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ABSTRACT

Multiclass classification problems such as document classification, medical diagnosis, or scene 
classification are very challenging problems to address due to similarities between mutual classes. The 
use of strong and reliable tools is necessary in order to achieve good classification results. This paper 
addresses the scene classification problem using objects as attributes. The process of classification is 
modeled by a well-known mathematical tool: The hidden Markov models architecture. The authors 
introduce suitable relations that scale the parameters of the hidden Markov model into variables of 
the scene classification problem. The construction of hidden Markov chains is done with the support 
of proposed weight measures and sorting functions. Lastly, inference algorithms are proposed to 
extract the most suitable scene category from constructed discrete Markov chains. A parallelism 
approach is proposed where several discrete Markov chains are constructed at the same time in 
order to cover more possibilities and improve the accuracy of the classification process. To test the 
efficiency of the proposed method, this research provides numerous tests on different datasets (MIT 
Indoor, LabelMe, SUN397, and its refinef version SUN150). The authors also compare the obtained 
classification accuracies with some state of the art methods. This paper shows that the proposed 
approach distinguishes itself by outperforming the other methods while same datasets are tested.
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1. INTROdUCTION

Having the knowledge of surrounding environments is a major advantage for any existing agent (human 
or robot) in taking decisions or achieving tasks. Therefore, the ability to classify the current scene into 
a specific label guides the agent into accomplishing a better work and meeting expectations. However, 
the state of the art of scene classification reveals huge and persistent difficulties in implementing a 
reliable classifier. The accuracy in classifying a scene and the number of scene categories (number 
of classes) remain major aspects in determining the classification consistency. Therefore, scene 
classification problem became an open and a challenging area of research. This paper addresses the 
scene classification problem (Li, 2010) (Sikirić, 2014) with objects as attributes shortened as (SC:O) 
modeled by hidden Markov models (HMM) architectures and algorithms (Ghahramani, 2001). This 
approach was chosen since the HMMs are well known to be strong and reliable mathematical tools 
for classification and prediction. Moreover, HMMs treated efficiently and with great success similar 
problems such as speech recognition (Gales, 2008) (Gautam, 2017), speech synthesis (Reddy, 2017), 
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machine translation (Wang, 2017) (Vogel, 1996), handwriting recognition (Sangeetha, 2017), activity 
recognition (Ozawa, 2017) (Alp, 2017), sign language recognition (Khandelwal, 2017) etc. Following 
the same perspectives, scene classification problem is a very active and attractive area of research. 
It is found in several research domains such as traffic road (Sikirić, 2014) (Lin, 2011) where it helps 
in taking decisions and organizes traffic, streets and airports scene surveillance systems (Lin, 2007) 
(Foresti, 1998) (Besada, 2001) where the classification process suggests and points out anomalies 
and suspicious behaviors. The scene classification can as well be found in area of research treating 
navigations (Liu, 2019) (Chen, 2019) where robots benefit of the semantic information about the 
surrounding environment provided by the category of scene. Several other types of scenes can be 
addressed such as areal scenes (Zheng, 2019) (Devi, 2019), indoor scenes (Li, 2019) (Hayat, 2016), 
outdoor scenes (Payne, 2005), or even war scenes (Raja, 2012). It can also be benefit to prediction 
systems where, in some circumstances, actions are predicted from a given scene categories (Vu, 2014).

The first challenge of the proposed method consists on finding the right relations between the 
SC:O problem and the HMMs architecture and algorithms. Analogies between inputs and outputs 
parameters and prerequisites of both entities are analyzed. A perfect similarity was achieved which 
made us believe that the scene classification problem can be solved by a HMM architecture. On the 
other hand, experimentation made us realize that properly ordered input parameters presented to the 
HMM happen to be very critical for the construction of the discrete Markov chain (DMC) and thus 
affects the accuracy of classification process. This concern made us put in place weights and sorting 
functions to evaluate existing objects. Weight functions assign a proper measure to each object of 
the dataset in such a way it reflects its saliency. It can be calculated dependently and independently 
of any category of scene. Based on weight functions, we then introduce objects sorting functions in 
order to organize objects of the input scene. Two sorting functions are proposed, the static sorting 
function, which organizes the input scenes’ objects before starting the construction of the DMC 
and the dynamic approach that organizes the objects of the input scene while the DMC is under 
construction. The way a sorting function organizes the scene’s objects in order to present them to the 
DMC construction can be compared to the way a human eye perceives the scene and distinguishes 
the most salient objects in order to start the scene recognition process. i.e. comparison of human 
ability to recognize a scene with the proposed method. Once finished, the process generates one or 
many discrete Markov chains (DMC) containing scene categories that are most likely to represent 
the selected objects in the input scene. The process can be extended to compute several DMCs at the 
same time. A degree of parallelism is introduced in order to cover more scene categories. The next 
and final step consists on implementing an inference algorithm that retrieves the most suitable scene 
category from the DMC. This way of classification using HMMs is not common in the literature 
since HMMs, like SVMs (Weston, 1998), handle multiclass classification approach using the “one 
Vs all” architecture (Ghahramani, 2001), (Hinton, 2001). This paper introduces a novel classification 
approach that uses just one HMM and handles a multiclass scene classification problem.

The remainder of the paper is organized as follow. Section 2 presents an overview of existing 
approaches and methods treating the scene classification problem. Section 3 presents the formal 
definition of hidden Markov models (HMMs) and the construction of the discrete Markov chain 
(DMC). Section 4 introduces the proposed method and explains with details all the stated contributions 
which can be briefly summarized in the following:

- Formal definition of the scene classification problem that uses objects as attributes
- Analogy between the scene classification problem and the HMM architecture
- Weight and sorting functions
- Inference algorithms to extract the most suitable scene category

Finally, section 5 experiments the proposed method’s accuracy and computation time. A 
comparison with some existing methods in the state of the art is also presented. We conclude by 
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summarizing our results and outlining steps to improve the proposed scene classification accuracy 
using hidden Markov models.

2. ReLATed wORKS

In recent years, several scene descriptors have been developed in order to increase the ability of 
computer vision systems on recognizing and classifying their surrounding environment. Arens et al 
(Arens, 2004) are one of the first to implement a scene classification experiment in concrete street 
traffic application retrieving textual description of videos sequences. Later on, their work has been 
improved by Pangercic et al (Pangercic, 2009) where a scene interpretation based a Description Logic 
(DL) and a top down guided 3D CAD model-based vision algorithm were implemented to bring 
more autonomous activity to robot on objects and scenes classification. Such as (Pangercic, 2009) 
logical languages for scene classifications have been widely studied (Sikos, 2017) (Baader, 2005) 
where predicates represent the different properties of the scene (objects, size, positions, etc.) while 
the logical inference system is used to identify the associated scene categories. The Description Logic 
(DL) was the most successful for representing a real-world state. Neumann et al (Neumann, 2008) 
introduced the DL as knowledge reasoning and representation system for scene classification with 
temporal and special relationships. Their proposed approach exploits relationship between objects, 
occurrences, events and episodes joining at the same time visual evidence and contextual information. 
A more specific contribution has been made by (Hummel, 2007) applying the DL for road scenes 
classification and intersections geometries. The formalism of the DL being similar to the problem 
of scene classification, the approach shows successful and promising results.

The complexity of scene classification increases relatively to the number and size of scenes. To 
face this issue, first proposed approaches were to reduce the choice of scene categories to a binary 
perception, for instance: Indoor/outdoor scene classification (Ghomsheh, 2012) (Szummer, 1998) and 
very satisfying results were obtained. Nevertheless, the approaches were not extendable to multiclass 
classifications. Another approaches consist on predicting the location of salient area in the scene (Itti, 
1998), (Lin, 2014) where the classification process is isolated to a “Focus of attention” analogously 
to human vision activities (Hwang, 2012). Quattoni and Torbralba (Quattoni, 2009) have proposed a 
model of indoor scene classification where a comparison between scenes is made using a set of ROI 
to find the right scene category of the given image. Swadzba (Swadzba, 2010) proposed an indoor 
scene classification using a 3D approach mixed with Gist scene features, while (Torralba, 2003) 
recorded better results using Gist features in outdoor scene classification.

We can find in the literature several methods of scene classification using low-level approaches (Li, 
2010) (Grauman, 2005) (Zuo, 2014). Even if (Zuo, 2014) was able to get quality results by adopting 
an approach that shares discriminative feature between the different scene categories, however, based 
on (Lazebnik, 2006) (Oliva, 2001) (Szummer, 1998), scene classification depending on low-level 
approaches works poorly. In contrast, high-level approaches of scene classification were developed 
where a scene is represented with semantic high-level information (Oliva, 2001) (Li, 2010) such as 
objects, actions, spatial information etc. The main idea consists on associating similarities between 
scenes containing same semantic properties. In the same perspective, (Li, 2011) (Pandey, 2011) 
proposed a deformable part-based models (DPM’s) using SVM’s as training models. The originality 
of (Li, 2011) (Pandey, 2011) is the introduction of an open-ended learning of latent structures for 
scene classification problems. (Zhu, 2010) Proposed an SVM classification model using maximization 
likelihood and margin, this approach is made possible by the fact that the optimization problem was 
efficiently solved. (Wu, 2011) Introduced a new visual descriptor for recognizing scene categories 
based on a holistic representation and has a strong overview for category recognition. It is mainly based 
on encoding the structural properties within an image and suppresses detailed textural information. 
Representing an image as a bag of objects has recently demonstrated impressive results (Lazebnik, 
2006) (Herranz, 2016) (Nanni, 2013) (Zitnick, 2016). Song et al (Song, 2017) (Song, 2016) explored 
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the path of scene classification using conventional neural networks (CNNs) exploring the way to 
combine effectively scene centric and object centric knowledge into a CNN architecture. Scene 
classification state of the art based on CNNs becomes very successful (Herranz, 2016) principally 
due to the impressive obtained results on the imagenet 2012 (Krizhevsky, 2012). However, CNNs 
are known for two main inconveniences: -The huge amount of data needed for the training part;-The 
high computational cost. In the same perspective of high-level scene classification, (Oliva, 2002) and 
(Oliva, 2001) introduced a spatial envelope for scene classification purposes providing a meaningful 
description of the real-world properties. The proposed characteristics of the spatial envelope are size, 
perspectives, mean depth and the nature of the general contents. On the other hand, Biederman et al 
(Biederman, 1973) assume that relations between an object and its environment can be reduced to 
five classes in order to characterize the organization of objects into real-world scenes. These classes 
have the ability to reduce the anomalies that can occur in scene classification problem. Further 
investigations have been introduced later on by (Sadeghi, 2011) integrating other classes of relationship. 
Fuzzy logic has also been widely used for scene classification (Song, 2016) (Elbaşi, 2013). Baiget 
et al (Baiget, 2007) were one of the first who computerized the geometrical construction of scenes 
studying human behavior, and the learning was done using a derivation of fuzzy logic called FMTHL 
(fuzzy metric temporal horn logic). Following the same idea, Zitnick et al (Zitnick, 2016) adopted a 
statistic approach to extract semantic information and identify the scene categories. Their approach 
and results are influenced by the assumption that abstract images can accurately represent real world 
scenes. While all the approaches reviewed in the literature differ in many features, they share the 
same aspect of using a learning part known as background knowledge to assist the identification of 
the scene category.

3. HIddeN MARKOV MOdeLS (HMMS)

3.1. definition of HMMs
The hidden Markov model is a probabilistic signal processing approach that aims to extract the 
maximum likelihood model from a sequence of observable events (Ghahramani, 2001). It has been 
known to mathematicians since a long time but has only been applied recently on numerous modern 
applications such as speech recognition (Gales, 2008), (Gautam, 2017), synthesis (Reddy, 2017), 
machine translation (Vogel, 1996) (Sangeetha, 2017), handwriting (Khandelwal, 2017), activity 
recognition (Alp, 2017), sign language recognition (Ozawa, 2017) and many other areas of artificial 
intelligence and pattern recognition (Ghahramani, 2001).

In theory, the HMMs are presented as a finite number N of states and M of observations symbols. 
Each state is assigned to a clock time t and possesses a measurable property. Every change of state 
is based on a transition probability conditioned by the previous state. This condition is called the 
Markovian property (Ghahramani, 2001). After each transition made, an observation output symbol 
is yield based on an emission probability specific to the current state. There are thus N emission 
probabilities for each of the M observations. Formally, the HMMs are defined as follow (Ghahramani, 
2001):

•  T: Observation sequence length (total number of clock times t)
•  N: Number of hidden states {S1…Sn}
•  M: Number of observations symbols {o1…on}
•  A: state transition probability {aij} where aij= P [qt+1=Si | qt=Sj)] j, i in [1, N]
•  B: observation emission probability {bi(ok)} where bi(ok)= P [ok at t[qt=Si] i in [1, N], k in [1, 

M]]
•  π: The initial state distribution{πi} where πi=P[q1=Si] i in [1, N]
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Having the appropriate values of N, M, A, B and π an observation sequence O= {o1, o2, o3 … oT} 
is generated following Algorithm 1:

A compact notation λ is used to represent in (1) for a given HMM.

λ = (A, B, π) (1)

3.2. Inference of Hidden Markov Model and dynamic Programming
Given a model λ = (A, B, π) and an observation sequence O = {o1, o2...on} the most basic approach 
to estimate the probability of O knowing λ i.e. P(O|λ) is by computing the probabilities of all 
possible sequences of hidden states having a length of T (T = Card(O)) that are eligible to emit O. 
The probability of such a sequence can be computed as follow: First we compute the probability of 
a fixed set of hidden states I knowing a model λ using (2) is made.

P I a a a a
i i i i i i iT iT

|
i( ) = … −À
1 1 2 2 3 3 4 1

 (2)

Next, we compute the probability of a given observation O knowing the hidden states I and the 
model λ using (3).

P O I b O b O b O b O
i i i iT T

| ,( ) = ( ) ( ) ( )… ( )1 1 2 2 3 3
 (3)

The probability where O and I occur at the same time (i.e. is emitted by I) is simply the product 
of (3) and (4) as illustrated in (4).

P O I T P O I P I, , (| | |( ) = ( ) ( )  (4)

Finally, the probability of O knowing λ is obtain by summing the probability computed in (4) 
over all the possible hidden states I as represented in (5).

Algorithm 1: Native DMC construction

Inputs: N; M; A; B; π; O

Output: DMC

1- Choose an initial state q1 according to the initial state distribution π

2- Set t=1.

3- Choose ot according to Bi(ot) the symbol probability distribution in state t

4- Choose t+1 according to ai,i+1. The state transition probability distribution for state t;

5- Set t=t+1

6- If t <T go to 3 else terminate the process
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P O P O I P I
i

T

i i i
| | * ( |( ) = ( )

=
∑
1

, )  (5)

An explanation of (5) can be seen as the following: At time t=1, we are in the hidden state i1 with 
an initial probability of πi and emit the symbol o1 with the probability bi1(o1). At time t=2, we will 
make a transition to the hidden state i2 with the transition probability ai1i2 (note that the transition can 
be reflexive) and emitting the symbol o2 with probability bi2(o2) and so on until t=T.

The reader can easily notice that computing the probability (5) requires a lot of computation 
time, exactly up to 2 1T NT−( )  multiplications and NT −1  additions. As a solution, another approach 
is proposed with dynamic programming.

In our case, we are more interested in finding the most likely sequence of hidden states that can 
emit a sequence of given observations. A dynamic programming algorithm for finding such a sequence 
is widely known as the Viterbi algorithm (Yamato, 1992). The key idea of the Viterbi algorithm is to 
keep only the max probability path of the hidden states -not all the paths- that can emit the current 
sequence of observation.

Given a model λ = (A, B, π) a set of observation O = {o1, o2 ...oT}. The Viterbi algorithm, presented 
in algorithm 2, introduces the dynamic programming method (Yamato, 1992).

The complexity of the Viterbi algorithm is on the order of o(MN) where M is the number of 
observations symbols and N is the number of hidden states (Ghahramani, 2001). This complexity is 
significantly better than the previous method.

Algorithm 2: Viterbi, optimized DMC construction

Input: λ,O

output: DMC

1- Creates a path probability matrix VITEBI[N+2,T]

2- For each state I do

3- VITERBI[S,1]:=pi1*bi(O1)

4- BackPointer[s,1]:=0

5- End for

6- For each time step t from 2 to T do

7- For each state I

8- viterbi[S,t]:=MAX{s’=1:N} viterbi[s’,t-1]*as’s*bi(Ot)

9- Backbpointer[s,t]:=argmax{s’=1,N} viterbi[s’,t-1]*as’,s

10- End for

11- End for

12- ZT= argmax{s’=1,N} viterbi[s’,T]*as’,s
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4. PROPOSed MeTHOd

In this section, all contributions of this paper are explained. First, we propose a formal definition 
of the scene classification problem with objects as attributes, then, we continue by presenting the 
investigation made to solve the scene classification problem using an HMM architecture. The aim is 
to ensure a perfect analogy between their formal two definitions and explain how they can perfectly 
match. Then, weights measures functions that evaluates the saliency of objects and similarities between 
categories of scenes are introduced along with the sorting functions. Finally, the novel multiclass 
classification approach is presented and an inference algorithm is put into place in order to extract 
the most suitable scene category from the generated discrete Markov chains (DMC).

First, we formally define a scene classification problem based on objects (SC:O) as the following: 
Given a set of finite scene categories SC SC SC SC

n
= …{ }1 2

, , ,�  and an input scene S  containing 
a set of finite properties � , , ,P P P P

n
= …{ }1 2

� � � ; we are not going to define rigorously what a property 
is, but we can simply say that it contains semantic information about  S  .e.g. objects, actions, sizes, 
relationships, etc. We wish to assign the most suitable scene category SC

i
 to S  knowing  P . For 

convenience, the compact notation (6) is used in the remaining of this paper.

µ = ( )SC P,  (6)

To illustrate the rest of contributions, Figure 1 summarizes the complete workflow of the proposed 
method. First, the dataset is divided into a learning part (80%) and a test part (20%) as recommended 
by (Quattoni, 2009). The learning dataset is used to construct the necessary entities to the proposed 
classification process. Initial, distribution, transition and emission probabilities are computed. This 
part of the workflow is called the “learning part”. The test dataset is used to certify the reliability of 
the proposed method’s classification. A sorting function orders the objects of the input scene in such 
a way the most salient objects are put forward. Next, a degree of parallelism is defined to designate 
the number of DMCs constructed at the same time. The next step consists on starting the construction 
of the DMCs while going through the selected objects. Finally, an inference algorithm is developed 
in order to extract the most suitable scene category from discrete Markov chains. Each of these steps 
will be deeply explained in the upcoming subsections.

Figure 1. Workflow of the proposed classification process based on hidden Markov model
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4.1. Analogy Between the Scene Classification Problem and the HMMs Architecture
In this subsection, we are going to demonstrate how the scene classification problem μ can be modeled 
using an HMM model λ. According to their formal definitions, let = ( )A B, , À  and ¼= ( )SC P, . In 
order to demonstrate the analogy between λ and ¼, each component of μ will get its correspondent 
in λ. After investigations and analyzes, Table 1 regroups the obtained correspondences.

Based on the resulting correspondences in Table 1, we can easily see that the analogy between 
λ and μ is possible and state that, indeed, a problem μ can be represented by an HMM architecture λ. 
The same steps and algorithms defined in section 3 are used to construct the hidden Markov model 
for the purpose of μ problem.

4.2. Object’s weight Measure and Scene Categories Similarity
In this subsection, we introduce the concept of weight measure. Preferred over probabilities due to a 
lack of data, weight measure formulas fully meet the aspect of object saliency evaluation and similarity 
measure between two different scene categories. Moreover, experimentation shows that probabilities 
tend to extremely small values, which can twist the HMM process’s calculations and results. The 
weight of an object can be extrapolated to the whole scene. Therefore, a similarity between two 
scenes categories can be computed. In the following, the two aspects of weight measure and scene 
categories similarities are introduced.

4.2.1. Object’s Weight Measure Computation
In order to determine if an object is important in a scene category and has an impact on classification 
process, it is necessary to develop a weight function to quantify its saliency. We introduce the following 
definitions to clarify the content of upcoming equations.

Let,

•  FO (SCi, oi): A function that returns the frequency of appearance (counting doubles) of object 
oi in all the different dataset’s scenes that are labeled as scene category SCi

Table 1. Analogy between the scene classification problem using objects and the Hidden Markov Model formal definitions.

Hidden Markov Model Architecture λ High level object-based scene classification problem μ

T: Observation sequence length (total 
number of clock times t)

→ T’: Cardinality of the set of properties P in a given the 
input scene S

N: set of hidden states {S1, S2 …Sn} → SC: Set of scene categories {SC1, SC2, … SCn}

M: set of observation symbols {o1, o2, …, 
on}

→ P: Set of properties {p1, p2 …pn}

Transition probabilities → Similarity between two SC as in (11)

Emission probabilities →
Weight measure W

´

 based on a given Scene Category SCi 
as in (8)

Initial probabilities distribution π →
Absolute weight measure �W  independent from any scene 

category SCi as in (10)
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•  NO (SCi, oi): A function that returns the number of times (without counting doubles) object oi 
appears in all the dataset’s scenes labeled with scene category SCi

•  FOall (oi): A function that returns the frequency of appearance (counting doubles) of object oi in 
all the dataset

•  NOall (oi): A function that returns the number of times (without counting doubles) object oi 
appears in all the dataset.

Note: The FO (and FOall) returns all the occurrences of appearance of the object oi in current 
scene, conversely, the NO (and NOall) returns the number of time an object oi exists in the current 
scene. The correlation between FO (respectively FOall) and NO (respectively NOall) is defined in (7)

Let Oall be the set of all objects in the dataset

∀ ∈ ( ) ≥ ( )� �o O FO o NO o
i all i i

,  (7)

After introducing basic concepts and definitions, now, we calculate the weight measure W
´

 of 
a given object oi knowing its scene category SCi. Equation (8) demonstrates how the weight measure 

W
´

 is calculated.

W SC o

ifNO SC o

NO SC o

NO FO
i i

i i

i i

FO SC o

all o

i i

i

( , )

( , )

(
( , )

*

( , )

( )

=

=0 0

aall oi

else
( )

)










 (8)

We generalized (8) to get an equation independent of any scene category as presented in (9).

W o

if
SC

NO SC o

else

NO SC o

i

i
i i

i i

FO SC

( )

max
( ( , ))

max( ( , ))
(max( (

=

=0 0

ii i
i

o
sc

i

all i i all i i

i i

SC

NO SC o FO SC o

where

FO SC o SC

, ))

( , ) * ( , )

( , ) :
ii N

i i i N

SC SC

and

NO SC o SC SC SC

=

=







1

1

,...,

( , ) : ,...,







 (9)
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Nevertheless, in order to generate appropriate calculations processes, a normalized version of 
(9) is developed in order to ensure that the weight measures values of objects oi are held between 0 
and 1. Equation (10) demonstrates the normalized version of (9).

W O

if NO SC o

else

NO SC o

i

i i

i i

FO SC oi i

( )

max( ( , ))

max( ( , ))
max( ( , )

0 0=

))

( , ) * ( , )
/

( ,

SC

i

all i i all i i

i i

i

SC

NO SC o FO SC o
MaxValue

where

FO SC o ))( ,...,

( , ) ,...,

SC SC SC

and

NO SC o SC SC SC

i N

i i i N

=

=







1

1







 (10)

Since (10) has no upper bound, its value expends as the occurrences of the object raises, we 
associate the value of the variable “MaxValue” according to the current dataset. Experimentation led 

to assume that the weight functions W
´

 and �W  represent more faithfully the saliency of a given 
object oi than simple probability measures. Nevertheless, the results are biased by the experimented 
datasets.

4.2.2. Scene Categories Similarity Computation
The aim of quantifying the similarity measure between two scene categories SCi and SCj is to grant 
the classification process the possibility to switch to the most suitable scene category in a given clock 
time “t”. Equation (11) shows how to calculate the similarity measure α between two scene categories 
SCi and SCj (i can be equal to j).

Let SCi and SCj be two scene categories from the given dataset and SCiOi={oi1, oi2...oik} the set 
of objects belonging to all the scenes in the dataset labeled as SCi and SCjOj={oj1,oj2..ojk’} be the set 
of objects belonging to all the scenes in the dataset labeled as SCj.

We introduce the function α (SCiOi, SCjOj) which returns the similarity of SCi toward SCj as in 
equation (11)

± SCO SC O
Card SCO SC O

Card SCOi i j j

i i j j

i i

, �( ) =
∩( )

( )
 (11)

The similarity function is non-commutative: �± ±SC o SC o SC o SC o
i i j j i i j j
, ,( ) ≠ ( ) .

4.3. Object’s Sorting Functions
After assigning different kind of weight measures to given objects, sorting functions were developed 
to exploit the weight measure and sorts the input scene set of objects O for the discrete Markov chain 
construction. It is very important and crucial to have the most significant and finest sorting since the 
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promoted scene categories depend deeply on the sorting functions and thus the scene classification 
process accuracy.

However, before starting, we need to filter out objects that are judged non-salient or considered 
as noise in the input scene. A truncation of insignificant (less salient) objects is made in order to 
reduce the length of the DMC as results a significant reduction of the combinatory computation. 
Also, to protect the classification process to get lost and diverge to insignificant scene categories. 
The truncation function relies exclusively on the weight measure presented in equation (10). Figure 2 

Figure 2. Exemple of trancated objects from a real given input scene taken from MIT Indoor (Quattoni, 2009)

Figure 3.
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shows an example of a real input scene taken from MIT Indoor dataset (Quattoni, 2009) to illustrate 
the truncation process.

From Figure 2, we can see that some objects of the input scene in state (A) were removed in state 
(B) e.g.: “lamp”, “door”, “window”, etc. while the most salient objects according to the weight measure 
calculated in (10) remain present in state (B) such as: “balcony”, “tv”, “speaker”, etc. The purpose 
of the truncation is to take out the less salient objects existing in the input scene such as the HMM 
process will directly guide the DMC construction toward the most suitable scene category. After the 
truncation process, we proceed to a sorting phase that will determine how the selected objects will 
be presented in the HMM process for the DMC construction. We developed three different kinds of 
sorting functions. The descending and ascending sorting which are considered as static sorting and 
a dynamic sorting function.

4.3.1. Ascending and Descending Static Sorting
The ascending and descending sorting are considered as static sorting since they provide the order 
of the objects before the DMC construction starts. The descending and ascending sorting organize 
objects of the input scenes from the most salient to the less salient, respectively from the less salient 
to most salient, based on the weight measure introduced in (10) noted �W O

i( ) . The descending sorting 
approach assumes that the DMC construction should be provided immediately with the most salient 
objects in order to start with the right path and begins the emission process with the most representative 
scene category. Then, as the process goes on, it tries to construct the DMC using less salient objects 
while avoiding to diverge to other irrelevant scene categories.

Figure 3 illustrates how the DMC is constructed using a static descending sorting. The objects are 
taken from a real scene category labeled “Kitchen” belonging to the MIT Indoor dataset (Quattoni, 
2009).

When the process starts (t=0), the scene categories generated has the correct value (Kitchen). 
However, as the process goes on (t=4), the DMC starts to diverge as less salient objects are handed. 
The final state (t=7) shows how the DMC looks like when all the scene categories are generated.

While the descending static sorting adopts the approach of “avoid divergence”, the ascending 
sorting approach, on the other hand, supports the idea of “convergence”. First are introduced general 
(less salient) objects and gradually with the progression of the DMC construction, the process 
converges to the most appropriate scene category as it is handed progressively more salient objects.

Figure 4. Example of a constructed Markov chain using the static Ascending sorting
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Figure 4 shows how the DMC is constructed when the objects are already on an ascending 
sorting as shown in the initial state (t=0). When the process starts, the scene categories generated 
get erroneous values (Bedroom, DiningRoom). However, as the process goes on, the DMC starts to 
converge to the correct scene category (t=2, t=5) as more salient objects are handed. The final states 
(t=5, t=6, t=7) shows how the DMC was able to totally converge to the right scene category “Kitchen”.

4.3.2. Dynamic Sorting
The dynamic sorting is revised and adapted to the current state of the DMC. As the DMC is constructed, 
it positions itself on a certain scene category at a specific time clock t. The next handed object for 
the DMC construction at time clock t+1 is then chosen such as it suits the current scene category 
(at time clock t). Figure 5 shows how the dynamic sorting influences the construction of the DMC.

We notice from Figure 5 that the objects are not initially sorted in state t=0 unlike in Figure 3 
and Figure 4, the dynamic approach consists in the way objects are chosen alongside the construction 
of the DMC. The dynamic sorting chooses from the remaining objects of the input scene, the most 
suitable next object according to the current scene category.

The same object “chair” emitted the scene category “Bedroom” in Figure 4 and Figure 6 while 
the scene category “Dining Room” was emitted in Figure 5. This difference means that the emitted 
scene category is indeed influenced by the way objects are sorted. This ascertainment made us 
conclude that the order of the objects is very critical and crucial to the DMC construction and will 
directly affect the accuracy of the classification process. Once the DMC is constructed, inferences 
algorithms try to extract from it the most suitable scene category.

4.4. Inference Algorithm
The common way to handle multiclass classification problems using HMMs is by adopting the “one 
Vs all” method (Ghahramani, 2001), (Hinton, 2001). In this paper, we introduce a novel approach 
of multiclass classification that models the scene classification problem represented by the HMM 
where a single DMC is used to classify all scene categories SCi. Inference algorithms are developed 
with the purpose of extracting the most suitable scene category among the set of scene categories 

Figure 5. Example of a constructed Markov chain using the dynamic sorting
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emitted by the DMC. We proposed two inferences algorithms: “HMM inference” and “Frequency 
inference” both explained in the following.

4.4.1. HMM Inference Algorithm
The first proposed method to extract the most suitable scene category SCi among the different ones 
emitted in the DMC is by using the associated weight measures calculated when the DMC was 
constructed. The DMC construction is based on a weight measure in order to emit a certain scene 
category SCi. The HMM inference algorithm use those weights measures to extract the most suitable 
scene category from the DMC. Algorithm 3 shows how the “HMM inference” method is executed.

However, this approach can be seen as inconsistent since the multiplication of weight measures 
at best remain the same (1x1) but in all the other cases decrease. This approach prioritizes the scene 
categories appearing first in the DMC which is not equitable. This inequality led us develop another 
inference algorithm that provides equality between the emitted scene categories called “Frequency 
inference”.

4.4.2. Frequency Inference Algorithm
The developed “frequency inference” method extracts the most suitable scene category based on a 
simple and equitable approach. The method counts the frequency of appearances of each scene category 
in the DMC, if two scene categories get the same frequency of appearance, the priority goes to the 
scene category appearing first in the DMC in the case where static descending or dynamic sorting 
were used. However, if ascending sorting was used, the priority goes to the last one. Algorithm 4 
shows how the method is executed

Algorithm 4 Frequency inference

Input: discrete Markov chain DMC

Output: Chosen scene category: S

1- Extract the priorities between scene categories existing in the DMC according to the sorting algorithm chosen. (first 
to appear gets the highest priority)

2- Count the number of occurrences of each scene category mentioned in the DMC

3- If Two (or more) scene categories get the same number of occurrence in the DMC, split the conflict with the priority 
calculated in step 1

Algorithm 3 HMM inference

Input: discrete Markov chain DMC

Output: Chosen scene category: S

1- Extract the priorities between scene categories existing in the DMC. (first to appear gets the highest priority)

2- Extract all the emitted scene categories SC in the DMC

3- Assign to each scene category a weight equivalent to the sum of all the associated probabilities

4- Return the scene category getting the higher weight. If Two (or more) scene categories get the same weight, split the 
conflict with the priority calculated in step 1
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4.5. degree of Parallelism
The construction of the DMC is based on the emission of the most suitable scene category knowing 
the given object at a particular time clock t and the previous state of the DMC at time clock t-1. This 
approach can be generalized by constructing at the same time more than one DMC where the second 
constructed DMC returns the second most suitable scene category and so on. This approach can be 
seen as a parallelism in the construction of DMCs. The benefit of constructing more than one DMC 
at the same time resides in a creation of a larger spectrum of scene categories providing more options 
to the inferences algorithms, which positively influences the accuracy of the classification process 
and accentuates the difference between correct and incorrect scene categories. Algorithm 5 shows 
how the global process of constructing several DMC at the same time is executed.

Algorithm 5 Parallelism degree

Input: set of input scene’s objects: O, degree of parallelism: dp

Output: HMC with parallelism degree

1- Sort SC according to one of the sorting Algorithms

2- Initialize a set of SelectedScenes to NULL having size of dp

3- Initialize a set of Previous Scene to NULL having size of dp

4- For i=1 to size of O

5- For j=1 todp

6- following the HMM Algorithm, knowing Oiand the jth value of PreviousScenes, select the most suitable Scene 
Category SC that does not exist in Selected Scenes

7- Add SC to Selected Scenes

8- Add SC to the jth row of the DMC

9- End For

10- Previous Scene = Selected Scenes

11- Selected Scenes = NULL

12- End For

13- Return DMC

Figure 6. Constructed discrete Markov chain with a parallelism degree set to 3
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Figure 6 presents a real example taken from a constructed DMC having a degree of parallelism 
equals to 3 which means three most suitable scene categories are taken into consideration when the 
HMM algorithms processes the current object.

We notice in Figure 6 some missing values in the construction of the DMC represented by the 
symbol “/”, this is explained by the fact that no scene category can be reached having the combination 
of duplet (Refrigerator, Living-room). The rest of the line is then declared void.

A value of absorption set to 1.00e-10 is used in order to avoid the DMC process to get withdrawn 
when a weight measure of transition (or emission) is set to null.

After presenting and explaining all contributions of the proposed approach, the following section 
presents the tests conducted in order to determine the best tuning of the proposed approach and 
comparison with the state of the art’s methods.

5. TeST ANd ReSULTS

In this section, we perform experiments of the proposed objects based scene classification (SC:O) 
method over several datasets: LabelMe(Russell, 2008), MIT INDOOR(Quattoni, 2009), SUN150(Xiao, 
2010) and SUN397(Xiao, 2010). First, we evaluate the accuracy of the proposed method varying 
its own input parameters, then, we perform comparisons with the existing state of art of the scene 
classification methods which use the same dataset. In the following subsections, an overall summary 
of the used datasets is presented alongside some interesting statistics.

5.1. datasets Presentation

We can see from Table 2 that presented datasets vary in all statistics attributes. This variation is 
important and highlights the strength of the proposed method when it comes to handle both small and 
large datasets. All the datasets were divided into two parts: The learning part (contains 80% of the 
initial dataset) and the test part (contains 20% of the initial dataset). We measure the good classification 
accuracy using a ratio between good classified scene instances and all scene instances provided by 
the test part. The statistic: “number of objects” demonstrates the diversity and the complexity of the 
proposed datasets where LabelMe (Russell, 2008) dataset containing 1620 different types of objects 
while SUN397 (Xiao, 2010) contains almost two times more with 2726 different types of objects. The 
statistics specific to the length of scenes shows the homogeneity of the different datasets, presenting 
an average size of almost identical scenes length. The scene categories in the presented datasets 

Table 2. Summary and statistics extracted from the datasets used

Dataset  
Statistics

LabelMe 
(Russell, 2008)

MIT INDOOR 
(Quattoni, 2009)

SUN150 
(Xiao, 2010)

SUN397 
(Xiao, 2010)

Number of scene category 16 67 150 395

Number of all scenes 1306 2742 12950 15723

Number of scene in learning part 1042 2140 10453 12811

Number of scene in test part 266 574 2499 2914

Number of objects 1620 2240 2294 2726

Smallest scene (number of objects) 1 1 2 1

Biggest scene (number of objects) 288 111 269 291

Average scene (number of objects) 24.93 21.86 28.1510 26.8084
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include a wild variety with all kind indoor, outdoor, small, large, public and private scenes. The 
SUN150 (Xiao, 2010) dataset is a subset of SUN397 (Xiao, 2010) that regroups scene categories that 
have at least more than 50 scenes (10 scenes for the test and 40 scenes for learning). This subset is 
more consistent and provides all the conditions to test the proposed method in a large and persistent 
dataset. In the upcoming subsections, several parameters of the proposed method are tested and put 
under extreme conditions in order to demonstrate its flexibility and robustness.

5.2. Varying the Objects Taken
In order to avoid a combinatory explanation and get an exploitable discrete Markov chain, the number 
of objects taken into consideration are varied in each input scene from 3,5,7 to 9 objects for all scenes 
categories. If a scene happens to have more than the number of allowed objects, a truncation is 
elaborated based on the weight measure �W  calculated in (10). Figure 7 shows the different obtained 
results for all the datasets.

Figure 7 shows a rise in accuracy in the classification process when objects are added (from 3 
to 7 objects). In this part, the classification process is gaining practical information: above 7 objects, 
the accuracy drops and the classification process is misled for getting useless information (less salient 

Figure 7. Proposed method accuracies while changing the number of objects taken into consideration for each scene

Figure 8. Proposed method accuracies while changing the number of scene categories suggested
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objects). As result of the small size of LabelMe dataset, the variation of objects per scene does not 
affect the obtained results.

5.3. Varying the Number of Suggestions
In the next experiment, the same experience is provided while highlighting the number of suggestions 
made. Figure 8 illustrates the rate of well classified scenes when 1, 2 and 3 scene categories are 
suggested by the classifier

We notice from Figure 8 that the accuracy increases when the suggested scene categories do. 
This result claims that the DMC holds, for most of the time, the right scene category but the inference 
algorithm fails to extract it. This discordance is sanctioned with a gap of approximately 20% for all the 
datasets. Nevertheless, this gap is contained in just 3 scene categories and proves that the extraction 
made by the inference algorithm is still reliable. Next are tested the different inference algorithms.

5.4. Varying the Inference Algorithms
In order to see which inference algorithm performs the better on the provided datasets, we run 
experiments comparing the obtained accuracies. The results are plotted in Figure 9.

Figure 9 presents the accuracy of the two inference algorithms: “HMM inference” and “Frequency 
inference”. In most of the time, the frequency inference algorithm returns slightly better results (around 
3% better for all the datasets) than the HMM inference algorithm. This can be explained by the fact 
that the frequency inference algorithm depends on a very simple and intuitive approach while the 
HMM inference algorithm relies mainly on generated weight measures computed while the DMC is 
constructed. Moreover, when multiplying weight measures to combine scene categories appearances, 
the value drops while it needs to increase. That is why using weight measures based on probabilities 
are found to be less adequate for data fusion.

5.5. Varying the Sorting Algorithms
In the proposed method, we introduced three different manners of sorting the input scene objects. 
Two sorting algorithms are static and calculate the weight measure before starting the construction 
of the DMC while the dynamic algorithm calculates the weight measure taking into consideration the 
current state of the DMC. Figure 10 presents the obtained results on the different datasets

In all the datasets, Figure 10 reveals that the dynamic and descending static sorting functions 
return the best results with the dynamic sorting function getting a slight, yet noticeable, advantage. 

Figure 9. Accuracy of the proposed method by changing the inference algorithms
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On the other hand, the ascending static sorting function turns out to give very poor results dropping 
down to an average of 10.5% compared to the dynamic sorting approach.

5.6. Varying the Parallelism degree
In this subsection, Figure 11 shows the tests while changing the parallelism degree of the HMM process. 
This way of approach generates more scene categories since more than one DMC is constructed. 
Generating more scene categories provides useful information for the inferences algorithms.

Figure 11 shows a change of parallelism degree from 1 to 3 DMCs constructed at the same time. 
We can notice that the accuracy of the classification process increases when the parallelism degree is 
incremented. The improvement is estimated at almost 2% for all the datasets. This can be explained by 
the fact that the inferences algorithms perform better when a considerable amount of scene categories 
are presented for selection. Moreover, the distinction between the correct and false scene categories 
is emphasized when more than one DMC point to the same results. A 2% gain can be considered as 
a small improvement; nevertheless, this ability to construct several DMCs at the same time is not 
limited to 3 and can be expended in order to get better results. However, the cost of constructing several 

Figure 11. Accuracy of the proposed method by changing the parallelism degree in the HMM process

Figure 10. Accuracy of the proposed method bychanging the sorting algorithms
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DMCs at the same time comes with the expense of a significant time complexity. In the following 
subsection is presented the five best and worst results of the proposed method tested on the datasets.

5.7. Time execution of the Proposed Method
In this subsection, Table 3, 4 and 5 present the average processing time necessary to the proposed 
method to classify one input scene. The results are obtained over the test part of the previously 
presented datasets (LabelMe (Russell, 2008), MIT Indoor (Quattoni, 2009), SUN150 (Xiao, 2010) 
and SUN397 (Xiao, 2010)). We choose to vary three different parameters (Number of objects taken; 
Number of suggestions and degree of parallelism) that affect the most the accuracy of the classification 
process (see subsections 5.6, 5.3 and 5.2). The aim of this experiment is to determine if these essential 
parameters are greedy in terms of time execution. The times are given in seconds and tests are run 
on a personal computer i3 processor and 4Gb of memory.

Table 3 presents the average time expressed in seconds to classify one input scene while varying 
the number of objects taken into consideration from 3, 5, 7 to 9. The average times to classify one 
scene of small datasets LabelMe (Russell, 2008) and MIT indoor (Quattoni, 2009) are all less than 
1s. Also, on LabelMe (Russell, 2008) and MIT indoor (Quattoni, 2009), the increment of the “Object 
taken” parameter does not increase that much the computed times recorded. However, the large 
datasets SUN150 (Xiao, 2010) and SUN397 (Xiao, 2010) record more significant average time in 
order to process one input scene. This is due to the large amount of comparisons that the classifier 
must accomplish to find the most appropriate scene category. The increase in the number of objects 
taken into consideration does not help the combinatory approach. The needed time increases until 
the highest value recorded of 6.48s for 9 objects taken on the SUN397 (Xiao, 2010) dataset.

Table 4 introduces the average necessary time to classify one input scene while changing the 
number of scene suggested. On all the datasets, the average execution times recorded are almost 
constant (~0.21s for LabelMe (Russell, 2008), ~0.76s for MIT indoor (Quattoni, 2009), around 2s for 

Table 4. Proposed method’s average elapsed time to classify one scene while changing number of results suggested (second)

Datasets: 
Parameters

LabelMe 
(Russell, 2008)

MIT INDOOR 
(Quattoni, 2009)

SUN150 
(Xiao, 2010)

SUN397 
(Xiao, 2010)

1 scene suggested 0,21 (s) 0,76 (s) 1,73 (s) 4,76 (s)

2 scenes suggested 0,21 (s) 0,76 (s) 1,54 (s) 4,73 (s)

3 scenes suggested 0,21 (s) 0,79 (s) 2,56 (s) 5,36 (s)

Table 3. Proposed method’s average elapsed time to classify one scene while changing number of objects taken (second)

Datasets: 
Parameters

LabelMe 
(Russell, 2008)

MIT Indoor 
(Quattoni, 2009)

SUN150 
(Xiao, 2010)

SUN397 
(Xiao, 2010)

3 Objects taken 0,15 (s) 0,59 (s) 1,04 (s) 3,39 (s)

5 Objects taken 0,21 (s) 0,73 (s) 1,55 (s) 4,48 (s)

7 Objects taken 0,24 (s) 0,84 (s) 2,15 (s) 5,24 (s)

9 Objects taken 0,26 (s) 0,90 (s) 1,78 (s) 6,48 (s)
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SUN150(Xiao, 2010) and 5s for SUN397(Xiao, 2010)). The increase in number of scene suggested 
slightly affects the average processing time for one input scene.

Table 5 presents the average needed time to classify one input scene when increasing the 
parallelism degree. In all the datasets, the average time remains stable when raising the parallelism 
from 1 to 2. This result is due to the lack of new scene categories proposed between the first and 
second best choice. However, a noticeable increase occurs when the parallelism degree is set to 3 
(from ~0.20s to 0.27s on LabelMe (Russell, 2008), from ~0.65s to 0.98s on MIT indoor (Quattoni, 
2009),from ~1.30s to ~2s on SUN150 (Xiao, 2010), from ~4.30s to 6.19s on SUN397(Xiao, 2010)). 
This gap is explained by the fact that the third best choice brings new scene categories that increases 
the combinatory and need more processing.

5.8. discussion
In order to support the previous experiments, Table 6 introduces five best and worst results run with 
each dataset. The purpose of this experiment is to track the emerging parameters when considering 
extreme results (best and worst) of the proposed method. Table 6 is divided into four sections; each 
section represents one dataset. In turn, each section is divided into two parts; the first part presents 
the five best results whereas the second part represents the five worst results. The column of Table 
6 shows the parameters of the proposed method: “Number of objects taken”, “Scene categories 
suggested”, “Degree of parallelism”, “Type of sorting function” and “Inference algorithm” that were 
used in order to obtain the given classification accuracies.

We can see from the results of Table 6 some pattern homogeneity in the parameters that lead 
to the best results, respectively to the worst results in all datasets. We notice that the worst results, 
for most of the time, occur when the number of objects taken is high, the number of suggestions 
and the degree of parallelism are low, the ascending sorting is used while both, Frequency or HMM 
inferences algorithms appear. On the other hand, the best results are registered when the number 
of objects taken is relatively low, the number of suggestions and the degree of parallelism are both 
high, the dynamic or static descending sorting functions are used while still both frequency and 
HMM inference algorithms are used. However, we notice a fair advantage to the frequency inference 
algorithm (appearing in all top 3 for all datasets).

The generated results of previous experiments lead to state that some methods are always better 
than others (“static Ascending” sorting Vs “static Descending” and “Dynamic sorting”). Some 
parameters always perform better when set to specific values (degree of parallelism, number of 
suggested results). Whereas some other parameters remain unclear and appear in both good and bad 
results (inferences algorithms).

5.9. Comparison to the STATe of the ART’S MeTHOdS
In this subsection, we compare the proposed method’s best result with some reported methods in the 
literature that uses the same datasets. In this experiment, three datasets are tested: LabelMe (Russell, 

Table 5. Proposed method’s average elapsed time to classify one scene while changing the degree of parallelism (second)

Datasets: 
Parameters

LabelMe 
(Russell, 2008)

MIT INDOOR 
(Quattoni, 2009)

SUN150 
(Xiao, 2010)

SUN397 
(Xiao, 2010)

Parallelism 1 0,21 (s) 0,73 (s) 1,52 (s) 4,64 (s)

Parallelism 2 0,17 (s) 0,60 (s) 1,28 (s) 3,97 (s)

Parallelism 3 0,27 (s) 0,98 (s) 2,05 (s) 6,19 (s)
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2008), MIT Indoor (Quattoni, 2009) and SUN397(Xiao, 2010). The comparisons are presented, for each 
dataset respectively, in Table 7 and Figure 12, Table 8 and Figure 13, Table 9 and Figure 14.

To perform the comparison with reported methods in the literature, we took the best-obtained 
results of the proposed method on the tested datasets. We can easily see from Table 7 and Figure 12, 
Table 8 and Figure 13, Table 9 and Figure 14 that the proposed method performs better in terms of 
scene classification accuracy compared to other existing methods in the literature. The best accuracy 
registered in our proposed method gets a rate of 93.56% (249 scenes) of well classified scenes on the 

Table 6. Presentation of the five best and worst results obtained by the proposed method over all the datasets (Fq): Frequency 
inference algorithm, (H): HMM inference algorithm, (Dyn): Dynamic sorting, (Des): Descending sorting, (Asc): Ascending Better 
scene in color.

Dataset 
Parameters

LabelMe

Best Five Results Worst Five Results

Number of objects taken 5 7 9 7 9 9 9 9 9 9

Scene categories suggested 3 3 3 3 3 1 1 1 1 1

Degree of parallelism 3 2 2 3 3 1 1 2 2 3

Type of sorting function Asc Dyn Dyn Dyn Dyn Asc Asc Asc Asc Asc

Inference algorithm Fq Fq Fq Fq Fq H H H H H

Obtained Accuracy[%] 92 92 92.4 92.8 93.6 62.5 62.5 62.5 62.5 62.5

Dataset 
Parameters

MIT Indoor

Best Five Results Worst Five Results

Number of objects taken 5 7 9 5 5 9 9 9 7 7

Scene categories suggested 3 3 3 3 3 1 1 1 1 1

Degree of parallelism 2 3 3 3 3 1 2 3 1 2

Type of sorting function Dyn Dyn Dyn Dyn Des Asc Asc Asc Asc Asc

Inference algorithm Fq H H Fq Fq H H H H H

Obtained Accuracy [%] 82 82 82 82.8 83.4 24.5 25.3 25.3 28.7 29.6

Dataset 
Parameters

SUN150

Best Five Results Worst Five Results

Number of objects taken 5 5 3 5 3 9 9 9 9 9

Scene categories suggested 3 3 3 3 3 1 1 1 1 1

Degree of parallelism 3 3 3 3 3 1 2 3 1 2

Type of sorting function Des Dyn Dyn Des Des Asc Asc Asc Asc Asc

Inference algorithm H Fq Fq Fq Fq H H H H H

Obtained Accuracy [%] 71.5 71.5 71.8 72.5 73.1 24.5 24.5 24.5 25.7 27.1

Dataset 
Parameters

SUN397

Best Five Results Worst Five Results

Number of objects taken 5 3 3 5 3 9 9 9 9 7

Scene categories suggested 3 3 3 3 3 1 1 1 1 1

Degree of parallelism 3 3 3 3 3 1 2 3 1 1

Type of sorting function Des Dyn Des Des Des Asc Asc Asc Asc Asc

Inference algorithm H H Fq Fq Fq H H H H H

Obtained Accuracy [%] 65.1 65.4 65.5 65.8 67.1 21.5 21.5 21.5 22.5 23
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LabelMe dataset (Russell, 2008), 83.40%(479 scenes) of well classified scenes on the MIT Indoor 
(Quattoni, 2009) dataset and 67.10% (1955 scenes) of well classified scenes on the SUN397(Xiao, 
2010) dataset. We did not present any comparison using the SUN150 (Xiao, 2010) dataset with other 
method since the literature does not offer comparison using this particular subset of SUN397. We 
generated the SUN150 subset only to provide a consistent and large dataset to test our method on. As 
previously discussed in the related work section, the comparison with the state of the art’s methods does 

Figure 12. Comparing the proposed method’s best results and methods in the literature using the LabelMe (Russell, 2008)

Table 7. Comparison between the proposed method’s best results and reported methods in the literature using the LabelMe 
(Russell, 2008) dataset

Methods Accuracy [%]

GIST (Csurka, 2004) 54.0

BoW (Csurka, 2004) 55.0

SPM (Csurka, 2004) 59.0

Object Bank-SVM (Li, 2010) 68.0

Object Bank-LR (Li, 2010) 76.0

Chong et al (Chong, 2009) 76.0

Method in (Maji, 2009) 83.0

Dixit et al (Dixit, 2011) 86.9

SPMSM (Kwitt, 2012) 87.5

Kernel Descriptor (Song, 2017) 87.3

BoW+SPM (Kwitt, 2012) 88.6

MFS (Song, 2017) 88.9

Object Bank (Li, 2014) 89.8

KCNF (Song, 2016) 89.8

Extended MFS (Song, 2017) 89.9

Proposed method (LabelMe) 93.56
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Table 9. Comparison between the proposed method’s best results and reported methods in the literature using the 
SUN397(Xiao, 2010) dataset

Methods Accuracy [%]

SUN(HOG) (Xiao, 2010) 27.2

SPMSM (Kwitt, 2012) 28.2

OTC (Grauman, 2005) 34.56

Meta-classes (Bergamo, 2014) 36.8

SUN(MKL) (Xiao, 2010) 38.00

Margolin et al (Xiao, 2010) 38.00

KCNF (Song, 2016) 40.8

DeCAF (Donahue, 2014) 40.94

Method in (Sánchez, 2013) 47.20

OTC+HOG2x2 (Krizhevsky, 2017) 49.60

fc7-VLAD (Weston, 1998) 51.98

fc7-FV (Weston, 1998) 53.0

fc8-FV (Dixit, 2015) 54.4

DSP (Bergamo, 2014) 59.78

fc8+fc7+places (Dixit, 2015) 61.72

Proposed method (SUN397) 67.10

Table 8. Comparison between the proposed method’s best results and reported methods in the literature on the MIT Indoor 
(Quattoni, 2009) dataset

Methods Accuracy [%]

ROI+GIST (Quattoni, 2009) 26.50

MM-SCENE (Zhu, 2010) 28.00

DPM (Pandey, 2011) 30.40

CENTRIST (Wu, 2011) 36.90

Object Bank (Li, 2010) 37.60

DPM+GIST-Color (Pandey, 2011) 39.00

DPM+SP (Pandey, 2011) 40.50

DPM+SP+GIST-Color(Pandey, 2011) 43.10

Zuo et al (Zuo, 2014) 52.24

Method in (Donahue, 2014) 59.50

Juneja et al (Juneja, 2013) 63.18

Doersch et al (Doersch, 2013) 66.87

Method in (Liu, 2014) 68.20

Fc8-FV (Dixit, 2015) 72.86

MPP (Yoo, 2015) 75.67

Fc8-FV+fc7 (Dixit, 2015) 79.00

Proposed method (MIT INDOOR) 83.40
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Figure 14. Comparison between the proposed method’s best results and methods in the literature using the SUN397 (Xiao, 2010)

Figure 13. Comparing the proposed method’s best result and methods in the literature using MIT INDOOR(Quattoni, 2009)
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not include the convolutional neural network (CNN) (Herranz, 2016) results since the developments 
and test environments are very different.

6. CONCLUSION ANd PeRSPeCTIVeS

This paper introduces a novel approach of high-level scene classification with objects as attributes 
using the hidden Markov model (HMM) architecture. The two main difficulties that encounter the 
scene classification problem are the enormous amount of scene categories and the lack of discriminant 
semantic properties that can define properly a scene. Although those inconveniences, we proposed 
a novel method based on a strong and reliable mathematic tool that operates as follow: After 
going through the learning process, which computes all entities of the hidden Markov model, the 
classification process starts by sorting the input objects, called observations, with the aim of putting 
the most salient ahead. Several sorting functions were developed and tested since this step is very 
critical to the whole classification process. The construction of the discrete Markov chain (DMC) 
starts by initializing the degree of parallelism, which determines the number of discrete Markov 
chains constructed. After that, the process generates scene categories, called hidden states, while 
going through the input scene’s objects one by one. At the end, the discrete Markov chain contains 
a set of scene categories. The final step consists on extracting the most suitable scene category from 
the discrete Markov chain using developed inference algorithms.

The obtained results are promising and satisfying since very challenging datasets were used to 
run our tests. The obtained results are: LabelMe: 93.56%, MIT indoor: 83.40%, SUN150: 73.12% 
and SUN397: 67.10%. Some improvements can be possible by exploring more deeply the parallelism 
degree and see how far this parameter can improve the proposed method. The Markovian hypothesis, 
adopted in this approach, asserts that the future state can only be predicted knowing the current state, 
extending it and go further in the past can be relevant and improve the classification accuracy since 
previous steps hold important and useful information.
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