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ABSTRACT

A new deep learning-based classification model called the stochastic dilated residual ghost (SDRG) 
was proposed in this work for categorizing histopathology images of breast cancer. The SDRG 
model used the proposed multiscale stochastic dilated convolution (MSDC) model, a ghost unit, 
stochastic upsampling, and downsampling units to categorize breast cancer accurately. This study 
addresses three primary issues. First, strain normalization was used to manage color divergence. 
Data augmentation with several factors was used to handle the overfitting. The second challenge is 
extracting and enhancing tiny and low-level information such as edge, contour, and color accuracy; 
it is done by the proposed multiscale stochastic and dilation unit. The third contribution is to remove 
redundant or similar information from the convolution neural network using a ghost unit. According 
to the assessment findings, the SDRG model scored overall 95.65% accuracy rates in categorizing 
images with a precision of 99.17%, superior to state-of-the-art approaches.
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1. INTRoDUCTIoN

Breast Cancer (BC) is the primary reason behind the death of women globally and is answerable for 
numerous deaths every year (Afifi et al., 2019). BC cases are rising daily, and patients are increasing 
each day; health sciences are still troubled by the upper and proper prognosis of cancer and deep 
learning. Machine learning is attempting to supply technical advancements. As per the medical 
specialty reports, carcinoma breast cancer is hard to hunt out at the initial stage; the survival rate can 
increase if detected at the initial stage. Numerous methods and models have developed, and deep 
learning involvement gives rise to cancer’s accurate and fast prognosis (Pacilè et al., 2020). There are 
several risk factors for cancer like increasing age, family history, biological time, internal secretion. 
BC has also reported at younger age women if having a primary child at an older age and women 
have never been pregnant. BC arises because the breast cell gets started growing unusually, and cells 
split quickly from the usual structure, frame a lump, and unfold to various parts (Yıldırım, 2018). 
Types of breast carcinoma like adenosis, fibroadenoma, phyllodes, cylindrical adenoma, mucinous 
carcinoma are shown in figure 1. 
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Image classification has shown performance improvements using deep learning models (LeCun 
et al., 2015). The AlexNet model provides better results than conventional machine learning methods 
in detecting benign and malignant cancer cells (Spanhol et al., 2016b). State of the art has shown 
that deep learning models providing 83% accuracy (Bayramoglu N. et al., 2016), the pre-trained 
convolution neural network (CNN) model extracted the deep convolutional activation features from 
the network achieved 90% (Spanhol F. et al., 2017), and that BiCNN model up to 97% (Wei B. et 
al.,2017) accuracy in breast cancer detection. Deep learning still offers good precision with a large 
volume of data and shows its presence in detecting mitosis (Chen H. et al., 2016) and metastasis (Wang 
D. et al., 2016). The classification of histological images is very ambitious since invasive carcinoma 
and stroma have fragile borders, and the core element for the detection of cancer is tissue structures 
(Monaco J. et al., 2012) (Liu F.and Yang L., 2015). Hematoxylin and eosin (H&E) images show a 
variable appearance even with the same malignancy tissue biopsies (Giannakeas N. et al., 2017). 
Other issues with breast cancer detection with deep learning models are the availability of limited 
datasets, which cause overfitting (Pang et al., 2018) (Gavrilov et al., 2018); it also causes a lack of 
feature evaluation and results in cell imaging desegregation (Dapson et al., 2010). The VGG model 
uses VGG16 and a neural network to extract the properties (Gultom et al., 2018); the VGG16, VGG19, 
and ResNet50 models use a layered architecture but do not work well with smaller training datasets 
(Shallu & Mehra, 2018). AlexNet booths with large color images, LeNet5 has reduced training time 
and exceeds performance (Huang et al., 2015). The Inception v3 model based on deep learning was 
used to classify lung cancer and be a reliable model (Coudray et al., 2018). The contribution of this 
research is to design a model for the precise detection of nuclei, which remains a challenge as H&E 
images use the blue/purple color to represent the nuclei and the pink color to represent the cytoplasm 
very complicated (Veta et al., 2014). The main challenge is the presence of the maximum core in 
high-resolution images, noise, and variations in the core’s texture, intensity, and shape (Fuyong Xing 
et al., 2014) (Chanho Jung & Changick Kim, 2010). 

There are some significant challenges, and their solutions are given here. 

Figure 1. Four types of benign (first row) (a) adenosis (b) fibroadenoma (c) phyllodes tumor (d) tubular adenoma and malignant 
(second row) (a) ductal carcinoma (b) lobular carcinoma (c) mucinous carcinoma (d) papillary carcinoma tumor images from the 
Breast Cancer Histopathological Image Classification (BreakHis) dataset (Spanhol et al., 2016a).
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Challenge 1: CNN overfit because of the limited number of images available and affect the actual 
detection of breast cancer. 

Solution: To increase the size of the dataset, the proposed model performs preprocessing, which 
contains two steps. First, it combines two datasets BreakHis and Breast Cancer Histopathological 
Annotation and Diagnosis (BreCaHAD) (Aksac et al., 2019). The second step is to perform 
augmentation with many parameters scaling, rotation, shifting, gamma value, flip and resize to 
increase the size of datasets to solve the overfitting issue.

Challenge 2: The structure of H&E images reveals volatile expression, even with the same malignancy 
level.

Solution: The strain normalization process resolve this issue; it takes augmented images to improve 
the contrast and brightness without affecting the image information with contrast limited adaptive 
histogram equalization method. 

Challenge 3: Accurately detect the small objects in the histological image for the prognosis of breast 
cancer. 

Solution: The proposed Multiscale Stochastic Dilated Convolution Model accurately enhances small 
and low-level features like edge, contour, and color. The proposed MSDC model combines spatial 
dilated convolution units: channel dilated convolution and stochastic dilated convolution units.

Challenge 4: Removal of redundant and similar features in the model, making the process complex.
Solution: Removing redundant or similar features using the ghost unit uses linear transformations 

to create feature maps. The ghost unit removes the redundant and similar features by applying a 
series of cheap linear operations on each intrinsic feature to generate ghost features.

This paper proposes a deep learning model for histopathology images of breast cancer that takes 
images and detects cancer accurately with enhanced accuracy. The main contribution of our research 
is summarized below: We designed a deep learning-based model for the accurate detection of breast 
cancers on histopathological images. We are solving the overfitting and color divergence problem that 
affects breast cancer classification. The data expansion was implemented and delivered promising 
results. The proposed multiscale stochastic and dilation model detects small, low-level features such 
as edge, contour, and color accuracy without increasing the complexity. Eliminate redundancy and 
reduce model complexity using the Ghost unit. The model performance improves with the receptive 
field of the dilated convolution without losing image information. The Ghost unit for maintaining 
intrinsic feature maps and upsampling stochastic groupings reduces feature dimensions and improves 
performance. Some challenges are still open for future work as the comprehensive data set for the deep 
learning model is even smaller. Feeding the data into the model in parallel should improve performance 
in terms of accuracy. The proposed stochastic dilated residual ghost Network has 14 layers, which 
integrates the proposed multiscale stochastic dilated convolution model, stochastic downsampling, 
ghost unit, and stochastic upsampling operation very effectively to get the accurate result.

The following are the remaining sections of this paper. Background information is included in 
Section 2; the research materials and methods utilized to perform this study are given in Section 
3. Sections 4 and 5 depict the experimental setup and outcomes. Finally, Section 6 summarises the 
study’s findings and future directions.

2. BACKGRoUND 

Breast cancer treatment can be very effective with the involvement of technology and pathology in 
medical science. BC tumors can be detected by imaging techniques like mammography, positron 
emission tomography, biopsy, ultrasonography, and magnetic resonance imaging. A pathologist 
assesses these tissues and reports whether it is benign or malignant and may vary each time because 
of the complicated structure of H & E images. The hazardously grade 3 cancer cells, grade 1 to 4 of 
breast cancer depict in figure 2, and their prognosis can help a higher survival rate.
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CNN adds value to deep learning techniques that have shown to be particularly effective in breast 
cancer detection and classification. A CNN model and its layered architecture recognize cancer and 
support medical science with the best outcomes (Choi et al., 2020). The convolution layer extracts an 
image’s local features, then the pooling layer is used for the dimensionality reduction, and the fully 
connected layer gives the intended output. The convolution’s excellent performance uses brighter 
pixels to show the edges in the image and highlights the local image features for further processing. 
The convolutional, pooling, fully connected, normalization layers are the network base; convolution 
applies a filter to an image and generates the image as an output. An image of (128x128x3) dimension 
in the CNN layer represents an image width of 128, the height of 128 pixels, and three channels, 
and the dimension that needs to process is 49,152 (128x128x3). When the image datasets are small, 
the traditional neural network may cause overfitting; when the image size is large, the conventional 
neural network may take up too much memory and require complicated calculations. A convolution 
operation plays a keen role in the CNN, as shown in equation 1:

C= 
1

1

i
j
ij ijI F∑∑  (1)

C is a feature map, I and F images and filters for the convolution operation, and i and j are rows 
and columns. The convolution operation is nothing more than the element-wise multiplication of the 
image by the kernel, a diagram of a traditional convolutional neural network is shown in Figure 3. 

The left side of figure 3 shows feature learning; it takes an input image of 32x32, then passes 
the image to the convolution layer. The convolution layer applies a filter to generate a feature map 
that encapsulates the valuable features for the computationally simple model thanks to the rectified 
linear activation function, or ReLU operation, which covers negative to zero values. The pooling layer 
controls overfitting by reducing feature maps, training parameters, and computation costs. Figure 3 
shows a convolutional neural network that can repeat one or more times. The right side of the figure 

Figure 2. Mammographic images contain breast density from fatty (left) to highly dense (right) (“Breast Density,” 2021)
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shows classification; it performs by fully connected (FC) layers depending on the characteristics 
retrieved by the preceding layers.

Convolution transforms an image into a perceptron, which creates a local receptive field flattened 
on a feature map of size (y) X (z). Every layer has a set of x filters, each of which discovers features. 

The Ci
L  of layer, L result to made up of xL1  feature maps of size( )y L X ( )z L  with the ith   feature 

map denoted as Ci
L  being computed as

Ci
L =Bi

L +
j

x

i j
L

L

F
�

�� �

�
1

1

,
*Cj

L�� �1  (2)

Where Bi
L is bias matrix and Fi j

L
,  is the filter of size  (2

1
hL +1) X (2

2
hL +1) connecting the layer’s 

jth  feature map. Every channel kernel matrix in a convolution neural network may be different; for 
example, the blue channel may be minus one value, whereas the other channel may be positive or 
zero. The convolution procedure can employ several kernels; the dot product generates the convolution 
value using the kernel and channel matrices. The convolution procedure reduces the size of an image. 
For example, if (Is) is the image size and (Fs) is the kernel size, the resultant image size will be 
determined by

Cs=((Is-Fs)/S) +1 (3)

Is, Fs, and S are 6, 3, and 1, respectively, in the picture, hence Cs = (6-3+1) = 4. The following 
formula computes the output dimension:

Width Fs P S− +( ) +2 1/ ]  (4)

Fs stands for Filter Size, P for Padding, S for Stride, and equation 4 for the Floor Value.

Figure 3. Convolution neural network architecture
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As demonstrated in Figure 3, CNN models execute convolution on each picture before pooling. 
The FC layer converts to a 1 x 1 convolution layer, categorizing breast cancer using the activation 
function. Several CNN models have contributed to object categorization and detection, and a few 
are covered below.

2.1 AlexNet
AlexNet solves the gradient dispersion problem by using ReLU non-linearity. AlexNet also 
demonstrates that deep CNNs can be trained faster with saturating activation functions like Tanh or 
Sigmoid. Fully connected layers incorporate the dropout, which changes the architecture of the neurons 
to avoid overfitting, and max-pooling, which eliminates blur effects with feature enhancement. The 
AlexNet’s data augmentation enhances the training datasets, which now total 62.3 million parameters. 
After padding, the input picture size is 227x227x3 (Krizhevsky et al., 2017), and the architecture 
depicted in Figure 4 is used for parallel processing. Finally, the 4096 neurons and Softmax activation 
function produce 1000 values, which aid in improved categorization.

2.2 VGG16 
The VGG16 network comprises 16 layers, is extremely simple to construct, and has a 7.7% error rate. 
This network utilizes a relu activation function without local response normalization (Simonyan, K., 
& Zisserman, A.,2015). The main difference between VGG and AlexNet is the kernel size; VGG uses 
3x3 with stride 1, which provides better prediction, whereas AlexNet uses 11x11 with stride 4 (Shen 
et al., 2019). VGG16 model design consists of five convolution units followed by a max-pooling 
layer to reduce image size. It contains three ultimately linked layers: the first layer generates 4096 
neurons and reduces the picture size while increasing the number of channels; the second and last 
layers each generate 100 neurons. 

Figure 4. AlexNet Architecture
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2.3 ResNet
Residual Network (ResNet) bypasses the input information and retains the integrity of the data 
throughout the process. The network’s depth and learning rate affect the deep layers by losing gradients; 
the learning rate problem is solved by adding a layer to the network that improves performance (Koné 
& Boulmane, 2018). 

H(i)= f(W*i)+b (5)

The equation without skipping the network is represented by equation 6, where f is the activation 
function; the output would be wherever the network takes the shortcut path.

H(i)=f(i)+I (6)

The number of deep layers and the network employing these two identities and convolution 
blocks are the key differences between the ResNet varieties. Residual blocks considerably enhance 
performance (Zhou et al., 2020). The specifics of these ResNet variations are represented in Table 
1. The 18 layers of ResNet must train using 11.17 million parameters and 1.8 billion flops. From the 
convolutional layers 2 through 5, each filter has 64-512 output channels. Similarly, the ResNet 50 
and 152 employ 23.52 and 25.5 million trained neurons, respectively, and have 3.8 and 4 flops. The 
fundamental difference between ResNeXt-50 and ResNet 152 is that ResNeXt-50 uses 32 routes for 
cardinality, whereas ResNet152 does not. ResNeXt-50 employs 128-2048 output channels per filter, 
whereas ResNet-152 utilises 64-512 filter channels output.

The ResNeXt-101 has the lowest error rates between the top 1 and 5 of 20.4 percent and 5.3 percent 
when compared to ResNet-101, ResNet-200, ResNeXt-50, and ResNet-50. The primary distinction 
is between training and testing mistakes; it is less than RestNet and has less complexity in RestNeXt.

Figure 5. Residual learning a. identity block (Top) B. convolution block (Bottom)
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3. ReSeARCH MATeRIALS AND MeTHoDS 

3.1 Datasets
The datasets for this investigation were Breast Cancer Histopathological Image Classification 
(BreakHis) and Breast Cancer Histopathological Annotation and Diagnosis (BreCaHAD). The 
BreakHis contains 2,480 benign and 5,429 malignant pictures from 82 patients with magnification 
factors of 700X460 pixels (40X, 100X, 200X, and 400X). While BreCaHAD contains 162 breast 
cancer images with resolution 1360 × 1024 pixels. 

3.2 Proposed Model 
The proposed model is divided into three parts. In the first part, we discuss data augmentation and 
strain normalization. In contrast, the second part discusses the MSDC model, which is instrumental 
in the proposed SDRG model for detecting small features. The third part shows the Proposed SDRG 
model for accurate detection of breast cancer. The complete model is shown in figure 12. 

3.2.1 Strain Normalization 
Color divergence is still a problem in histopathological pictures created with various slide scanners, 
biopsy materials, and staining procedures (Anghel et al., 2019) information after deformation 
normalization, as shown in Figure 6.

3.2.2 Data Augmentation 
Data augmentation will enhance the number of images in a dataset, resulting in a more robust dataset 
for coaching and resolving overfitting issues caused by dataset size constraints (Zhu et al., 2019). 
The suggested technique combines two datasets, BreakHis and BreCaHAD, then performs operations 
such as flipping, rotating, shifting, resizing, and gamma worth table 2 lists the parameters evaluated 
for the augmentation of various parameters and values. Figure 7 shows the outcomes after image 
augmentation first row contains a histological image from the dataset and strain normalized image 
followed by a rotated image. The second row shows flipped image, an image after applying gamma 
values 0.3 and 1.2.

Image augmentation performs flipping, scaling, rotation, and gamma-correction. The scaled 
images were created by applying scaling factors of 0.5, 0.8, and 1.2 to each image. Using the horizontal 
and vertical reflections generates flipped images and the angles 40, 80, 120, and 180 degrees to rotate 
the image (Shahidi et al., 2020). The gamma correction used in the augmentation of the pictures shown 
in Figure 7 (a-f) ranges from 0.3 to 1.2. After adding 19 parameters for magnification factors (40x, 

Table 1. Error percentage of resnet network on imagenet

S.N. Model Structure Top-1 error Top-5 error

1 ResNeXt-101 64x4d 20.4 5.3

2 ResNeXt-101 2x64d 20.7 5.5

3 ResNeXt-101 32x4d 21.2 5.6

4 ResNet-101 1x100d 21.3 5.7

5 ResNet-200 1x64d 21.7 5.8

6 ResNet-101 1X64d 22 6

7 ResNeXt-50 32x4d 24.4 6.6

8 ResNet-50 1X64d 27.1 8.2
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Figure 6. Effects of Strain Normalization A: An Original Image B: An Image after Strain Operation

Table 2. Parameters of data augmentation

S.N. Parameters of Image Augmentation Number of Parameters Value Used

1 Image Scale 3 0.5, 0.8,1.2

2 Image Rotation 4 40,80,120,180

3 Width Shift 1 0.3

4 Height Shift 1 0.3

5 Resize 4 224, 112.64,32

6 Flip 2 Horizontal, Vertical

7 Gamma Value 4 0.3,0.6,0.9 and 1.2

Total 19 19

Figure 7. Data Augmentation Results: a) Histological Image, b) Image after Strain Normalization, c) Rotated image, d) Flipped 
image, e) Gamma Value 0.3, f) Gamma Value 1.2
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100x, 200x, and 400x) to 7909 samples, the total number of samples is 1,53,349 contains 1,50,271 
BreakHis images and 3,078 BreCaHAD images.

3.2.3 Proposed multiscale stochastic dilated convolution model 
The first proposed model is the Multiscale Stochastic Dilated Convolution Model, constructed 
and integrated into three units to determine the outcome. The units are proposed spatial dilated 
convolution unit, proposed channel dilated convolution unit, and stochastic dilated convolution unit, 
which increases tiny and low-level characteristics such edge, contour, and color correctly (Wang et 
al., 2017). The feature extraction methods are affected by the variable intensity levels of the pixels 
in the histology images. This model considers the strain normalized images and enhanced images 
to detect tiny cells better. Figure 8 shows the feature extraction model in action. After convolution, 
the unit accepts an image as input and sends the convoluted pictures to max-pooling and stochastic 
pooling in parallel. Max pooling detects microscopic cancer cells and thin boundary detection by 
obtaining the most present sections of the cancer cells. Stochastic pooling selects a value at random 
from each receptive field. 

The probability Pn for the value Xn can be identified at position n in the receptive field using 
equation 7.

Pn=  
x

x
n

k z z∈∑
 (7)

and the stochastic pooling represented as:

P1 = xm  where m ~ P  ( p pm1………. )
 (8)

Stochastic pooling may choose any value and classify it as a heterogeneous approach since it can 
select tiny and large values. The dilation unit discovers the cells without increasing the complexity 
by concatenating the max pooling, and stochastic pooling results in a good feature map subsequently 
processed by the dilation unit (Perone et al., 2018). Dilation procedures increase the depth of the 
network while increasing the size of the filters (2d+1) x (2d+1) may be used to calculate the depth, 
with values ranging from 1, 2, 3, 4, and so on. 3x3, 5x5, 7x7, and 9x9 are the receptive fields, 
accordingly. The dilated convolution expresses in the following way:

D(x,y)=� �� �i
X

j
Y

1 1 I(x + Sxi , y + Sxj ) Fi j,  (9)

The proposed spatial dilated convolution unit uses different filters for each channel, followed 
by element-wise convolution, as illustrated in figure 8. The dilated convolution is D(x,y), the filter 
is F (i,j), the input image is I (x,y), and the sparse kernel is s. When s=1, the outcome of dilation 
and standard convolution is the same. Dilated features may be computed easily (Lin & Wu, 2020).

D(W,y)=� �� �i
X

j
Y

1 1 W(i, j) ʘ y(i+x, j+y) (10)

D(W,y)=� �m
M

1 W(m) ʘ y(i, j, m) (11)
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Here dilated convolution operation uses depth-wise convolution with dilation rates ranging 
from 1 to 8. After the relu operation (Wang et al., 2020), the extracted features are processed for 
batch normalization, eliminating the gradient vanishing problem and speeding up the network. The 
Hadamard product combines the convoluted image features with the outcome of the created feature 
map to provide spatially dilated features. Dilated spatial convolution processes all channels equally 
and displays low-level elements such as edges, contours, and colors. When combined with the dilated 
characteristics, a feature map contains essential cell information that aids in the correct detection of 
cancer cells (Han et al., 2017). The suggested spatial dilation attention unit broadens the receptive 
field and feature map.

Ci
L =Bi

L +
j

x

i j
L

L

F
�

�� �

�
1

1

,
*Cj

L�� �1  (12)

{HσD[C[P1 (C(I)) || P2 (C(I)]]} (13)

The input image is I, while the convolution, stochastic pooling, and max pooling procedures are 
C, P1, and P2, respectively. The suggested stochastic dilated convolution unit takes an input picture, 
conducts convolution, and then creates maximum pooling and stochastic pooling concatenated outputs 
for convolution and dilation convolution. The overfitting difficulties in the network are handled by 
overlapping the pool layers, which also improves accuracy.

The dilated channel attention unit was initially employed to give channel dimension information. It 
uses max pooling and stochastic pooling, followed by a fully connected layer to assist the classification 
process represented in Figure 9. The 1x1 convolution increases the depth of the components; these 
features concatenate, and dilation convolution occurs, accentuating the narrow cell borders (Zhang 

Figure 8. The proposed spatial dilated convolution unit
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et al., 2020). The feature map is generated by these two descriptors using dilated convolution and 
the Hadamard product.

{H[D(FC(P1  (I))||FC(P2  (I))]} (14)

After completely connected layers, the Hadamard product is applied to the dilated result of max 
pooling and stochastic pooling.

D(P1 (C(I))) (15)

An image is convoluted to create the feature map displayed in Figure 10, then stochastically 
pooled and dilated. It assists in the storing of data with helps in accurate cancer cell detection. 

The proposed model, shown in figure 11, consists of a spatial dilated convolution unit, channel 
dilated convolution unit, and stochastic dilated convolution unit.

The model’s output is produced by concatenating equations 13, 14, and 15, which properly 
delivers the missing information for the pixels.

Fout ={HσD[C[P1  (C(I)) || P2 (C(I)]]}||{H[D(FC(P1  (I))||FC(P2  (I))]}|| {D(P1 (C(I)))} (16)

D and H are Dilated convolution and Hadamard product, respectively, whereas relu and 
concatenation are represented by and ||. To overcome the fundamental depth problem that impacts 
the network’s efficiency and accuracy, the proposed MSDC model identifies missing features and 
small features illustrated in Figure 11.

3.2.4 Proposed stochastic dilated residual ghost model
The second model is the Proposed Stochastic Dilated Residual Ghost model, which incorporates the 
proposed MSDC model, proposed stochastic downsampling unit, and the upsampling unit. The ghost 

Figure 9. The proposed channel dilated convolution unit
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unit effectively and extracts features accurately. It has 14 deep layers; the first layer takes an input image 
with 224x224x3 pixels. It is convoluted using 3x3 filters, resulting in a dimension of 224x224x64. 
The convolutional kernel divides a picture into small slices called receptive fields. When an image 
is broken into tiny parts and then pooled using a filter size of 2x2 and a stride of 2, extracting feature 
motifs becomes easier. As a result, the image size will be 112x112x128. Convolutional networks use 

Figure 10. The stochastic dilated convolution unit

Figure 11. The proposed multiscale stochastic dilated convolution model
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pooling layers to reduce the model’s size, improve the calculation speed, and improve the robustness 
of the extracted features.

The first layer is the convolutional layer, which has 96 distinct 11x11-size receptive filters to 
conduct convolution and max-pooling using Local Response Normalization (LRN) or relu. Three 
filters with a stride size of 2 are used to achieve the maximum pooling operations. The second layer 
contains the proposed MSDC model, takes 27x27x96, extracts missing and additional features from 
the image. In the third layer, identical actions of layer one are carried out with 5x5 filters. The fourth, 
seventh, and ninth layers are upsampling layers that upscaled the feature maps up to 27x27x256, 
27x27x512, and 54x54x256. These layers generate random values and multiply with the transposed 
features received from the previous layer.

Xu1= σ(W T1 X) (17)

The convoluted features cascaded with the convoluted features seen in equations 18-22 after the 
output function convoluted.

Xu2= σ(W1Xu1) (18)

Xu3= [σ(W2Xu2) +Xu2] (19)

Figure 12. The proposed stochastic dilated residual ghost (SDRG) model
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Xu4= [σ(W3Xu3) +Xu3] (20)

Xu5= [σ(W4Xu4) +Xu4+Xu2] (21)

Xu6= σ(W5Xu5) (22)

Here, X is the random value generated by the unit W T1� �  is the transposed of the features 
received from the previous layer, Xu1 to Xu6 are the upscaled features, and σ is the element-wise 
multiplication operation.

The proposed stochastic upsampling unit employs a skip layer to improve classification accuracy, 
as shown in figure 13.

Filters 3x3 with 512, 512, and 256 feature maps are utilized in the fifth, tenth, and thirteenth 
convolutional layers. Layer 6 is the proposed MSDC model again, which takes a feature map of 
13x13x512 and extracts missing and additional features from the image. Pointwise convolutions (Ma 
et al., 2018) (Zhang et al., 2018) (Sandler et al.,2018) are used to analyze features across channels 
before utilizing depth-wise convolution to handle spatial data in current techniques. As mentioned 
in layer 8, the ghost unit (Han et al., 2020) employs ordinary convolution to produce a few intrinsic 
feature maps before supplementing the features and enlarging the channels using low-cost linear 
operations. Feature maps produced by convolutional layers commonly contain. There is a great 
deal of redundancy, and some of the items may be like one another. It’s worth noting that with a 
large number of duplicate feature maps, it’s not necessary to construct one by one by FLOPS and 
parameters. Let us pretend the output feature is Maps are “replicas” of a few key feature maps. The 
ghost unit uses a series of low-cost linear operations on each intrinsic feature to generate s ghost 
features that follow the formula:

Figure 13. The proposed stochastic upsampling unit
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X
i j,( ) = φ

{ , )
(

i j i
X( ) )ˈ (23)

Where (X
i( ) ) is the intrinsic function map and φ

{ , )i j
 are the linear operations. 

Unlike the units (Zhang et al., 2018), which make considerable use of 11 pointwise convolutions, 
the ghost unit’s main convolution can have a variable kernel size. Processing each feature map in 
previously efficient systems was limited to depth-wise convolution or shift operations, while linear 
functions in the ghost module can offer many possibilities. The identity mapping is paralleled with 
linear transformations in the ghost unit to preserve the inherent feature mappings.

Layer 11 performs cascaded dilation convolution to extract features and reduce the complexity 
of the network. The features in the 1x one convolution converted at a faster rate, and the elements 
concatenated to provide better features for the minor cell observation. Here it generates a feature map 
of size 27x27x256. Layer 2 is a stochastic down-sampling unit shown in figure 14 used to boost the 
performance of the network.

Xd1= σ(W1X) (24)

As a cascade operation, the output of the first layer is connected to the input of the stochastic 
downsampling block, resulting in the output Xd2.

Xd2= σ(W2(Xd1)+X) (25)

Similarly, the outputs Xd1 and Xd2 and the input of the down sampling block are connected 
to create a feature map, which is then reduced in dimensionality using a 1x1 convolution to boost 
performance.

Figure 14. The proposed stochastic down sampling unit
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Xd3= W3(Xd1+Xd2+X) (26)

A dropout layer is employed, in which a few neurons are removed from the neural network during 
the training process, resulting in a smaller model. Layer 13 is a dropout unit with the convolutional 
operation followed by a pooling and relu activation function on several channels or feature maps to 
reduce dimensions and extract features. Layer 14 is a series of three FC layers followed by a Softmax 
layer. The weights, biases, and neurons make up the FC layer, linking the neurons between two layers. 
Here FC layers are converting 9216 into 1000 neurons with softmax activation function, which 
generates the classification factors for the better classification of benign and malignant cancer cells. 

4. eXPeRIMeNTAL ReSULTS

In this section, we evaluated the performances of the proposed deep learning model. We began by 
emphasizing the performance measures of the proposed model with other models.

4.1 experimental Setup 
The model was implemented with Python version 3.9, TensorFlow 2, and Keras version 2.4. The 
Xeon 2.3 GHz CPU configuration, 12 GB memory, supports two Nvidia GeForce GTX 2070 graphics 
processors (GPUs) and 16 MB cache memory.

4.2 Results of SDRG Model
The proposed model is trained and evaluated using image data from the BreakHis dataset, containing 
7909 actual samples (pictures) from 82 individuals, separated into two subgroups of 2,480 benign and 
5,429 malignant samples and 162 breast cancer images from BreCaHAD. Total 7909 BreakHis samples 
and 3,078 BreCaHAD images were augmented with 19 parameters for magnification factors (40x, 
100x, 200x, and 400x), for a total of 1,53,349. In the next sections, the findings of binary and multiclass 
classification will be explained, and the findings will be compared to those of earlier research. 
The proposed multiscale dilated convolution model detects small objects accurately. Conventional 
models relied on max pooling to improve the receptive field, followed by a convolution operation. It 
is replaced by dilated convolution in the proposed MSDC model. The proposed Stochastic Dilated 
Residual Ghost (SDRG) Model classifies benign and malignant cells accurately. The proposed model 
employs the proposed MSDC model, ghost unit, stochastic downsampling, stochastic up-sampling 
units, and other convolution layers. Table 3 displays the outcomes of the proposed model’s evaluation.

With the augmented images seen in table 3, increased specificity, accuracy, precision-recall, and 
F1-score values have observed, resulting in better performance. BreCaHAD and BrekHis amplified 
images with 100 magnification factors; the SDRG model has an accuracy of 98.60 percent and 98.41 
percent, respectively. The proposed model with the enhanced images has a better receiver operating 
characteristic shown in figure 15 than the previous model for fold five is 0.9432.

True positive and true negative values can detect malignant and healthy cells, respectively. The 
tests’ preparation and research data ratios were 90-10, 80-20, and 70-30. Precision, recall, f1 score, 
accuracy, and average precision score used to compile the results, as seen in Table 4. The proposed 
models’ efficiency compared to VGG16, VGG19, RESNet50, and ResNeXt-101 models.

On the given datasets, the VGG16 model performed better than VGG19, and ResNeXt101 
outperformed ResNet50, as seen in table 4. The proposed model outperforms standard models in 
terms of accuracy, sensitivity, and precision.

The top-5 testing error rate for the VGG19 and VGG16 is 8.9% and 9.2%, respectively. The top-5 
validation errors for the ResNeXt-101 and ResNet-50 are 6.4 and 7.8 percent, respectively, while the 
proposed SDRG model achieves the lowest top-5 validation error of 5.1 percent, as seen in table 5.
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5. DISCUSSIoN

We will discuss the performance of our proposed SDRG model in this section. As previously stated, 
the proposed model incorporated the proposed MSDC model, a ghost unit, stochastic upsampling, and 
downsampling units. The proposed model addresses the research challenge of creating an accurate 
model that can detect missing and tiny features, color divergence, and overcome network difficulties. 
The image was brightened and contrasted using contrast-limited adaptive histogram equalization. 

Table 3. Evolution metrics of the proposed model

Images Image Type Specificity Accuracy Precision Recall F1-score

Magnification 
Factor 40 X

Original 98.50 ± 0.14 93.13 ± 4.36 99.07 ± 0.04 92.59 ± 0.04 97.49 ± 0.04

Augmented 96.88 ± 0.07 98.41 ± 1.00 98.17 ± 0.05 94.19 ± 0.04 97.94 ± 0.04

Magnification 
Factor 100 X

Original 91.90 ± 0.09 93.99 ± 5.13 95.60 ± 0.05 93.18 ± 0.04 96.20 ± 0.05

Augmented 94.42 ± 0.10 98.37 ± 1.52 95.88 ± 0.07 97.74 ± 0.05 96.58 ± 0.05

Magnification 
Factor 200 X

Original 86.13 ± 0.12 91.97 ± 8.01 92.26 ± 0.14 98.90 ± 0.05 94.57 ± 0.10

Augmented 96.73 ± 0.07 96.26 ± 2.30 98.24 ± 0.03 99.71 ± 0.03 99.45 ± 0.04

Magnification 
Factor 400X

Original 99.87 ± 0.12 92.94 ± 5.15 92.60 ± 0.08 96.55 ± 0.04 95.38 ± 0.05

Augmented 92.63 ± 0.09 97.38 ± 2.18 94.84 ± 0.06 96.94 ± 0.05 96.75 ± 0.04

BreCaHAD Original 97.40 ± 0.07 95.23 ± 4.38 98.07 ± 0.04 97.39 ± 0.06 98.49 ± 0.04

Augmented 96.98 ± 0.10 98.60 ± 0.99 99.17 ± 0.05 98.99 ± 0.05 99.94 ± 0.04

Figure 15. Receiver operating characteristic curve of the proposed model on the breakhis dataset with the magnification factor 
40X fold (1-5)
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Overfitting posed challenges for deep learning models, which were overcome in the experiment by 
integrating the two datasets (BreakHis) and (BreCaHAD) and data augmentation. The proposed 
spatial dilated convolution unit, proposed channel dilated convolution unit, and stochastic dilated 
convolution unit make up the multiscale stochastic dilated convolution model, which increases tiny 
and low-level properties such as tip, contour, and color precision. In this context, the BreakHis and 
BreCaHAD histological breast cancer datasets were subjected to a thorough experimental study. We 
compared our proposed approach to some past research, and the findings are shown in Table 4. We 
can observe that our proposed model can obtain the best accuracy, precision, sensitivity, and average 
precision. Furthermore, we can observe from Table 4 that prior studies were not accurate in breast 
cancer diagnosis. Figure 15 shows the ROC curves in the experimental study. 

The proposed stochastic dilated residual ghost (SDRG) model comprises 14 layers and successfully 
incorporates the suggested multiscale stochastic dilated convolution model, stochastic downsampling, 
ghost unit, and stochastic upsampling operation to get an accurate result. The receptive field of the 

Table 4. Performance analysis of model VGG16, VGG19, RestNet50, ResNeXt101, and the Proposed SDRG model

Model Training and Testing 
Data Ratio

Precision Sensitivity F1 Score Accuracy APS

VGG16 90-10% 0.77 0.78 0.78 74.50 88.80

80-20% 0.80 0.78 0.79 75.30 88.59

70-30% 0.78 0.78 0.78 73.14 88.34

VGG19 90-10% 0.64 0.81 0.78 64.91 73.99

80-20% 0.79 0.74 0.73 72.21 76.11

70-30% 0.80 0.64 0.49 61.68 69.55

ResNet50 90-10% 0.93 0.93 0.92 89.21 92.45

80-20% 0.94 0.92 0.92 89.31 92.45

70-30% 0.94 0.94 0.94 90.44 93.87

ResNeXt-101 90-10% 0.95 0.95 0.95 90.42 92.54

80-20% 0.97 0.94 0.94 91.32 92.54

70-30% 0.98 0.96 0.95 91.53 93.65

Proposed 
SDRG

90-10% 0.98 0.97 0.93 95.65 96.56

80-20% 0.99 0.98 0.94 95.65 97.72

70-30% 0.98 0.98 0.93 94.63 94.94

Table 5. Error rate comparison of the proposed method with traditional method

S.N. Method Top-1 Val Error Rate 
(%)

Top-5 Val Error Rate 
(%)

Top-5 Test Error Rate 
(%)

1 VGG16 25.6 9.3 9.2

2 VGG19 25.4 9.1 8.9

3 ResNet-50 24.1 7.8 7.7

4 ResNeXt-101 21.8 6.4 6.3

5 Proposed SDRG 17.7 5.1 3.9
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dilated convolution enhances model performance without sacrificing picture information. The ghost 
unit decreases feature dimensions and increases performance by retaining intrinsic feature mappings 
and stochastic upsampling groups. Because the complete data set for the deep learning model is 
significantly smaller, several obstacles remain for future research. The accuracy of the model should 
increase if the data is fed into it simultaneously. The proposed SDRG model detects tiny abnormalities 
without increasing the system’s complexity. Figure 16 depicts segmented histopathology depictions.

We can derive from the empirical findings based on breast cancer datasets that our proposed 
methodology is the most suited method for breast cancer detection. It can deliver fantastic results while 
requiring just a little computing cost to solve the breast cancer classification problem. Our proposed 
methodology has the potential to be applied to the diagnosis of various illnesses.

6. CoNCLUSIoN

This paper proposed stochastic dilated residual ghost model, multiscale stochastic dilated convolution 
model, stochastic upsampling, and stochastic downsampling units. The experiments were conducted 
using BreakHis and BreCaHAD histopathological breast cancer images. Strain normalization was done 
to improve the image quality and solve the color divergence problem in H & E images. We considered 
different criteria such as magnification factor, resized sample inputs, rotated, gamma correction, and 
flipped parameters were applied to get augmented images. The proposed multiscale stochastic and 
dilation convolution model detects small, low-level features such as edge, contour, and color accuracy 
without increasing the complexity. The model performance improves with the receptive field of the 
dilated convolution without losing image information. The ghost unit for maintaining intrinsic feature 
maps eliminates redundancy. The proposed stochastic dilated residual ghost model integrates the 
proposed multiscale stochastic dilated convolution model, stochastic downsampling, ghost unit, and 
stochastic upsampling units to get accurate results. The proposed method improves average recognition 
accuracy by 4.33 percent on the BreakHis and BreCaHAD datasets using the current and enhanced 

Figure 16. Object Detection (a) Histopathological Image (b) Smoothing (c) Gradient in x direction (d) Gradient in y direction (e) 
Non-Max Suppression (f) Segmented Image
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residual deep network ResNeXt101. The proposed approach outperforms multiple state-of-the-art 
method’s accuracies by 95.65 percent. In both datasets, our model beat existing state-of-the-art models. 
The suggested model has high sensitivity and specificity for various cases, which is valuable for 
pathologists and researchers working in cancer detection utilizing histological images. We want to test 
the model’s performance on different datasets with various cancer cases in the future. The suggested 
model has high sensitivity and specificity for different situations, which is valuable for pathologists 
and researchers working in cancer detection utilizing histological images. We will also investigate 
which feature map combinations are most likely to be essential for categorization. Researchers can 
investigate which assortments of feature maps are likely to be most important for classification. 
They can test the model’s performance on different datasets with various cancer cases in the future. 
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