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ABSTRACT

Security and information event management (SIEM) systems require significant manual input; SIEM 
tools with machine learning minimize this effort but are reactive and only effective if known attack 
patterns are captured by the configured rules and queries. Cyber threat hunting, a proactive method 
of detecting cyber threats without necessarily knowing the rules or pre-defined knowledge of threats, 
still requires significant manual effort and is largely missing the required machine intelligence to 
deploy autonomous analysis. This paper proposes a novel and interactive cognitive and predictive 
threat-hunting prototype tool to minimize manual configuration tasks by using machine intelligence 
and autonomous analytical capabilities. This tool adds proactive threat-hunting capabilities by 
extracting unique network communication behaviors from multiple endpoints autonomously while 
also providing an interactive UI with minimal configuration requirements and various cognitive 
visualization techniques to help cyber experts quickly spot events of cyber significance from high-
dimensional data.
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1. INTRODUCTION

A Cyber Security Operations Center (CSOC) is a centralized operational facility to continually 
monitor, identify, analyze, and defend against cyber-attacks and threats. A CSOC should have clear 
visibility into the data and situational awareness (SA) to enrich cyber analysis with local and global 
contextual information for identification and detection of threats (Carson Zimmerman, 2014). Cyber 
adversaries have acquired machine intelligence capabilities to deploy state-of-the-art sophisticated 
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and autonomous tools to launch and deploy threats (Omid E. David & Nathan S. Netanyahu, July 
2015) (Kevin M. Peters, March 2019) (Konstantinos Demertzis, Lazaros Iliadis, April 2015). A 
continuous war of attrition for both defenders and attackers (James P. Farwell & Rafal Rohozinski, 
August 2012) has reached a state in which attack objects such as malware are becoming self-aware 
and smart and are able to successfully penetrate defenses, as demonstrated by recent breaches and 
attacks (Sana Siddiqui, Muhammad Salman Khan, Ken Ferens, & Witold Kinsner, March 2016) (Sana 
Siddiqui, Muhammad Salman Khan, Ken Ferens, & Witold Kinsner, July 2017) (Kate O’Flaherty, 
December 2018) (Sana Siddiqui, May 2017). One of the main problems lies in keeping up with the 
ever-changing Tactics, Techniques, and Procedures (TTPs) of attacks that are mutating and using 
advanced intelligent techniques to hide their patterns; these attacks remain beyond state-of-the-art 
defense tools such as firewalls, Intrusion Detection/Protection Systems (IDS/IPS), and anti-malware 
technologies (Muhammad Salman Khan, December 2018).

In the current landscape of rapidly evolving cyber threats, a CSOC must be equipped with an 
advanced suite of tools and technological products that provide complete visibility into the environment 
and ensure the required security posture of the organization based on risk analysis and processes by a 
qualified security team. Required defense technologies should be identified based on a combination 
of the current skillset of the Security Operation Center (SOC) team as well as planned future training 
requirements. A CSOC should have a capability maturity improvement model to continually enhance 
the security capabilities. At a minimum, a CSOC should have four capabilities (Babu Veerappa 
Srinivas, n.d.): (1) Protection and Detection Technologies such as Firewalls, Antivirus, Intrusion 
Detection System, Intrusion Prevention System, Honeypots, Sandboxes, Endpoint Threat Detection and 
Response, Malware Analysis, and Forensics, (2) Analytical and Correlation Platforms such as Security 
Analytics, SIEM, and Visualization Tools, (3) Orchestration Tools such as Workflow Management, 
Response Orchestration, and Case Management, and (4) Threat Hunting and Intelligence.

2. CYBER THREAT HUNTING

Cyber threat hunting is gaining popularity as the cyber landscape is becoming more complex and 
dynamic. Threat hunting is a proactive cyber defense methodology that employs searching for threats 
with little to no knowledge of particular threat objects. In a way, threat hunting can be described as an 
exploratory cyber data analysis to find events of cyber significance. Furthermore, threat hunting can 
be defined as iteratively searching through data for either threats that have evaded the underlying cyber 
defenses or an indicator of a threat that may happen soon (such as any sign of the first stage of a kill 
chain, i.e. phishing emails or illegitimate port scanning for Reconnaissance stage) (Theodor Liliengren, 
Paul Lowenadler, May 2018). In a typical SOC, threat hunting commences with a search for threats 
that have evaded the rule-based cyber defenses but are known through either their behavior or their 
signatures (Lyndsey Franklin, Meg Pirrung, Leslie Blaha, Michelle Dowling, & Mi Feng, October 
2017). Therefore, in this case, threat hunting requires threat intelligence to extract indicators of threats 
that can then be searched by human cyber experts manually using available tools and technologies. 
This is different from cyber Incidence Response (IR) methodologies, which are dependent on tools 
such as firewalls, anti-malware tools, and IDS/IPS. All these tools require configuring rules, writing 
queries, or updating signatures to detect known threats and generate cyber events. IR processes start 
event/incidence analysis by triaging the events for which an alert was raised by the defense tools already 
configured for threat detection (Tim Bandos, June 2019). Conversely, cyber threat hunting aims to 
uncover new patterns and evidence for threats that are not known or were not captured previously by 
any cyber defense tools. Threat intelligence does enrich threat hunting tasks but may not be required 
to start threat hunting (Jai Vijayan, April 2016). Therefore, threat hunting methodology involves 
four fundamental iterative steps (Robert M. Lee & David Bianco, July 2019) (Chiheb Chebbi, June 
2018): (1) creating a hypothesis, (2) investigating by using tools and techniques, (3) uncovering new 
patterns or signatures, and (4) informing and enriching analytics.
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As evidenced by literature surveys (Yousra Aafer, et al., October 2015) (Nitin Naik, Paul Jenkins, 
Nick Savage, & Longzhi Yang, April 2019), threat hunting is still heavily dependent on manual 
processes and the hunting methodologies are heavily driven by human skills. Factors of automation 
and cognitive intelligence are missing (Muhammad Salman Khan, December 2018) (Eric Cole, 
October 2015) (Steven Schmitt, December 2018). According to SANS, a world-leading organization 
in cyber security training courses for cyber professionals (Eric Cole, June 2019), cyber threat-hunting 
processes are still being developed and have not achieved the maturity level to that of reactive incidence 
handling and response processes. SANS conducted a survey (Eric Cole, June 2019) to assess the status 
of cyber threat hunting maturity, revealing that less than 3% of organizations follow formal threat 
hunting processes, while approximately 26% have defined their own internal threat hunting processes. 
More than 52% of organizations state that they do threat hunting, but these hunting operations are 
based on ad-hoc processes. Mostly, these organization use already known signatures or knowledge 
of threats such as indicators of compromise to initiate threat hunting. According to SANS, this is a 
reactive methodology and is insufficient for true threat hunting. The SANS report (Eric Cole, June 
2019) provides three important factors when conducting threat hunting: (1) how long a threat should 
dwell in the network, (2) the extent of the damage caused by the threat such as lateral movement, 
and (3) the reinfection frequency, which is defined as how many times the same threat has caused 
successful damage to the same network. Therefore, to cope with advancing threats, proactive threat 
hunting should be adopted as a continuous process and should be well integrated with the ongoing 
reactive cyber security practices of the organization. The same SANS report suggests that increasing 
the frequency of the threat hunting process will largely decrease the probability of a successful attack 
or compromise. This is because threat actors are able to introduce mutations in the threat objects for 
which new rules and signature updates are required in the existing defense mechanisms (Muhammad 
Salman Khan, Sana Siddiqui, & Ken Ferens, April 2017). Unless the damage has occurred, it is 
not possible to know the signatures in advance, except if proper hunting is performed that reveals 
significant evidence of an existing threat evading the cyber defenses (Muhammad Salman Khan, Ken 
Ferens, & Witold Kinsner, 2015).

3. FEATURE ENGINEERING

In this work, preliminary feature engineering was applied to extract features from the raw packet 
capture data to address sufficiency and uniqueness of information representation that can then be 
used for reliable event analysis.

Machine learning applications emphasize the significance of choosing the right features with 
acceptable accuracy and precision (David Lopes Pegna, July 2015) (Muhammad Salman Khan, Ken 
Ferens, & Witold Kinsner, July 2015) (Muhammad Salman Khan, May 2019). It is very important to 
choose the right features from the raw data that represent and characterize the data as completely as 
possible (Sana Siddiqui, Muhammad Salman Khan, Ken Ferens, & Witold Kinsner, July 2017). With 
incorrect features, a reliable machine intelligence model is not possible. In cyber security, features 
are chosen such that they represent the semantics of the data analysis properly. Mathematical models 
and guidelines are available for selecting reasonable features from the raw cyber data such that the 
factors of unique and complete representation, sufficiency, and reliability are achieved within an 
acceptable confidence margin (Muhammad Salman Khan, December 2018).

In this work, raw data were composed of packet captures formatted in a PCAP data structure 
and containing Open Systems Interconnection (OSI) layered information starting from layer 2. This 
work considered the raw packet traffic details from layer 3 to layer 5 that includes information such 
as the source and destination IP addresses, layer 3 protocol such as IPv4, layer 4 protocols such as 
TCP or UDP, and layer 5 session ports for the source and destination. Using this information, a virtual 
packet flow object was extracted showing traffic flow from the source to the destination in layers 3, 
4, and 5 as shown in Figure 1.
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This flow object was based on the information communication channel between the source and 
the destination, which is independent of the direction. Therefore, the octets of source and destination 
IPs and source and destination ports were not important in terms of the direction of the packet 
flow. A simple statistical count was maintained for each unique flow. For example, if there was a 
communication between 192.168.0.1:52543 and 10.10.3.1:80 over TCP with 10 packets going outward 
and 20 packets coming inward, then the unique flow of [192.168.0.1:52543:TCP:10.10.3.1:80] was 
recorded as having a count of 30 packets. The details of the Ethernet protocols were followed from 
IANA RFC 7042 (Andrew Cherenson, Ashwani Singhal, & et. al., 2019). Likewise, the details of 
IP protocols are followed through IANA RFC 5237 and RFC7045 (Barry Boehm, Barry Howard, 
& et.al., 2017). If a new protocol was observed that had not been defined in the RFC, then it was 
recorded in a separate database and was considered an alert event for the threat hunters.

4. REAL-TIME STREAMING FOR THREAT HUNTING

Big Data is a term that encompasses systematic data engineering and analysis frameworks in a reliable, 
scalable, and optimized fashion. Various big data processing tools are available such as Hadoop, 
Spark, Kafka, and ELK (Fairuz Amalina, et al., June 2019), to name a few. Acquiring packet captures 
from many endpoints in a network can be modelled as a big data problem for an organization (Tom 
Obremski, July 2016). A big data problem is considered a classical problem of 4 V’s: high velocity, 
high variety, high veracity, and high volume (Muhammad Salman Khan, December 2018). Typically, 
threat hunting on packet capture data using manual analysis requires analysis of the historical data. 
Threat hunters must always strike a balance in deciding how much historical data to process, going 
back in time. For successful and reliable threat hunting, it is important to capture packets at line 
rate, index them in a real-time database, and then write everything to the disk (Tom Obremski, July 
2016). However, the main challenges are computing speed, storage options, and database limitations 
in searching through the historical data quickly. For example, over a 1 Gbps network, a storage 
capacity of at least 320 TB is required for 30 days, assuming that indexing is done at an optimal 
level; otherwise, more storage is required (Tom Obremski, July 2016). With the increase in network 
complexity and scalability, it is common for a medium-to-large organization to have multiple 10 Gbps 
networks, which is posing a challenge for computing, storage and searching the events. For instance, 
having four 10 Gbps networks requires at least 12.4 PB storage capacity for 30 days (Tom Obremski, 
July 2016). Existing threat hunting and analysis methodologies store data for less than 2 months 
of network activity, ideally (Shannon Kempe, June 2013). Otherwise, the time period is typically 
only 2 to 3 weeks. With the massive intelligence acquired by the threat actors (Muhammad Salman 
Khan, Sana Siddiqui, & Ken Ferens, April 2017) and high-frequency mutating malware (Muhammad 
Salman Khan, December 2018), packet communications must be analyzed for longer time periods, 
sometimes on the scale of multiple years, to hunt the symptoms of dangling threats in the network 
that are waiting for the right time to extract data and damage the network or that have already slowly 
started the compromise. For example, in July 2016, Yahoo disclosed that it had suffered a massive 
data breach during 2013 and 2014, although it presumably had state-of-the-art cyber defense and 
hunting tools and capabilities (Taylor Hatmaker, 2017). Although the exact cause of the breach is 
still unknown, the ability to correlate traffic behaviors and patterns over long time periods to detect 

Figure 1. Flow features
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anomalies would have been advantageous for the company to detect the symptoms of possible breach 
at the early stage and hence could have controlled the damage.

As available literature surveys reveal (Zhijiang Chen, et al., April 2016) (Zhijiang Chen, Hanlin 
Zhang, William G. Hatcher, James Nguyen, & Wei Yu, June 2016) (Duygu Sinanc Terzi, Ramazan 
Terzi, & Seref Sagiroglu, October 2017) (Riyaz Ahamed, et al., April 2019), researchers have 
started using streaming mechanisms in real-time monitoring and threat detection to cope with big 
data challenges. However, these applications of streaming for threat detection are applied to time 
series modeling in a limited sense, and do not address the challenge of reducing the complexity of 
multidimensional data and dynamic time series modeling and the correlation of events for threat 
hunting. Static time series models are available as are various visualization techniques. However, a 
near real time and machine intelligent threat hunting module that can mimic the cognitive process 
of establishing a hypothesis, examining data in a time-series fashion, extracting features of cyber 
significance, correlating them temporally from the past history, and finally comparing the predicted 
traffic patterns with actual traffic is still at the infancy stage.

A big data streaming analytic model is therefore needed that can correlate data on larger time 
scales in a real-time fashion to validate the hypothesis for threat hunting. Therefore, in this work, the 
authors implemented a Kafka-based big data streaming model using time scale correlation configured 
by the threat hunter (Shuai Zhao, Mayanka Chandrashekar, Yugyung Lee, & Deep Medhi, March 2015) 
(Chun Xiao, Shenghua Zhang, Qianxiang Zeng, & Xiaofei Cao, August 2018). Kafka is an Apache 
project that provides a scalable, fault-tolerant, and publish–subscribe messaging system to develop 
distributed applications for real-time streaming. Kafka was chosen because of its speed: it presents the 
data structures by offsets of the logs and does not add new message IDs, and is therefore light in the 
transaction which in turn optimizes the speed of message delivery (Chengwei Wang, Infantdani Abel 
Rayan, & Karsten Schwan, Dec. 2012). Also, instead of using its own memory cache for writing and 
reading from the storage medium, it leverages the operating system’s cache for file paging, thereby 
improving time and resource efficiencies. With the big data challenges of packet captures, optimizing 
the resource consumption for faster message delivery is important (Christian Posta).

5. PROBLEM STATEMENT

Threat hunting is the method or process of proactively searching the network and systems for 
threats that have evaded existing security measures. Threat hunting is different from reactive cyber 
incidence management where a particular alert based on pre-defined threat rules is triggered and the 
incidence response (IR) team looks for the answers to what, why, who, and when questions during 
the forensic analysis. Threat hunting requires a shift away from a post-attack mentality or approach; it 
also requires a set of tools for data collection such as Endpoint Detection and Response (EDR), User 
and Entity Behavior Analytics (UEBA), and logs, and analysis tools such as SIEM correlators and 
machine learning. Available threat hunting tools require manual analysis whereas the introduction 
of machine-learning-based tools can automate most of the manual repetitive tasks. An autonomous 
threat-hunting mechanism uses an advanced suite of machine learning tools that automate repetitive 
analyses of various heterogeneous logs; furthermore, it provides intelligent data mining and extraction 
of hidden patterns by adopting both a macro- and micro-view for further decision making using past 
history, existing data logs, threat intelligence feeds, and situational awareness.

An example in (Mohit Kumar, June 2018) shows a typical threat hunting process. Raw data 
logs are classified in a two-dimensional space of clients and the ranking of the destination machine 
the clients are trying to connect over time. These rankings can be considered a threat intelligence 
database where the cyber status of each destination IP or server is recorded. Information such as 
how many times the IP has been compromised and what vulnerabilities it is open to is collected. 
This information is usually required for asset classification but can be concurrently used for hunting 
as well. Afterwards, destination-based target information is extracted and correlated with the source 
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(client) to provide a map of the communications and activities. This information requires analysis 
based on threat intelligence feeds (such as if the client and destination communication is considered 
ex-filtration as per the threat intelligence) and historical analysis of the data logs to attach a level 
of confidence (local intelligence). This level can be a popularity score or security score based on 
a multitude of metrics including but not limited to user activities, dynamics, whitelisting, or any 
situational awareness-related meta data/information. For example, if there is a bot communication, 
then there are indicators of uniformness in the communication and therefore the score can be reduced 
for creating alerts. Mathematically, the model can be translated into a flow map time series between 
the source and the destination weighted by the ranking of both the flows and destination scores.

Another example of threat hunting from an industrial platform is given in (Mohit Kumar, 2018): 
an endpoint on a network tries connecting to 150 different domains where 90% domain requests remain 
unresolved. These domain names appear as though an algorithm had generated them. A threat hunter 
analyzes the history and infers that this event may be an indicator of a Bot traffic as it happens every 
three hours. Also, it is found out that a few of the domains are resolved successfully, which in turn 
creates HTTP sessions. Therefore, the threat hunter can find the client address from this session. A 
temporal machine learning based supervised classification analysis on the data can reveal this pattern 
easily. Further, the client is not known to the company. Therefore, it can be safely deduced that an 
unknown Bot is communicating with a low ranked website. Now, the threat hunter communicates 
with the user of the machine and after analysis of the machine it is found out that it is infected with 
a malware. This example shows that a Bot threat is detected without the need of any external threat 
intelligence or malware signatures. This discovery is based on merely analyzing the network flows. 
Further, there is no need of additional hardware or software to collect the data, as it all comes from 
the network packet flows collected at the Network Operation Center (NOC). The organization did 
not invest lot of resources to hunt this threat.

Based on these examples, the authors state the formal problem statement as follows: Is there 
a way to reduce the cognitive load on human threat hunters by mimicking their mental analytical 
model using machine intelligence and dynamic and interactive visualization techniques for complex 
packet data in a real-time fashion?

6. AUTONOMOUS THREAT HUNTING USING 
COGNITIVE TIME SERIES MODELING

In CSOC facilities, cyber analysts hunt threats by applying various mental models of correlation to 
validate a hypothesis. In Section V, the authors provide two examples of how a manual threat hunter 
analyzes events and then validates the hypothesis. In most of the threat-hunting methodologies, a time-
series-based mental model (Diego Vidaurre, Stephen M. Smith, & Mark W. Wool, October 2017) is 
used because an event in the present is correlated with an event in the past to find some similarities. 
To introduce machine intelligence, it is necessary to transform the problem of mental modeling of 
data in a temporal fashion to a representative time series. To create a meaningful analysis on time 
series to mimic mental correlation, it is also necessary to apply some cognitive function to the raw 
data such that the time series is comprehensible. In this work, it is addressed by applying feature 
engineering, which behaves like a mathematical function that translates the raw data into a feature 
as shown in Figure 1. As the feature represents a mental model of individual logical flows between 
the source and destination in a unique and complete manner, the time series of the counts of these 
features will represent a virtual threat hunter who is hunting for cyber events while seeing data on a 
CSOC console temporally. Furthermore, this time series modeling requires autonomous correlation 
mechanisms at different time instances, and therefore, in this work, a “Seasonal Auto Regressive 
Integrated Moving Average” (SARIMA) model (Josef Arlt & Peter Trcka, June 2019) was used to 
mimic the correlation of the count number of the feature between different time instances.
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Cognitively, SARIMA model uses an auto-regression mechanism (AR) to regress the feature 
count from the present state to the previous states using time lags. It is an indicator of the evolution 
of the count feature based on the historical evolution. Moving Average (MA), on the other hand, 
represents the deviation of the regressed (or predicted value) from the mean of the data series, and 
is called the error. Therefore, the combined AR and MA are Integrated (hence the “I” in SARIMA) 
to cognitively predict a time series in the future based on historical data and to evolve the series as 
closely as possible to the average for a meaningful prediction. Seasonality refers to the process of 
removing seasonal trends in the data such that actual evolution can be extracted for prediction. For 
example, if a seasonal trend is such that the data become double every 3 months (hence a season of 3 
months), then the data should be normalized by differencing the next season values from the previous 
one to get the actual difference. This is cognitively equivalent to removing cumulative effects from 
the data to show the actual growth rather than the aggregated behavior.

7. CONTRIBUTIONS

In this work, a new threat-hunting mechanism is proposed using cognitive machine intelligence 
techniques to address the problem statement of Section V. As mentioned in the previous section, 
typically threat hunters use their mental analysis to correlate data available from various cyber security 
tools such as SIEM and then deduce the validity of hypothesis. Therefore, in this work, the authors 
took the same approach of mental analysis and developed a data streaming and analysis framework 
for raw packet captures to extract flow feature, and then used the framework to learn the behavior 
and predict the future behavior using time series modeling. In this work, the authors did not take the 
approach of evaluating the detection performance of the proposed technique, but instead developed 
a framework aiming to reduce the cognitive load on cyber threat hunters and provide them with cues 
for validating their hypothesis.

In particular, the following are a few major mechanisms used in building the proposed model 
and contributing toward a cognitive threat-hunting framework that is real-time and fault–tolerant, and 
that applies stochastic time series analysis to predict anomalies without requiring labeled datasets 
for training:

1) 	 Flow features are extracted from the raw data to represent the dynamics of raw PCAP data in a 
unique manner. As explained in the previous section, flow features are extracted to sufficiently 
represent the dynamics of the packet flows using the statistical count of flows in either direction 
and thereby represent the cyber communication in a more meaningful sense. Flow features have 
been used significantly in reactive threat detection approaches. However, for this work, authors 
considered flow features as a contribution toward proactive threat hunting methods as this is a 
natural mental model a threat hunter would apply in validating the hypothesis. Typically, threat 
hunters use the packet data from NetFlow (SolarWinds) integration with SIEM products to 
analyze various flows through mental analysis and find correlations. However, using statistical 
counting, which is a simple yet powerful feature, this work considers a cognitive meaning toward 
detecting anomalies for threat hunting. The real claim is not developing the flows themselves, but 
using the flows in a more mental approach toward hunting using transformed time-series-based 
analytical modeling.

2) 	 In this work, a real-time streaming tool is employed to acquire raw packets to store them in a 
database for subsequent feature extraction, and then a dynamic time series model is developed 
both statistically and visually. A real-time streaming data acquisition framework is needed to 
model cyber events on a temporal scale and to introduce cognitive intelligence similar to how 
the human brain recognizes events and tries to find a correlation.

3) 	 Combining the SARIMA time series prediction model with the proposed feature engineering 
for threat hunting is a new topic, and little to no research is available. Therefore, the authors 
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believe that this approach is a new advancement toward a cognitive threat-hunting mechanism 
that uses a dynamic interactive time series analysis to address the cognitive aspects of correlation 
on various time scales concurrently.

4) 	 Using the open-source Dash visualization interactive web-based framework, the authros developed 
a cognitive time criticality threat-hunting visualization not only to give the threat hunter the 
required control to correlate time series data using a SARIMA prediction model (Simon Duque 
Anton, Lia Ahrens, Daniel Fraunholz, & Hans Dieter Schotten, November 2018), but also to 
present complex multidimensional data using a Sankey diagram in a fast, effective, and substantial 
way. Therefore, simplifying the complex data representation on a two-dimensional screen with 
sufficient feature statistics helps the threat hunter validate the hypothesis and then interactively 
select or reject the results quickly. This improvement in cyber defense tools is instead of relying 
on the current methodologies of correlating large volumes of packet capture data manually with 
limited interactive configuration capabilities by existing state-of-the-art SIEM tools.

8. DATA SET

In this work, streaming was simulated using two different PCAP data files from data infected by Bubble 
Dock and taken from the Stratosphere Research Laboratory at the Czech Technical University (CTU) 
(Sebastian Garcia, Martin Grill, Jan Stiborek, & Alejandro Zunino, 2014) (Sebastian Garcia, November 
2014) (Frantisek Strasak, May 2017). The specific PCAP files used were “2015-07-28_mixed.before.
infection.pcap” and “2015-07-28_mixed.pcap” (Czech Technical University, 2015). These files were 
used to simulate the streaming from two different endpoints offline for the following reasons:

1) 	 This work simulated streaming two endpoints, one infected with Bubble Dock adware malware 
packet capture and the other without any infection. As the end goal of this project was to read 
packet captures in a real-time streaming fashion, it was convenient to write a streaming script that 
could send packets from offline PCAP files at line rate to the streaming module without having 
to worry about live packet capture agents in each endpoint. This helped author’s focus more on 
the streaming and the load-balancing part of the project after the packet captures are streamed 
out from each endpoint. In future, it would be easier to write an endpoint agent pipeline that can 
be integrated with the streaming pipeline developed in this work. Furthermore, it is also possible 
to scale up the number of endpoints based on the load-balancing module used in this work.

2) 	 The authors of the CTU data set (Czech Technical University, 2015) mentions that a significant 
amount of data pre-processing and data cleaning was done before uploading the PCAP files on 
the CTU repository. For example, some artefact flows were cleaned of certain IPs that were 
redundant and may have created either noise or bias in the data analysis. Also, all broadcast and 
multicast packets were cleaned. In the case of a live endpoint agent capturing traffic, a significant 
amount of analysis and coding was required but was beyond the scope of this work.

3) 	 To capture the traffic data for malware command and control communication over PCAP captures, 
labeling of the malicious packet flows and validation of those flows for any unnecessary artefact 
remaining in the files were required. The CTU team also provided a detailed description of the 
timeline to indicate specific packet flow instances from the endpoint. Live packet capture would 
have taken considerable work involving development of an endpoint agent, and was therefore 
considered to be beyond the scope of this publication. However, as per (Muhammad Salman 
Khan, December 2018), the development of a sandbox environment is planned to capture end-
to-end data for a full visibility and analysis.

The endpoint used by CTU for PCAP capture was the Windows 7 operating system. It captured 
normal traffic flows from July 15, 2015, 17:51:07 CEST until July 26, 2015, 14:41:32 CEST. The 
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following provides a brief overview of the PCAP information from both files (for a detailed description, 
please refer to (Czech Technical University, 2015)):

1) 	 Capture Start: July 15, 2015, 17:51:07 CEST.
2) 	 Capture and Infection Stop: July 28, 2015, 08:17:45 CEST.
3) 	 Total packets captured (after pre-processing): 1,437,980.
4) 	 Clean packets (after pre-processing): 541,043.
5) 	 Infected packets (after pre-processing): 896,937.
6) 	 Size of “2015-07-28_mixed.before.infection.pcap”: 408 MB.
7) 	 Size of “2015-07-28_mixed.pcap”: 660 MB.

Therefore, in 1,088,798 seconds, this Windows 7 endpoint created 1.438 million packets of 
which ~0.897 million packets were infected, or 62.37% infected packets in 12 days, 14 hours, and 27 
seconds. As mentioned in (Czech Technical University, 2015), CTU researchers performed various 
legitimate browsing and other activities to simulate the natural behavior of a user at the endpoint, and 
they then infected the computer with Bubble Dock malware. Furthermore, as per the above data, the 
size of each packet data is estimated at ~458 bytes with 1.32 pps (packets per second) rate.

Bubble Dock (Nathan Bookshire, n.d.) is considered an adware malware program that displays 
pop-up advertisement and other links for marketing and sales purposes. It links itself with all the major 
browsers. Currently, Bubble Dock is an adware infection designed with the sole purpose of monetizing 
internet traffic by collecting sales leads from any website. For this reason, Bubble Dock is being used 
by dubious and malicious websites to infect the target computers in the context of advertisement. 
It is not a malware object itself, but its use makes the computer vulnerable and sometimes opens it 
to infection. Bubble Dock installs rootkit into the operating system and is considered a potentially 
unwanted program (PUP) (Stelian Pilici, 2014). Bubble Dock infection traces can be found both at 
the endpoint and at the network packet capture level. As it communicates to the online websites for 
advertisement purpose, it produces packets with the webservers. Furthermore, it adds itself to the 
Windows 7 operating system process tree and runs internally through a BubbleDock.exe file. Bubble 
Dock affects both Windows 7 and Windows 10 operating systems.

9. SYSTEM ARCHITECTURE

Figure 2 shows a high-level system overview of the experiment setup. In this work, virtual machines 
were used to set up the required connectivity. The configuration of each virtual machine (VM) was 
as follows:

1) 	 Operating System: CentOS 7 64-bit.
2) 	 Processor: Intel(R) Xeon(R) Gold 6154 CPU @ 3.00 GHz and 2.99 GHz (2 virtual processors).
3) 	 RAM: 8 GB.
4) 	 Storage: 30 GB.

In addition, the host machine had the following configuration:

1) 	 Operating System: Windows Server 2012 R2 Standard 64-bit.
2) 	 Processor: Intel(R) Xeon(R) Gold 6154 CPU @ 3.00 GHz and 2.99 GHz (2 processors).
3) 	 RAM: 256 GB.
4) 	 Storage: 40 TB.
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As depicted in this system architecture Figure 2, the end user or the threat hunter will interface 
with VM 9, which is a front-end interface that takes care of all the requirements for the threat hunter 
such as displaying the data, showing the extracted features, training, and predicting machine learning, 
streaming, and database details. VM 1 has a ZooKeeper package (Apache Software Foundation, 
Apache ZooKeeper, n.d.), which is used for load-balancing the online transaction load of streaming 
flows (Renato Toasa, Clay Aldas, Pablo Recalde, & Rosario Coral, January 2019). VM 3 is the actual 
Kafka server (Apache Software Foundation, Apache Kafka - A Distributed Streaming Platform, n.d.) 
connected through the VM 2 Kafka producer (Apache Software Foundation, n.d.) and VM 4 Kafka 
consumer (Apache Software Foundation, Apache Kafka - A Distributed Streaming Platform, n.d.). 
The Kafka producer is connected to the endpoint sources, which in this case are the offline PCAP 
files stored on the host machine through the Python Scapy package (Scapy Community, n.d.). It is 
important to note that integrating live endpoint sources through the reconfiguration of this Scapy 
module is very quick. VM 5 is the relational database SQLite (SQLite Consortium, n.d.) machine 
that handles all queries, insertions, and reading loads for both learning and prediction. This may be 
replaced with TimescaleDB. However, for prediction, an additional cache module is used to ensure 
real-time prediction. This VM uses a memcached module (Dormando, May 2016) (Julien Danjou, 
n.d.) for high-speed cache write/read operations and to update the VM 5 database with any delta 
changes in the database. The VM 5 database is required not only for learning the behavior patterns, 
but also for displaying the filtered data for the features. For example, a feature represented by Figure 
1 can have 30 packets, and the threat hunter must look at individual packets represented by the feature 
after deciding to look at what actual packet transactions happened for that particular feature.

Figure 2. System architecture of EBAS
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10. SOFTWARE ARCHITECTURE

The proposed cognitive Endpoint Behavior Analytic System (EBAS) system has a software architecture 
composed of five abstract layers, as shown in Figure 3. The first layer docks the endpoint data source 
of network traffic. The second layer is a real-time stream processing architecture that coordinates 
many Kafka workers using a streaming scheme to process raw packets. The third layer includes the 
database of extracted features. The fourth layer learns the individual and aggregated behavior of 
endpoints. There is also a cache database for temporarily keeping the raw data to extract features and 
compare them with the learned model. The fifth layer is the UI layer that interacts with the user for 
configuration and parameters. Following describes individual APIs developed in this work.

StreamRT() – This Application Programming Interface (API) object was developed using 
Kafka and ZooKeeper packages. For ZooKeeper, a cluster of one server was developed in this work, 
but scaling it with multiple VMs is not difficult. ZooKeeper is used for distributed load-balancing 
and its fault-tolerant capabilities. The communication architecture of ZooKeeper (Flavio Junqueira 
& Benjamin Reed, December 2013) uses a handshake mechanism based on a proposal transaction 
and on Acknowledgement (ACK) and Commit messages. In ZooKeeper, a first-in, first-out (FIFO) 
message queuing mechanism is deployed that orders the message delivery during the communication. 
All transactions are tracked using ZooKeeper transaction ID maintained through a 64-bit ID. This 
ID can be divided into the most significant 32 bits for the epoch timestamp and the least significant 
32 bits for the counter. In the ZooKeeper terminology, the master and slave are called the leader and 

Figure 3. A high-level abstract software development architecture



International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

12

follower, respectively. As it is a distributed computing architecture, there is no fixed leader and all 
nodes can compete to become a leader (All Programming Tutorials, May 2018). ZooKeeper guarantees 
the arrival of messages in the order that they are received (Flavio P. Junqueira & Benjamin C. Reed, 
August 2009). ZooKeeper takes on average less than 200 ms (ZooKeeper, 2019) to recover from 
failure and to elect a new leader. This provides a dynamic and distributed synchronization mechanism 
for messaging and transaction for real-time streaming. The experiment used Zookeeper version 3.5.5 
with Kafka 2.3.0.

In conjunction with ZooKeeper, Kafka streaming architecture was used to stream data in real 
time. Kafka architecture is composed of Kafka producer and Kafka consumer connected through a 
centralized Kafka server. Kafka producer publishes messages to Kafka topic, which is a data stream 
with metadata such as name. Prior to sending the messages, Kafka server is configured to synch with 
the producer and the consumer, and uses a queuing mechanism to stream messages between the two. 
A client node (such as an endpoint) needs to use Kafka Consumer API. For more information on 
Kafka streaming, refer to (Ableegoldman, n.d.).

ConnectDB() – This API connects the data source and machine learning APIs to the database. 
It stores both the raw data and the details of the extracted features with unique UUIDs and relevant 
timestamps.

CacheDB() – This is the memcached connection API to connect the machine learning prediction 
model to the cache to extract the features from the raw data online. It is a short-term memory, and 
updates ConnectDB() after sending the data for prediction.

ExtractFeature() – This API extracts the feature attributes from the raw data.
LearnBehavior() – This API is a user-configured module that learns the SARIMA model for 

the input data for the defined time interval. It can be stopped and restarted through user-defined 
parameters. It outputs a learned model that is required by the PredictBehavior() API.

PredictBehavior() – Based on the learning model and the user-defined time window, this 
API correlates the actual live-stream data with the predicted data and outputs a root-mean-square 
value (RMSE), which is a measure of similarity between the observed and the predicted. A user can 
configure this value to alert the threat hunter to dissimilar time windows which presents the raw data 
and feature for that time window on the dashboard.

DashUI() – This API connects to StreamRT() to input the raw data for packet tab and to 
ExtractFeature() to input feature data.

11. NAVIGATING THROUGH THE PROPOSED THREAT HUNTING FRAMEWORK

This section navigates the readers through the process of the proposed threat-hunting model, and shows 
how visualization relieves the hunter of manual analysis. Figure 4 shows the first tab of the threat 
hunting interface (dashboard). There are four tabs in total with the first tab showing a time series of 
raw packet counts for each endpoint. In this navigation, two different endpoints are simulated using 
two different PCAP files. Each PCAP is associated with a simulated endpoint ID and is assigned a 
consistent color that remains the same across the platform generated by an internal program. In this 
walkthrough, endpoint A has the color blue and endpoint B has the color green. Researchers have 
noted that, after eight endpoints and eight colors, it becomes more difficult to explore data; hence, a 
management service to divide the endpoints into subgroups is required. The color red is reserved for 
highlighting anomalous behavior patterns and therefore should not be used to color an endpoint. On 
the right side of this tab, there is a blank diagram for the Sankey diagram. On this tab, a threat hunter 
can select the time window number in a time series. For example, if the data have one thousand time 
windows, the hunter can select to see the behavior at window number 200.

The first tab shows the dynamic packet progression over time, and has two functions. The first 
function is to display the packet count against the timestamp window. It takes the time series window 
number given by the input selector and the packets. This User Interface (UI) shows the start date 
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for comparison with the current data. As shown in Figure 5, the user can hover the mouse pointer 
over an individual point on this raw packet time series to display the information of the particular 
packet flow that this point belongs to. The reason for offering this feature is to be able to set marker 
boundaries for the selected area to get a quick overview of the start and end of the window raw packet 
information, similar to the functionality offered by video editing

As shown in Figure 6, the second function is the Sankey diagram. It changes dynamically when 
the threat hunter wants to highlight windows of interest and observe the behavior of the communication 
between the endpoints from a high-level overview. It displays six dimensions representing the endpoint 
ID, source IP address, source port, destination IP address, destination port, and total number of 
counts. The width of each flow (for example, there are two flows for the blue endpoint) represents 
the count weight of each flow for the particular time period (selected window). It allows the threat 
hunter to compare packets and observe the direction and interaction of the flow. The user can change 
the y-axis normalization scale to a linear or non-linear scale. Compared to the manual analysis of 
the packet flows, this scheme provides more prompt and simpler cues to the threat hunter to look 
for anomalies. For example, it is obvious that the green endpoint has one flow with relatively more 
counts than any other flow. Sankey also provides a correlation of the flow features between endpoints 
and within the endpoint itself.

Figure 4. First tab – Raw packets

Figure 5. Information view of a particular packet flow
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As shown in Figure 7, the second tab named “Features” gives the hunter access to the correlation 
analysis of unique packet flows. It has three diagrams: (1) time series of the flow feature count, (2) 
Sankey diagram for the selected points on the feature time series, and (3) the probability distribution 
estimation of the feature data points. In this tab, the time series can be configured for different 
sampling intervals to either zoom in or zoom out for analysis. For example, given a time series of 
12 hours with a sampling resolution of 30 minutes duration, the feature will give 24 time sample 
windows, the first of which would be the first 30 minutes. The Sankey diagram represents the three 
dimensions of interval, endpoint ID, and flow count per sample. The endpoint ID is the endpoint 
that the EBAS is connected to. The flow count per sample is the number of packets counted in a 
particular flow. Figure 8 shows a Sankey diagram of the selected points on a feature time series. 
Again, this represents a prompt analysis of various endpoints together with the weight of counts as the 
width of each flow band. Finally, the probability distribution analysis is shown with the Freedman-
Diaconis rule (Shenghua Liu, Bryan Hooi, & Christos Faloutsos, November 2017) to estimate the 
histogram bin width for wide-sense stationary data. This analysis will be helpful to the threat hunter 

Figure 6. Sankey diagram of selected packets flows

Figure 7. Online Feature(s) Extraction Time Series
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in investigating the outlier feature counts and determining whether these outliers are noise, a result 
of some legitimate traffic, or real anomalies.

The “Training” tab is shown in Figure 9, where a threat hunter can select learning feature flow 
behavior using the SARIMA time series model for either an individual endpoint or all the combined 
endpoints for an aggregated correlation analysis. Once the model learns the behavior and extracts a 
correlation, it builds a trained model file which is subsequently used by SARIMA for prediction. To 
run a live prediction on each incoming packet from the streaming pipeline, the hunter should switch 
back to the Features tab.

Figure 10 shows a prediction of the anomalies using red-colored points on the time series. This 
prediction is performed using the user-configured RMSE value, and hence it provides the threat 
hunter the required power to adjust the behavior similarity that the predicted and the actual traffic 
should tolerate before the prediction model calls a feature point an anomaly.

As each individual flow is an extracted summary of the packet flow counts in either direction, 
a “Details” tab is provided as shown in Figure 11. The tab displays the details of individual raw 
packets for the selected point in the Features tab. For example, 15 raw packets are shown for the 
selected 6 feature samples in Figure 11. The last column of Flow ID represents the unique UUID for 
the respective sample in the database.

To recap, we propose a new framework that allows the correlation analysis of unique fundamental 
features that give the threat hunter the capability to perform four main activities: (1) navigate the 
network traffic, (2) engineer features analysis and extraction, (3) explore machine learning capabilities 
to train, predict, and correlate time series events in near real-time, and (4) deep-dive into anomalous 
behavior analytics to extract details and add more intelligence to the cognitive threat hunting model.

Figure 8. Online Feature(s) Extraction Time Series Sankey diagram
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12. CONCLUSION AND FUTURE DIRECTIONS

This paper presents a cognitive cyber threat-hunting methodology using SARIMA-based time series 
modeling, which applies a correlation simulating the functions of a human mind during cyber threat 
hunting. In this paper, four concepts are presented to reinforce the concept of threat hunting using 
machine intelligence to relieve the threat hunter of cognitive overload: (1) a proof-of-value for proactive 
threat hunting not based on offline labeled training and using flow feature engineering, (2) real-time 
streaming, (3) a prediction-based system (SARIMA) rather than a heuristic-based training system, and 
(4) a new visualization framework that illustrates the proactive strategy using correlation time series 

Figure 9. Training tab – learning the behaviour feature flow

Figure 10. Features tab – prediction of anomalies

Figure 11. Details tab – packet details of selected packet flow feature
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to train and predict anomalous behavior in a near real-time temporal window. This paper presents a 
new idea for aiding threat-hunting tasks by using cognitive machine intelligence. Furthermore, in this 
work, the time series uses an equal time interval sampling window with valid statistical stationarity 
concepts that can be relaxed for more real-world data using adaptive and overlapping time windows 
(Muhammad Salman Khan, Ken Ferens, & Witold Kinsner, July 2015). This work is at preliminary 
proof of value stage and requires evolution into a more autonomous threat-hunting framework. Future 
directions include, but are not limited to, adding an autonomous feature-extraction mechanism using 
machine learning.
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