be calculated as,

v
x

y
=

1/b
	 (4)

Here, x̂  and ŷ  are taken from normal distribution and s s s
ˆ ˆ

,
x y
= = 1�. Where s  is the standard 

deviation. The resulting distribution has the same behavior of Lévy distribution for large values of 
the random variables. Mantegna’s algorithm is preferred in this study for generating levy distribution 
because of its simple calculation steps than McCulloch’s algorithm and its faster computational speed 
in the range 0 75 1 95. .£ £b .

Depending on the discussion the algorithm of the traditional CS is as follows:

Algorithm 1: Classical Cuckoo Search Algorithm

1) Objective function has been taken

2) Generate initial population of size n  as per Eq.(1)

3) While (Stop Criterion) do

4) Get a Cuckoo randomly using Levy Flight as per Eq.(2) 

5)  Evaluate the fitness F
i( )

6) Choose another solution randomly (say jth solution) 

7) if (F F
i j
> )

8) Replace jth solution by ith solution

9) end if

10)  A fraction P
a( )  of worst nest are abandoned and built using Eq.(1)

11) end While 

12) Output: the most fit or global best solution �Gbest .
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In terms of the number of parameters, the classic CS algorithm is a very simple algorithm. 
Traditional CS algorithm, however, has several flaws. They are listed below. (Dhal, Das, Ray et al, 
2019; Dhal et al., 2017; Yang & Deb, 2009):

a) 	 There is no communication or knowledge exchange between the solutions.
b) 	 In conventional CS, there is no guidance from the global best Gbest( ) .
c) 	 For both global and local quest, only Lévy flight with a fixed phase size was used. It doesn’t behave 

in an ergodic way. In any metaheuristic algorithm, the appropriate step size for diversification 
and intensification steps is critical.

To address the CS algorithm’s shortcomings, this paper proposes a fuzzy CS (FCS) variant 
based on fuzzy set based population, levy distribution based mutation, and guidance of global best 
and centroid of the fuzzy population set. In the following section, the proposed methodologies are 
discussed.

2.2. Fuzzy Cuckoo Search Algorithm
The step by step implementation of the proposed FCS is given as follows: 

2.2.1. Fuzzy Population 
In the proposed FCS, population is considered as fuzzy set (Zimmermann, 2011). Suppose, the initial 
population of size n  i.e. { | , , , , }X i n

i
= …1 2 3  has been generated randomly using Eq.(1). We can 

easily divide the population into the best set B( )  and worst set W( )  depending on the fitness values. 
For a maximization problem, solutions with higher fitness values belong to the best set B( )  and the 
rest others belongs to worst set W( ) . In each set of B  or W , an solution either belongs or does not 
belong if we take B  and W  as crisp sets. It means the membership or belongingness of a solution 
can be full i.e. 1 or null i.e. 0. However, this study considers the B  and W  as fuzzy sets where the 
memberships of the solutions are within [0, 1]. The fuzzy set B  is represented as follows:

B
X X X X

B B
i
B

i

n
B

n

= … …














m m m m
1

1

2

2

, , , , .., 	 (5) 

Where, m
i
B  indicates the membership of the solution X

i
 into the best B( )  fuzzy set. The following 

mathematical rules have been used to find m
i
B  depending on the fitness F

i
 of the solution X

i
.

1) 	 If it is a maximization problem and for all X
i
 within its range fitness of  X

i
 i.e. F veX

i( ) = +   

then m
i
B =

∀

F

F
i

i i
max

.

2) 	 If it is a maximization problem and for all X
i
 within its range fitness of  X

i
 i.e. F veX

i( ) = −   

then m
i
B =

∀

1

F

F
i

i i
max

.
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3) 	 If it is a minimization problem and for all X
i
 within its range fitness of  X

i
 i.e. F veX

i( ) = +   

then m
i
B =

∀

1

F

F
i

i i
min

 .

4) 	 If it is a minimization problem and for all X
i
 within its range fitness of  X

i
 i.e. F veX

i( ) = −   

then m
i
B =

∀

F

F
i

i i
min

 .

The most fit solution or global best Gbest( )  solution has the membership of 1 in the set B  i.e. 
mB Gbest( ) = 1  and for other solutions the membership values are greater than zero i.e. 
0 1≤ ( ) <mB

i
X  for X Gbest

i
¹ . 

In the same way, the fuzzy set W  for worst solutions is represented by the following manner:

W
X X X X

W W
i
W

i

n
W

n

= … …














m m m m
1

1

2

2

, , , , .., 	 (6)

where, m m
i
W

i
B= −1  indicates the membership of the solution X

i
 into the worst W( )  fuzzy set and 

hence, m m
i
B

i
w+ =1. For all solution, the membership values are greater than zero i.e. 0 1≤ ( ) ≤mW

i
X .

2.2.2. Centroids Calculation and Solution Modification

Next, find the centroids of the fuzzy sets B i e C
B

. . ( )  and W  i.e. C
W( )  which will guide the solutions 

to improve themselves. According to the literature, the centroid-based solution generation technique 
is superior to selecting two members and determining their centre of gravity because it contains all 
the information of the population set’s solutions (Erol & Eksin, 2006). As a result, the improvement 
focused on the centroid functions as a contraction operator. Differential Evolution (DE) is one of 
many efficient algorithms that select two random solutions to change other solutions. However, the 
centroid of the solutions considers this form of random selection, which is crucial to performance. 
As a consequence, the centroid increases the algorithm’s convergence and accuracy. The fuzzy set’s 
centroids are determined using the following formula (Lei et al., 2018).

C
X X

XB

X

B
i i

X

B
i

i

i

=
( )
( )

∑
∑

m

m

.
	 (7)

and

C
X X

XW

X

W
i i

X

W
i

i

i

=
( )
( )

∑
∑

m

m

.
	 (8)

The solutions are modified by the following strategies as discussed below:
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2.2.3. Solution Modification
If the membership of the corresponding solution is greater in the set B then the solution is modified 
depending on centroid C

B
, global best solution Gbest . Otherwise if the belongingness of the solution 

is greater in W set then solution is modified depending on centroid C
W

, global best solution Gbest . 
Mathematically it is expressed as:

if m mB
i

W
i

X X( ) > ( )( ) 	

X C C X Gbest X
i B B i i
= + −( ) + −( ). .δ ε1 1 	 (9)

else

X C C X Gbest X
i W W i i
= + −( ) + −( ). .δ ε2 2 	 (10)

where, δ δ ε ε1 2 1 1 1 2 0 1, and∈ −

 ∈ 


, , ,  are random numbers generated from uniform distributions. 

The fitness of the newly modified solution has been measured and random replacement policy is 
utilized to upgrade the population by following the same procedure of classical cuckoo search. 

Here, the exploitation or local search has been done using the Eq.(9) where centroid of the best 
set has been modified using the factors C X

B i
−( )  and Gbest X

i
−( ) . These factors help to move 

the concerned solution X
i
 towards the centroid of the best set C

B
 and the global best solution Gbest . 

Guidance of the Gbest  always play an important role in the solution improvement. The fractions of 
these two factors added to the centroid C

B
 which carries the information of all the solutions of the 

set. It is reported that solutions generated around the centroid of the population set greatly emphasizes 
the local search or exploitation ability of the algorithm (Erol & Eksin, 2006). 

The exploration has been performed over worst solutions or the solutions with higher membership 
in the worst set through the Eq.(10). The centroid of the worst set  C

W
 is modified using the factors 

C X
W i
−( )  and Gbest X

i
−( ) . The difference between the worst solution X

i
 and Gbest  mainly 

helps to performs the exploration. It is reported that centroid based guidance helps to move the worst 
solutions in a population towards the better regions of the search space. Hence, this study utilizes 
C X
W i
−( )  factor to modify the worst solutions (Mejía-de-Dios & Mezura-Montes, 2019). 

When the algorithm going to converge, the solutions of the population becomes nearly same or 
near to the Gbest  solution. Therefore their membership in the best set is higher and according to the 
formed rule local search or exploitation will be done over the solutions using Eq.(9). So, FCS follows 
the important property of the NIOA i.e. performs local search during the convergence time. 

2.2.4. Worst Solutions Replacement

In the proposed FCS, a fraction of worst solutions P
a( )  are abandoned and regenerated using Lévy 

flight based mutation as per Eq.(2). This step helps to maintain the balance between exploration and 
exploitation. It also enhances the diversity of the population which significantly resists the premature 
convergence. 

Depending on the above discussion the algorithm of the proposed FCS is as Algorithm 2. 
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Algorithm 2

1) Objective function has been taken.

2)
Initialize the population of cuckoos, � { | , , , ,� }X X i n

i
= = …1 2 3  using Eq.(1) where,   n  is the number of 

cuckoos and X
i

 is the ith cuckoo.

3)
Consider the population set P( )  as two fuzzy sets best B( )  and worst W( )  which are represented as:

B
X X X X

B B
i
B

i

n
B

n

= … …














m m m m
1

1

2

2

, , , , ..,

Where, m
i
B  indicates the membership of the solution X

i
 into the best B( )  fuzzy set. m

i
B  has been computed 

depending on the rules mentioned in the previous section. 

W
X X X X

W W
i
W

i

n
W

n

= … …














m m m m
1

1

2

2

, , , , ..,

Where, m m
i
W

i
B= −1  indicates the membership of the solution X

i
 into the worst W( )  fuzzy set and hence, 

m m
i
B

i
w+ =1.

4)
Now find the centroids of the fuzzy sets B C

B( )  and W  C
W( )  by the following expressions.

C
X X

XB

X

B
i i

X

B
i

i

i

=
( )
( )

∑
∑

m

m

.
          and C

X X

XW

X

W
i i

X

W
i

i

i

=
( )
( )

∑
∑

m

m

.

5)
Take a random cuckoo or solution  X

i
 from the population 

           if m mB
i

W
i

X X( ) > ( )( )  

 X C C X Gbest X
i B B i i
= + −( ) + −( ). .δ ε1 1

else
X C C X Gbest X
i W W i i
= + −( ) + −( ). .δ ε2 2

Where, δ δ ε ε1 2 1 1 1 2 0 1, , , ,∈ −

 ∈ 


and  are random numbers generated from uniform distributions. 

6) Evaluate its quality or fitness value (F
i

. ) of X
i

7) Choose a nest with another solution among n  randomly and say this solution is j.

8)
if F F

i j
>( )  then  replace X

j
 by X

i

else do nothing.

Algorithm 2 continued on next page
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2.3. Parameter Settings
Parameter setting is critical for any Nature-Inspired Optimization Algorithm (NIOA), and it is usually 
done by trial and error. The NIOAs’ parameter settings in this analysis are as follows: 

Fuzzy CS (FCS): In FCS, Lévy flight parameters are set as follows: P
a

=0.25, b =1.5, a = 0 1. . 
Population size n( ) = 30�has been taken during experiment. 

Bat Algorithm (BA) (Pérez et al., 2015a): The values of the parameters of BA are as follows: 
loudness A( ) = 0 9. , pulse rate r( ) = 0 1. , minimum frequency f

min( ) = 0 , maximum frequency 
f
max
=( )2 , population size n( ) = 40.

Particle Swarm Optimizer (PSO) (Nobile et al., 2018): For PSO, c
1

 and c
2
 stand for the 

acceleration coefficients which control the effect of local and global best solution over the current 
solution. Both c

1
 and c

2
 are set to 2 during the experiment. Population size n( ) = 40  has been 

considered for the experiment. 
Cuckoo Search (CS) (Yang & Deb, 2009): CS has three main parameters, namely abandoned 

nest probability (P
a
) , Lévy flight parameters b  and a . In traditional CS, 0 75 1 95. .£ £b , 

0 1£ £P
a

, and a > 0 . Here the setting of these parameters has been performed is as follows: P
a

=0.25, b =1.5, a = 0 1. , population size n( ) = 40.
Firefly Algorithm (FA) (Hassanzadeh & Kanan, 2014): FA has four main parameters, namely 

Attractivenessb
0
1= , Light absorption coefficient ³ = 1 , Lévy flight parameters  a = 0 1. , b = 1 5. , 

population size n( ) = 80 . 
Slime mould algorithm (SMA) (Li et al., 2020): For SMA, z = 0 03.  and population size 

n( ) = 40.
The termination condition for all NIOA is the number of Fitness Evaluations (FEs). The maximum 

number of FEs (i.e. MAX_FE) has been taken as 10000´D . Where, D  is the dimension of the 
search space for the Congress on Evolutionary Computation-2014 (CEC’14) Test Functions and 
1000´D  for the multi-level thresholding based domain where D  is the number of thresholds. Present 
studies show that current researchers prefer FEs over number of iterations (NIs) because function 
evaluations are also a crucial performance index used to measure the efficiency of evolutionary 
algorithms. Compared to computational complexity, function evaluation allows considering some 
technical aspects such as the computer system where the experiments run and implementation details, 
which directly influence the running CPU time focusing only on the ability of the algorithm to search 
within the solution space (Dhal, Das, Gálvez et al, 2020).

1) Objective function has been taken.

9)
A fraction P

a( )  of worst solutions are abandoned and new solutions (X
N

) are generated using Lévy flight 

around the abandoned solutions (X
K

) by suing the Eq. (2).

10) Rank the solutions and find Gbest  solution.

11) Steps 3-11 are repeated until the termination condition.

Algorithm 2 continued
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3. TEST FUNCTIONS SUITE AND MULTI-LEVEL THRESHOLDING PROBLEM 

The experiment has been performed over Congress on Evolutionary Computation-2014 (CEC’14) 
benchmark suite (Liang et al., 2014) (Table 1) which consists of 30 benchmark functions that are 
divided into four classes:

1)	 Unimodal functions (1–3),
2)	 Simple multi-modal functions (4–16),
3)	 Hybrid functions (17–22), and
4)	 Composition functions (23–30).

There is only one global optimum and no local optimum in unimodal functions. This suite’s 
unimodal functions are non-separable and rotated. There are two types of multi-modal functions: 
separable and non-separable. Additionally, they are rotated and/or shifted. To create hybrid functions, 
the variables are divided into subcomponents at random, and then different basic functions are used 
for each subcomponent. Composition functions are made up of two or more simple functions added 
together. Hybrid functions are used as the building blocks for composition functions in this suite. 
The characteristics of these hybrid and composition functions are determined by the basic functions’ 
characteristics. The following methods were used to assess the efficacy of the proposed algorithm:

a) 	 Best solution (best) found over 30 runs,
b) 	 Worst solution (worst) found over 30 runs,
c) 	 Mean objective function (mean) value over 30 runs,
d) 	 Standard deviation (std. dev.) over 30 runs, and
e) 	 Median (Med.) of 30 runs.

Table 1. Summary of the Congress on Evolutionary Computation-2014 (CEC’14) Test Functions

Func. 
Type Class No. Functions F F xi

*
i

*= ( )
(Global Best)

Unimodal
Functions 1

F1 Rotated High Conditioned Elliptic Function 100

F2 Rotated Bent Cigar Function 200

F3 Rotated Discus Function 300

Table 1 continued on next page
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3.1. Mutli-level Thresholding 
There are many problems in the field of image processing where an efficient search of solutions within 
a complex search domain is needed to find an optimal solution. One of them is multi-thresholding, 
which is an effective image segmentation technique. The multi-thresholding problem is an exponential 
combinatorial optimization problem that is typically formulated using a complex objective function 

Func. 
Type Class No. Functions F F xi

*
i

*= ( )
(Global Best)

Simple 
Multimodal 
Functions

2

F4 Shifted and Rotated Rosenbrock’s Function 400

F5 Shifted and Rotated Ackley’s Function 500

F6 Shifted and Rotated Weierstrass Function 600

F7 Shifted and Rotated Griewank’s Function 700

F8 Shifted Rastrigin’s Function 800

F9 Shifted and Rotated Rastrigin’s Function 900

F10 Shifted Schwefel’s Function 1000

F11 Shifted and Rotated Schwefel’s Function 1100

F12 Shifted and Rotated Katsuura Function 1200

F13 Shifted and Rotated Happy Cat Function 1300

F14 Shifted and Rotated HGBat Function 1400

F15 Shifted and Rotated Expanded Griewank’s plus 
Rosenbrock’s Function 1500

F16 Shifted and Rotated Expanded Scaffer’s F6 Function 1600

Hybrid
Functions 3

F17 Hybrid Function1 (N=3) 1700

F18 Hybrid Function 2 (N=3) 1800

F19 Hybrid Function 3 (N=4) 1900

F20 Hybrid Function 4 (N=4) 2000

F21 Hybrid Function 5 (N=5) 2100

F22 Hybrid Function 6 (N=5) 2200

Composition
Functions 4

F23 Composition Function 1 (N=5) 2300

F24 Composition Function 2 (N=3) 2400

F25 Composition Function 3 (N=3) 2500

F26 Composition Function 4 (N=5) 2600

F27 Composition Function 5 (N=5) 2700

F28 Composition Function 6 (N=5) 2800

F29 Composition Function 7 (N=3) 2900

F30 Composition Function 8 (N=3) 3000

Search Range: [-100, 100]D D is the dimension of the search space , N is the number of basic functions

Table 1 continued
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criterion that can only be solved using nondeterministic methods. As a result, researchers are addressing 
these issues by employing Nature-Inspired Optimization Algorithms (NIOAs) as a multi-thresholding 
problem alternative methodology (Dhal, Das, Ray et al, 2020).

We find the threshold points in multi-level thresholding based image segmentation in such a 
way that the segmented classes on the histogram satisfy the desired property. This is accomplished 
by maximizing or minimizing an objective function that includes thresholds as parameters. 

Suppose, an image I with L gray levels are classified into K classes C C C C
i K1 2

, , , ,… …( )   using 
a set of K −( )1  threshold points T t t t t

i K
= …( )−1 2 1
, , , ,..., , where t t t

K1 2 1
< <… < −, ., . Here for 8 

bit image L = 256  and gray level lie within the range 0 255,

 . Therefore, a pixel with gray level g  

is belongs to class C
i
 if t g t

i i− < <
1

 for i K= …1 2, , , . Thus single objective thresholding problem 
is the process of selecting the set of thresholds ¢T  which optimizes the objective function F T( )  
such that 

′ = ( ){ }≤ ≤ −T F T
T L

arg max min/
0 1

	 (11) 

In this study, two well-known objective functions are used which are discussed as follows.

3.1.1. Otsu’s Method for Multi-level Thresholding
The Otsu methods for multi-level thresholding is based solely on maximization of inter class variances 
or minimization of intra class variances of segmented regions or classes (Alihodzic & Tuba, 2014; 
Brajevic & Tuba, 2014; Tuba et al., 2017). Suppose, m m m

1 2
, , ,¼

m
are the mean intensity of the 

classes 1 2, , ...,m  respectively for multi-level thresholding problem. m  is the global mean of the 
image. 
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where,

w p
i

t

i0
0

11

=
=

−
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i1
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1
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=

−
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∑
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where, 0 1£ £p
i

 denotes the probability of the state i. In the case of gray level image, it represents 

the occurrence of the ith gray level in the image and 
i

L

i
p

=

−

∑ =
1

1

1 . Then the inter class variance of each 

class has been given as:
Therefore, Otsu based multi-level thresholding process can be formulized as follows:

t t t Argmax
m

i

m

i1 2
0

, , ,……( ) =










=
∑s 	 (14)
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where,

σ µ µ
0 0 0

2
= −( )w , σ µ µ

1 1 1

2
= −( )w , σ µ µ

j j
= −( )w

j

2
, and σ µ µ

m m
= −( )w

m

2
	 (15)

3.1.2. Kapur’s Entropy for Multi-level Thresholding 

Let P p p p p
n n

= …( ) ∈1 2 3
, , , , ∆ where 

∆
n n i

i

n

i
p p p p i n n p= …………( ) ≥ = … ≥ =




 =
∑1 2
1

0 1 2 2 1, , , | , , , ..., ; ;� � �









 is a set of discrete ðnite 

n -ary probability distributions. Then entropy of the total image can be deðned as (Alihodzic & 
Tuba, 2014; Brajevic & Tuba, 2014; Tuba et al., 2017):

H P p p
i

n

i i( ) = −
=
∑
1

2
log 	 (16)

I  denote a 8 bit gray level digital image of dimensionM N´ . P  is the normalized histogram 
for image with L = 256  gray levels. Now, if there are n -1  thresholds t( ) , partitioning the 
normalized histogram into  n  classes, then the entropy for each class may be computed as,

H t
p

P
ln
p

Pi t

t

i i
2

1 2 21

2

( ) = −
= +
∑ , 	

H t
p
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p

Pn
i t
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nn

( ) = −
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1 1
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where, for ease of computation, two dummy thresholds t t L
n0

0 1= = −,  are introduced with 
t t t t

n n0 1 1
< <…< <− . Then the optimum threshold value can be found by

j t t t Arg max H t H t H t
n n1 2 1 2

, , ,……( ) = ( )+ ( )+…+ ( )



( )� 	 (19)
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4. EXPERIMENTAL RESULTS 

All the experiments have been done using MatlabR2018 with Windows-8 OS, x64-based PC, Intel 
Core-i5-CPU, 4 GB RAM. The optimization ability of the proposed FCS has been tested over CEC’14 
benchmark suite where different types of mathematical functions have been considered. In addition 
to that, the performance of the FCS is also evaluated by employing in pathology image segmentation 
domain. FCS has been employed for finding the optimal threshold points for the proper segmentation 
of White Blood Cells (WBCs) from the blood pathology images. Here, 100 color pathology images 
have been taken for experiment which will prove the real life applicability of the proposed FCS 
algorithm. To validate the performance of the proposed FCS, it is compared with six state-of-the-arts 
NIOA which are classical CS, FA, BA, SMA, and PSO. The details of the results over CEC’14 and 
pathology images are presented in the following sections.

4.1. Results over CEC’14
Tables 2, 3, and 4 show the results of the CEC’14 test feature suite. The experimental findings are 
presented for seven of the CEC’14 benchmark suite’s total of thirty features. This study considers 
one unimodal function (F1), two multimodal functions (F6 and F8), four hybrid functions (F17 and 
F20), and four composition functions (F24 and F20). Tables 2, 3, and 4 show the best, worst, mean, 
standard deviation, and median of NIOAs across different functions for dimensions 10, 30, and 50, 
respectively. In the tables, the best results are highlighted in bold. Tables clearly show that FCS 
delivers the best results in any dimension and for any form of function. The results of traditional CS, 
SMA, and FA are second best.

Table 2 continued on next page

Table 2. Results over test functions with Dimension D = 10

Function Algorithm Best Worst Mean Median Std. dev.

          F1 
          (Unimodal)

FCS 1 . 0 0 E + 0 2 1 . 0 0 e + 0 2 1 . 0 0 e + 0 2 1 . 0 0 e + 0 2 1 . 2 9 e - 0 3

CS 1 . 0 9 E + 0 2 2 . 3 1 e + 0 2 1 . 4 9 e + 0 2 1 . 3 9 e + 0 2 2 . 9 9 e + 0 1

FA 7.87E+04 4.84E+05 2.24E+05 2.24E+05 1.01E+05

PSO 1.55E+05 3.04E+06 1.48E+06 1.32E+06 7.51E+05

BA 4.50E+03 3.65E+08 8.63E+07 6.05E+07 7.83E+07

SMA 6.54E+04 3.98E+05 2.68E+05 2.68E+05 2.02E+05

          F6 
          (Multimodal)

FCS 6 . 0 0 e + 0 2 6 . 0 2 e + 0 2 6 . 0 1 e + 0 2 6.01E +02 3 . 4 1 e - 0 1

CS 6.02E+02 6.05E+02 6.04E+02 6.04E+02 6.13E-01

FA 6.01E+02 6.02E+02 6.01E+02 6.01E+02 3.89E-01

PSO 6.04E+02 6.07E+02 6.05E+02 6.05E+02 9.01E-01

BA 6.07E+02 6.13E+02 6.11E+02 6.11E+02 0.15E+01

SMA 6.01E+02 6.02E+02 6.01E+02 6.01E+02 6.09E-01

          F8 
          (Multimodal)

FCS 8 . 0 0 e + 0 2 8 . 0 2 e + 0 2 8 . 0 0 e + 0 2 8 . 0 0 e + 0 2 5 . 7 3 e - 0 1

CS 8.02E+02 8.07E+02 8.05E+02 8.05E+02 1.34E+00

FA 8.04E+02 8.15E+02 8.08E+02 8.08E+02 2.89E+00

PSO 8.19E+02 8.39E+02 8.30E+02 8.32E+02 4.88E+00

BA 8.29E+02 9.09E+02 8.54E+02 8.48E+02 1.98E+01

SMA 8.11E+02 8.14E+02 8.06E+02 8.06E+02 1.09E+00
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Table 2 continued

Function Algorithm Best Worst Mean Median Std. dev.

          F17 
          (Hybrid)

FCS 1 . 7 0 e + 0 3 1 . 7 5 e + 0 3 1 . 7 2 e + 0 3 1 . 7 2 e + 0 3 1 . 3 1 e + 0 1

CS 1.72E+03 1.78E+03 1.75E+03 1.74E+03 1.78E+01

FA 2.65E+03 3.03E+04 4.93E+03 4.38E+03 2.14E+03

PSO 6.65E+03 2.98E+04 1.50E+04 1.44E+04 5.92E+03

BA 3.71E+03 4.57E+06 8.68E+05 4.08E+05 1.08E+06

SMA 2.68E+03 2.88E+04 4.68E+03 4.12E+03 3.32E+03

          F20 
          (Hybrid)

FCS 2 . 0 0 e + 0 3 2 . 0 0 e + 0 3 2 . 0 0 e + 0 3 2 . 0 0 e + 0 3 2 . 4 3 e - 0 1

CS 2.00E+03 2.00E+03 2.00E+03 2.00E+03 5.19E-01

FA 2.07E+03 1.14E+04 2.78E+03 2.37E+03 6.70E+02

PSO 2.09E+03 3.96E+03 2.45E+03 2.32E+03 3.87E+03

BA 2.59E+03 4.14E+06 4.14E+05 1.00E+06 7.58E+04

SMA 2.08E+03 2.04E+04 2.99E+03 2.41E+03 1.66E+03

          F24 
          (Composite)

FCS 2 . 5 1 e + 0 3 2 . 5 1 e + 0 3 2 . 5 1 e + 0 3 2 . 5 1 e + 0 3 3 . 0 1 e + 0 0

CS 2.51E+03 2.52E+03 2.52E+03 2.52E+03 4.12E+00

FA 2.51E+03 2.62E+03 2.51E+03 2.51E+03 0.37E+01

PSO 2.53E+03 2.55E+03 2.54E+03 2.54E+03 4.57E+00

BA 2.55E+03 2.64E+03 2.60E+03 2.60E+03 2.10E+01

SMA 2.51E+03 2.65E+03 2.51E+03 2.51E+03 1.03E+01

          F25 
          (Composite)

FCS 2.61E+03 2.67E+03 2.61E+03 2.64E+03 2.46E+01

CS 2.62E+03 2.69E+03 2.65E+03 2.65E+03 1.66E+01

FA 2.61E+03 2.70E+03 2.61E+03 2.64E+03 3.06E+01

PSO 2.65E+03 2.70E+03 2.69E+03 2.70E+03 1.71E+01

BA 2.72E+03 2.78E+03 2.74E+03 2.74E+03 1.30E+01

SMA 2.64E+03 2.68E+03 2.62E+03 2.64E+03 2.96E+01
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Table 3 continued on next page

Table 3. Results over test functions with Dimension D = 30

Function Algorithm Best Worst Mean Median Std. dev.

          F1 
          (Unimodal)

FCS 1.92E+05 1.94E+06 6.32E+05 5.52E+05 2.45E+05

CS 5.13E+05 2.27E+06 1.38E+06 1.41E+06 4.45E+05

FA 2.72E+06 2.05E+07 8.28E+06 6.89E+06 4.56E+06

PSO 4.95E+07 1.62E+08 1.10E+08 1.03E+08 2.85E+07

BA 1.93E+08 1.63E+09 7.95E+08 7.77E+08 4.42E+08

SMA 2.78E+06 2.14E+07 8.55E+06 7.12E+06 7.56E+06

          F6 
          (Multimodal)

FCS 6.04E+02 6.12E+02 6.08E+02 6.08E+02 1.19E+00

CS 6.23E+02 6.27E+02 6.25E+02 6.25E+02 1.30E+00

FA 6.05E+02 6.12E+02 6.08E+02 6.08E+02 1.93E+00

PSO 6.25E+02 6.34E+02 6.30E+02 6.30E+02 1.71E+00

BA 6.37E+02 6.48E+02 6.42E+02 6.41E+02 3.02E+00

SMA 6.11E+02 6.42E+02 6.28E+02 6.30E+02 2.06E+00

          F8 
          (Multimodal)

FCS 8.20E+02 8.41E+02 8.31E+02 8.31E+02 3.45E-02

CS 8.31E+02 8.64E+02 8.44E+02 8.44E+02 8.05E+00

FA 8.24E+02 8.80E+02 8.47E+02 8.46E+02 1.26E+01

PSO 9.95E+02 1.03E+03 1.01E+03 1.01E+03 1.18E+01

BA 9.17E+02 1.08E+03 1.01E+03 1.01E+03 4.34E+01

SMA 8.36E+02 8.81E+02 8.49E+02 8.47E+02 0.26E+01

          F17 
          (Hybrid)

FCS 3.00E+03 4.54E+03 3.61E+03 3.59E+03 4.03E+02

CS 3.45E+03 5.31E+03 4.56E+03 4.65E+03 4.58E+02

FA 4.91E+04 1.54E+06 5.98E+05 5.23E+05 4.27E+05

PSO 1.78E+06 5.62E+06 3.11E+06 3.08E+06 8.22E+05

BA 8.96E+05 1.55E+08 4.44E+07 2.51E+07 4.39E+07

SMA 2.77E+05 2.58E+06 6.66E+05 5.95E+05 3.33E+06

          F20 
          (Hybrid)

FCS 2.04E+03 2.08E+03 2.05E+03 2.06E+03 2.01E+01

CS 2.03E+03 2.09E+03 2.06E+03 2.06E+03 1.41E+01

FA 2.93E+03 1.46E+04 5.70E+03 4.81E+03 2.69E+03

PSO 3.55E+03 9.18E+03 5.46E+03 4.96E+03 1.49E+03

BA 2.89E+04 4.27E+06 3.82E+05 7.76E+05 1.67E+05

SMA 2.91E+03 1.48E+04 5.72E+03 4.85E+03 3.39E+03

          F24 
          (Composite)

FCS 2.61E+03 2.61E+03 2.61E+03 2.61E+03 0.92E+00

CS 2.62E+03 2.62E+03 2.62E+03 2.62E+03 1.06E+00

FA 2.62E+03 2.62E+03 2.63E+03 2.63E+03 1.29E+01

PSO 2.69E+03 2.71E+03 2.70E+03 2.70E+03 4.85E+00

BA 2.66E+03 2.75E+03 2.71E+03 2.40E+01 2.71E+03

SMA 2.62E+03 2.62E+03 2.63E+03 2.63E+03 1.09E+01
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Table 3 continued

Function Algorithm Best Worst Mean Median Std. dev.

          F25 
          (Composite)

FCS 2.70E+03 2.70E+03 2.70E+03 2.70E+03 8.02E-01

CS 2.70E+03 2.70E+03 2.70E+03 2.70E+03 8.38E-01

FA 2.70E+03 2.71E+03 2.70E+03 2.71E+03 0.15E+00

PSO 2.71E+03 2.72E+03 2.72E+03 2.71E+03 3.00E+00

BA 2.72E+03 2.78E+03 2.74E+03 1.30E+01 2.74E+03

SMA 2.70E+03 2.71E+03 2.70E+03 2.71E+03 0.98E+00

Table 4. Results over test functions with Dimension D = 50 

Function Algorithm Best Worst Mean Median Std. dev.

          F1 
          (Unimodal)

FCS 8.88E+04 1.95E+06 8.59E+05 8.01E+05 3.65E+05

CS 4.06E+06 1.09E+07 7.22E+06 7.33E+06 1.63E+06

FA 6.98E+06 1.98E+07 1.16E+07 1.06E+07 3.30E+06

PSO 2.37E+08 5.54E+08 3.97E+08 3.98E+08 7.73E+07

BA 8.23E+07 3.34E+09 1.56E+09 1.42E+09 8.83E+08

SMA 6.98E+06 2.08E+07 1.32E+07 1.28E+07 4.35E+06

          F6 
          (Multimodal)

FCS 6.12E+02 6.25E+02 6.18E+02 6.18E+02 1.17E+00

CS 6.43E+02 6.53E+02 6.49E+02 6.49E+02 2.40E+00

FA 6.12E+02 6.28E+02 6.19E+02 6.18E+02 3.96E+00

PSO 6.25E+02 6.34E+02 6.30E+02 6.30E+02 1.71E+00

BA 6.70E+02 6.85E+02 6.77E+02 6.76E+02 4.07E+00

SMA 6.20E+02 6.30E+02 6.25E+02 6.25E+02 2.01E+00

          F8 
          (Multimodal)

FCS 8.20E+02 8.63E+02 8.35E+02 8.37E+02 4.63E+00

CS 8.83E+02 9.55E+02 9.23E+02 9.26E+02 1.67E+01

FA 8.59E+02 9.46E+02 9.07E+02 9.05E+02 2.38E+01

PSO 9.95E+02 1.03E+03 1.01E+03 1.01E+03 1.18E+01

BA 1.00E+03 1.35E+03 1.16E+03 1.17E+03 6.01E+01

SMA 8.68E+02 9.50E+02 9.27E+02 9.16E+02 3.07E+01

          F17 
          (Hybrid)

FCS 2.26E+04 1.49E+05 6.00E+04 5.33E+04 4.55E+04

CS 6.89E+04 3.94E+05 2.04E+05 1.83E+05 8.37E+04

FA 1.47E+05 4.39E+06 1.33E+06 9.06E+05 1.10E+06

PSO 7.38E+06 2.83E+07 1.81E+07 1.76E+07 5.41E+06

BA 1.05E+07 2.60E+08 1.30E+08 1.33E+08 6.35E+07

SMA 1.50E+05 4.35E+06 1.46E+06 8.86E+05 2.17E+06

Table 4 continued on next page
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4.2. Results over Multi-level Thresholding Domain 
NIOA were proposed as stochastic search mechanisms for solving complex engineering problems 
involving multiple global and local minima, where conventional mathematical methods are ineffective. 
Since multi-level color image segmentation leads to a multimodal optimization challenge, NIOA is 
viewed as an alternative strategy for determining the best set of threshold values. Their performance 
should be evaluated using a multi-level color pathology image segmentation scheme. In this part, 
the performance of the proposed FCS has been tested using Otsu and Kapur’s entropy as objective 
functions on well-known benchmark images of Acute Lymphoblastic Leukemia (ALL) patients, 
namely ALL-IDB (Labati et al., 2011). All the images in the datasets were taken with a PowerShot 
G5 camera and stored in JPG format with a 24 bit colour depth and a native resolution of 2592 x 1944 
pixels. The images correspond to different microscope magnifications (ranging from 300 to 500). 
The ALL-IDB database is divided into two versions (ALL-IDB1 and ALL-IDB2), both of which 
are focused on segmentation and classification. The ALL-IDB1 can also be used to test algorithms’ 
segmentation capabilities as well as classification systems’ accuracy. There are 108 images in this 
dataset. ALL-IDB2 is belongs to the ALL-IDB1 dataset that includes cropped areas of interest of 
normal and blast cells. There are 260 pictures in all, with lymphoblasts representing for 50% of them. 
The grey level characteristics of ALL-IDB2 images are identical to those of ALL-IDB1. Proper 
Enhancement (Dhal, Ray, Das, Biswas et al, 2019) and segmentation (Dhal, Gálvez, & Das, 2020) of 
digital pathology images are critical and play a key role in a computer-aided diagnosis (CAD) system. 

For segmentation and image classification, the ALL-IDB dataset is used. It focuses on Acute 
Lymphoblastic Leukemia (ALL), a severe blood disease that can be lethal in as little as a few weeks if 

Function Algorithm Best Worst Mean Median Std. dev.

          F20 
          (Hybrid)

FCS 2.14E+03 2.46E+03 2.27E+03 2.28E+03 5.83E+01

CS 2.25E+03 2.51E+03 2.35E+03 2.34E+03 6.76E+01

FA 3.22E+03 1.51E+04 7.53E+03 6.84E+03 3.00E+03

PSO 1.30E+04 4.53E+04 2.66E+04 2.49E+04 7.93E+03

BA 3.50E+04 1.55E+06 9.00E+00 3.01E+05 1.46E+05

SMA 3.22E+03 1.59E+04 6.97E+03 6.54E+03 2.98E+03

          F24 
          (Composite)

FCS 2.65E+03 2.66E+03 2.65E+03 2.65E+03 1.27E+00

CS 2.66E+03 2.66E+03 2.66E+03 2.66E+03 1.43E+00

FA 2.67E+03 2.68E+03 2.67E+03 2.67E+03 0.27E+01

PSO 2.83E+03 2.87E+03 2.84E+03 2.84E+03 9.10E+00

BA 2.75E+03 3.03E+03 2.87E+03 6.30E+01 2.86E+03

SMA 2.69E+03 2.88E+03 2.69E+03 2.70E+03 0.65E+01

          F25 
          (Composite)

FCS 2.70E+03 2.71E+03 2.70E+03 2.70E+03 1.88E+00

CS 2.71E+03 2.73E+03 2.72E+03 2.72E+03 3.13E+00

FA 2.71E+03 2.72E+03 2.71E+03 2.71E+03 0.29E+01

PSO 2.75E+03 2.79E+03 2.77E+03 2.77E+03 1.04E+00

BA 2.74E+03 2.83E+03 2.77E+03 2.00E+00 2.77E+03

SMA 2.71E+03 2.72E+03 2.71E+03 2.71E+03 0.91E+01

Table 4 continued
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left untreated. ALL is more prevalent in children, with a peak occurrence between the ages of two and 
five years. The ALL disease is related to the lymphocytes in the bone marrow and into the peripheral 
blood. Lymphocytes of ALL patients are called lymphoblasts. Segmentation of White Blood Cell 
(WBC), especially lymphocytes/ lymphoblasts is an essential step in an automatic method for the 
detection of Acute Lymphoblastic Leukemia. 

This study used 100 images from the aforementioned datasets to demonstrate the robustness of 
the FCS. To make a fair comparison among NIOA, each execution of the tested objective functions 
considers the number of function evaluations NFE = 1,000 * d, as stop criterion of the optimization 
process. This criterion has been selected to promote compatibility, with previously published works 
in the literature. The experiments are evaluated considering the number of threshold values (nt) 
set to 3, 4, and 5 which correspond to the d-dimensional search space in an optimization problem 
formulation. For each image, an optimization process is achieved by the evaluation of each objective 
function. Standard deviations, average fitness values, computational time, and common quality image 
metrics such as Peak Signal to Noise Ratio (PSNR), Quality Index based on Local Variance (QILV), 
and Feature Similarity Index (FSIM) are used to compare the numerical results obtained by the 
tested segmentation methods. To remove the random effect of numerical results among independent 
runs, a non-parametric framework based on Wilcoxon rank sum test (García et al., 2009) is used to 
statistically validate and corroborate the numerical results. Three segmentation quality parameters 
are considered to judge the segmentation ability of the utilized algorithms. The brief description of 
the quality parameters are given in Table 5. 

For each image, each NIOA-based thresholding model has been run 40 times and the best run was 
registered. The images of various blast cells from Acute Lymphoblastic Leukemia are shown in Fig. 1.

Table 5. Quality parameters to evaluate the performance of the proposed segmentation methods.

Sl. Parameters Formulation Remarks

1. Feature 
Similarity 
          Index 
(FSIM) (Dhal, 
Gálvez, Ray et al, 
2020; Zhang et 
al., 2011)
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S x PC x

PC x
x L m

x m

=
( ) ( )

( )
∈

∈

∑
∑

©

©

.
Defines the quality score which 
reflects the significance of a local 
structure. High Value reflects better 
results.

3. Peak Signal to 
Noise 
Ratio (PSNR) 
(Aja-Fernández 
et al., 2006)
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Represents the ratio between the 
maximum possible power of a signal 
and the power of corrupting noise. 
High PSNR value indicates better 
result.

4. Quality Index 
based on Local 
Variance (QILV) 
(Aja-Fernández 
et al., 2006; Dhal, 
Gálvez, Ray et al, 
2020)
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          Finds the similarity between 
segmented image and uncompressed 
or distortion-free image. High QILV 
value indicates better result.
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Figure 1. Original Acute Lymphoblastic Leukemia images

Figure 2. FCS based segmented outputs for Fig.1(a) using the Otsu and Kapur’s entropy objective functions 

Figure 3. FCS based segmented outputs for Fig.1(b) using the Otsu and Kapur’s entropy objective functions 
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The segmented images by FCS with Otsu and Kapur’s entropy corresponding to Figs.1 are given 
as Figs.2 and 3. Table 6 represents average numerical values of PSNR, QILV, FSIM, standard deviation 
s
f( ) , Computational time, and fitness function f( )  values over 100 images of all the tested NIOAs 

with Kapur’s entropy as objective function. The average is calculated by sum of best run value of 
each 100 image divided by number of images. Average fitness and standard deviation clearly show 
that FCS provides the best results over thresholds 3, 4, and 5. FA provides the second best results by 
considering the same numerical analysis. Performance of CS deteriorates when number of thresholds 
is 5. Therefore it can be said that CS suffering when dimension increases. PSO gives worst results 
among all the tested NIOAs. Computational effort of classical CS algorithm is least. Whereas, FCS 
is the second best according to the computational time. Values of PSNR, FSIM, and QILV demonstrates 
that FCS with Kapur’s entropy is the best choice for the image WBC segmentation of ALL hematology 
images. Comparison among the NIOAs of Kapur’s entropy objective function maximization ability 
has been given as Fig. 4. 

Table 6. Numerical comparison for Kapur’s entropy objective function. (Best results given in bold) 

Number of 
thresholds 

(nt)
NIOA f s

f
Time (src.) PSNR QILV FSIM

3

FCS 2.27E+01 2.21E-03 2.426 16.08 0.4799 0.7108

CS 2.21E+01 7.23E-01 2.216 15.45 0.4588 0.6906

FA 2.21E+01 5.34E-01 3.187 15.38 0.4491 0.6883

PSO 2.20E+01 7.02E-02 3.881 14.91 0.4486 0.6767

BA 2.20E+01 1.12E-01 3.892 14.92 0.4486 0.6765

SMA 2.20E+01 5.58E-02 3.174 14.61 0.4486 0.6767

4

FCS 2.76E+01 2.21E-02 2.588 16.76 0.5318 0.7308

CS 2.56E+01 1.45E-01 2.501 15.69 0.4902 0.7044

FA 2.59E+01 3.29E-01 3.784 15.88 0.5129 0.7170

PSO 2.54E+01 8.09E-02 3.989 15.33 0.4876 0.6989

BA 2.56E+01 7.45E-01 4.001 15.70 0.5118 0.7026

SMA 2.58E+01 2.25E-01 3.698 15.88 0.5128 0.7158

5

FCS 3.15E+01 8.24E-05 3.001 18.51 0.7144 0.7699

CS 2.87E+01 3.76E-04 2.997 17.52 0.6789 0.7123

FA 2.89E+01 4.09E-04 4.106 17.68 0.6887 0.7211

PSO 2.82E+01 4.21E-04 4.602 17.17 0.6568 0.7064

BA 2.87E+01 4.21E-03 4.765 17.67 0.6786 0.7185

SMA 2.87E+01 5.33E-04 4.004 17.61 0.6821 0.7113
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Figure 4. Average Fitness Comparison of NIOAs for Kapur’s Entropy

Table 7. Numerical comparison for Otsu’s criterion objective function. (Best results given in bold) 

Number of 
thresholds (nt) NIOA f s

f
Time (sec.) PSNR QILV FSIM

3

FCS 8.10E+02 5.49E-02 2.822 16.35 0.8240 0.7792

CS 7.87E+02 7.21E-02 2.206 15.91 0.7899 0.7514

FA 7.89E+02 9.35E-01 3.128 15.95 0.7910 0.7529

PSO 7.85E+02 7.22E-02 3.902 15.90 0.7869 0.7517

BA 7.86E+02 3.32E-01 3.911 15.90 0.7877 0.7518

SMA 7.87E+02 8.04E-02 3.107 15.93 0.7895 0.7515

4

FCS 8.16E+02 6.22E-03 3.191 17.92 0.8619 0.7926

CS 7.99E+02 5.76E-01 3.068 17.74 0.8548 0.7643

FA 8.01E+02 6.01E-02 4.283 17.85 0.8598 0.7697

PSO 7.91E+02 3.27E-02 4.511 16.98 0.8513 0.7636

BA 7.98E+02 5.54E-02 4.544 17.80 0.8547 0.7642

SMA 8.01E+02 7.55E-02 4.107 17.88 0.8561 0.7638

5

FCS 8.22E+02 1.62E-02 3.381 20.91 0.8975 0.8257

CS 8.04E+02 1.82E-02 3.291 19.22 0.8662 0.7853

FA 8.10E+02 8.89E-03 4.651 20.73 0.8797 0.8201

PSO 8.02E+02 8.40E-02 4.871 19.06 0.8663 0.7809

BA 8.04E+02 4.44E-01 4.859 19.43 0.8661 0.7856

SMA 8.08E+02 2.88E-02 4.523 19.85 0.8742 0.8144
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Table 7 represents average numerical values of PSNR, QILV, FSIM, standard deviation s
f( ) , 

Computational time, and fitness function f( )  values over 100 images of all the tested NIOAs with 
Otsu interclass variance as objective function. Average fitness and standard deviation clearly show 
that FCS provides the best results over thresholds 3, 4, and 5. Here, again FA provides the second 
best results. Optimization ability of the CS deteriorates when number of thresholds is 5. PSO gives 
worst results among all the tested NIOAs. Classical CS algorithm takes least time to find the threshold 
values. Whereas, FCS is the second best according to the computational time. Values of PSNR, FSIM, 
and QILV demonstrates that FCS with Otsu is the best choice for the image WBC segmentation of 
ALL hematology images. Comparison among the NIOAs of Otsu objective function maximization 
ability has been given as Fig. 5.

From Tables 6 and 7, we can also conclude that if numbers of thresholds increase, value of PSNR, 
QILV, and FSIM also increase for the both objective functions. 

Table 8. Comparison among optimization algorithms depending on Wilcoxon p-values

Thresholds®
 

Algorithms ¯

Kapur’s Entropy Otsu Criterion

nt = 3 nt = 4 nt = 5 nt = 3 nt = 4 nt = 5

p h p h p h p h p h P h

FCS vs. CS <0.05 1 <0.05+ 1 <0.05+ 1 <0.05+ 1 <0.05+ 1 <0.05+ 1

FCS vs. FA <0.05 1 <0.05+ 1 <0.05+ 1 <0.05+ 1 <0.05+ 1 <0.05+ 1

FCS vs. PSO <0.05+ 1 <0.05+ 1 <0.05+ 1 <0.05+ 1 <0.05+ 1 <0.05+ 1

FCS vs. BA <0.05 1 <0.05+ 1 <0.05+ 1 <0.05+ 1 <0.05+ 1 <0.05+ 1

FCS vs. SMA <0.05 1 <0.05+ 1 <0.05+ 1 <0.05+ 1 <0.05+ 1 <0.05+ 1

“+” indicates significant difference

Figure 5. Average Fitness Comparison of NIOAs for Otsu Criterion
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The fitness values of the FCS have been compared with other NIOAs using a nonparametric 
significance proof known as the Wilcoxon’s rank test (García et al., 2009) that is conducted with 100 
independent samples (40 runs). Such proof allows assessing result differences among two related 
methods. Wilcoxon’s rank test at the 5% significance level is used to determine if the results obtained 
with the best performing algorithm vary statistically significantly from the final results of the other 
competitors. A p-value of less than 0.05 (5% significance level) strongly supports the rejection of 
the null hypothesis, suggesting that the best algorithm’s results vary statistically significantly from 
those of the other peer algorithms and that the discrepancy is not due to chance. Table 8 reports the 
p-values produced by Wilcoxon’s test for a pairwise comparison of the fitness function between 
two groups formed as FCS vs. CS, FCS vs. FA, FCS vs. PSO, FCS vs. BA, and FCS vs. SMA for 
3, 4, and 5 number of thresholds. All of the p values in Table 8 are less than 0.05 (5% significance 
level), and h =1 is clear proof against the null hypothesis, showing that the FCS fitness values for 
the performance are statistically higher, and this is not a fluke. From Tables 6 and 7 it is clearly 
noticed that FCS with Otsu is better than FCS with Kapur’s entropy for WBC segmentation of ALL 
hematology images. The values of computational time, PSNR, QILV, and FSIM corresponding to 
FCS with Otsu and FCS with Kapur’s entropy have been compared and represented as Fig. 6. It can 
be seen from the figures that FCS with Otsu provides better values of quality parameters compare 
to FCS with Kapur’s entropy. However, the computational effort of FCS with Otsu is slightly higher 
than FCS with Kapur’s entropy. Not only FCS, all the tested NIOA with Otsu gave superior outcomes 
in terms of segmentation quality parameters compare to Kapur’s entropy with the concerned NIOA. 
Therefore, it can be said that Otsu is superior to Kapur’s entropy to segment the WBC of the ALL 
hematology images. 

Figure 6. Comparison of FCS with Otsu and FCS with Kapur’s Entropy based on: (a) Computational time; (b) PSNR; (c) QILV; (d) FSIM.
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5. CONCLUSION 

The Fuzzy Cuckoo Search (FCS) algorithm is a fuzzy population-based improved Cuckoo Search 
algorithm presented in this study. In the FCS algorithm, the population is divided into two groups: 
best and worst, with each solution belonging to one of the set based on fitness. The solutions are 
enhanced with the aid of fuzzy set centroids, global best solution guidance, and levy flight dependent 
mutation. With Otsu and Kapur’s entropy as objective functions, the proposed FCS algorithm is 
employed to the CEC’14 function suites and multi-level thresholding based image segmentation 
domain. In comparison to other studied NIOA, such as CS, BA, FA, SMA, and PSO, the experimental 
study shows that FCS performs exceptionally well in minimizing the CEC’14 test functions. FCS also 
outperforms the other algorithms in Otsu and Kapur’s entropy-based multi-level color hematology 
image segmentation domain. In comparison to FCS with Kapur’s entropy, the numerical results 
show that FCS with Otsu as the objective function produces the best segmented outcomes of color 
hematology images in terms of segmentation consistency parameters. The computational effort of the 
Otsu with FCS, on the other hand, is higher than that of FCS with Kapur’s entropy. With the tested 
NIAOs, Otsu is superior to Kapur’s entropy as an objective function for segmentation of the concerned 
color hematology images, according to the study. The numerical data is supported by a statistical 
framework that employs a non-parametric approach to identify substantial differences between FCS 
and the rest of NIOA. The FCS could be used in other engineering and real-time optimization fields 
in the future. To increase the effectiveness of other common NIOA, the proposed fuzzy population-
based technique can be implemented.
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