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ABSTRACT

Mobile cloud computing is an emerging technology in recent years. This technology reduces battery 
consumption and execution time by executing mobile applications in remote cloud server. The virtual 
machine (VM) load balancing among cloudlets in MCC improves the performance of application in 
terms of response time. Genetic algorithm (GA) is popular for providing optimal solution for load 
balancing problems. GA can perform well in both homogeneous and heterogeneous environments. 
In this paper, the authors consider multi-objective genetic algorithm for load balancing in MCC 
(MOGALMCC) environment. In MOGALMCC, they consider distance, bandwidth, memory, and 
cloudlet server load to find optimal cloudlet before scheduling VM in another cloudlet. The framework 
MOGALMCC aims to improve response time as well as minimizes VM failure rate. The experiment 
result shows that proposed model performed well by reducing execution time and task waiting time 
at server.
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INTROdUCTION

Cloud Computing is popular resource platform where user can offload their applications for executing 
and get result back in order to overcome the limitations of mobile device. Mobile Cloud Computing 
is emerged by a combination of two popular technologies such as Cloud computing and Network 
communications. MCC has been gained a lot of attention from researchers. The most advantage of 
MCC is that it reduces the complexity of the application and improves mobile device performance in 
terms of power. Mobile Devices (MD) is becoming more powerful for running complex applications 
such as resource intensive applications. The limitations of mobile devices in terms of battery, CPU 
speed, and limited memory are making developers unable to run the complex applications (Devare 
et al., 2010).

In order to improve the performance of the Mobile device, MCC has introduced a Novel concept 
called Offloading, which can offload resource intensive application into the Cloud. There are 
various Cloud service providers such as icloud and EC2. Mobile users can use resources of elastic 
Cloud in order to optimize performance of mobile applications. In (Kumar & Lu, 2010), the author 
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has focused on energy utilization of mobile device, by offloading tasks into Cloud environment to 
improve the performance of the mobile device. In (Z. Li et al., 2001)(Rong & Pedram, 2003), the 
author offloading computation task to remote Cloud to reduce energy utilization. The networking 
cost between mobile devices and remote servers was addressed in (Gu et al., 2003) . The application 
is portioned and offloaded to the nearby remote server for processing(Krishna et al., 2016). The 
response time between mobile device and Remote Cloud is significant challenge. However, the 
algorithm has not addressed response time in both wireless and remote environment(Raju & Saritha, 
2016). The MCC is used in various areas such as image processing, Speech recognition, Translator 
etc.(Dinh et al., 2013)(Gkatzikis & Koutsopoulos, 2014)(Y. Wang et al., 2015) (Rahimi et al., 2014)
(Sheikhalishahi et al., 2011).

The mobile device can run high end applications which require huge computation power and 
Storage. The requirement of resources for each application may vary. In result, Resource allocation 
to mobile devices should be dynamic. In MCC, mobile devices can offload intense application to the 
remote Cloud for faster execution(Chun et al., 2011)(Cuervo et al., 2010)(Gkatzikis & Koutsopoulos, 
2013)(R. Somula et al., 2019). The distance between mobile device and Cloud remote server increases 
the response time. In result, the overall execution time of intensive application also increases the new 
concept called Cloudlet has been introduced to address latency related challenge (Satyanarayanan 
et al., 2009). Cloudlet is small scale data center which is available around the user. By using nearby 
Cloudlet for execution, the user can decrease the overall response time of application. Cloudlet is a 
three-tier architecture in Fig.1, which is introduced between mobile devices and remote Cloud. The 
virtual technology available in Cloudlet to share hardware resources with incoming requests from 
users. The resources of Cloudlet (available bandwidth, CPU, Memory, etc.) are shared with VMs. 
In Cloud computing resource processing is a popular area (Bobroff et al., 2007)(Das et al., 2013)
(Das et al., 2014)(Jiwei Li et al., 2013)(Van et al., 2009). Resource scheduling among Cloudlets is a 
significant issue(Gkatzikis & Koutsopoulos, 2014). The mobile user always moves from one location 
to another location. Therefore, the distance also increases between mobile device and Cloudlet; it 
causes a delay in execution time. In order to address this issue, the task is moved to nearest Cloudlet 
by measuring user distance. The distance between mobile device and Cloudlet is not the only reason 
for task migration to another Cloudlet. The load of the target Cloudlet also one important factor 
for task migration, when the server handles a greater number of tasks than actual capacity then 
execution time of task increases gradually. Some works have focused on VM scheduling in MCC 
(Gkatzikis & Koutsopoulos, 2014)(L. Wang et al., 2014)(Islam et al., 2016)(Liu et al., 2015)(Taleb 
& Ksentini, 2013)(R. Somula & Sasikala, 2019)(Ramasubbareddy & Sasikala, 2019). The previous 
works focused on static task execution. In this proposed method, we consider bandwidth, load and 
distance as constraints to select Cloudlet for scheduling among Cloudlets. In this paper, the proposed 
model addresses the scheduling among Cloudlets. Therefore, resource constrained devices show better 
performance. The novelty in this paper is considering three objective functions to schedule VM in 
another Cloudlet (Distance, Bandwidth, Memory and Load of the Cloudlet).

The rest of the paper as follows: section 2 describes about the Cloudlet and previous load balancing 
algorithms. Section 3 explains MCC environment. Section 4 frames the problem formulation for 
resource scheduling algorithm. Section 5 describes simulation results with existing work. Finally, 
section 6 concludes the topic and section 7 explain the idea of feature work.

BACKGROUNd

There are many scheduling algorithms to address relatively routine problems in MCC. The resource 
scheduling algorithm has a great impact on the performance of the application in terms of execution 
time and service cost. Therefore, the optimization algorithm minimizes execution time of the task. In 
result, the solution will be more effective(Dinh et al., 2013)(Gkatzikis & Koutsopoulos, 2013). In (S. 
Wang et al., 2014), the author proposed load balancing algorithm with objective of maximum resource 
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utilization and maximization of CPU capacity. But the algorithm fails to save energy consumption 
for resources. In (Song et al., 2010), the author proposed Fuzzy-GA optimization approach for task 
scheduling process by considering scheduling decision. But it failed to minimize overall execution 
time of the jobs. In (Jian-feng Li et al., 2011), the author describes ant colony optimization for 
scheduling tasks by considering make span and mean task completion time objectives. But it failed 
to address queue length of each Virtual Machine (VM). JuhnkeEtal (Juhnke et al., 2011), proposed a 
multi-objective algorithm with two main objectives such as execution time and cost by using Pareto 
model. Increase in the data transferring time is the drawback of this model. In (Guo et al., 2012), 
proposed multi-objective resource scheduling in Cloud computing(Sheikhalishahi et al., 2011). This 
algorithm mainly deals with cost and execution time which neglects resource utilization aspect.

There are many works which have been already studied in resource scheduling. But they are 
not up to the mark, some works are implemented by considering energy consumption as a primary 
objective using optimization algorithm. Shieh Etal (Shieh & Pong, 2013), for scheduling task in 
multi core system by focusing on energy consumption. This algorithm did not concern about resource 
utilization in multi-cores. In (Shieh & Pong, 2013), the author proposed energy aware task scheduling 
in the Cloud it calculates energy consumption for Cloud and then changes data based on network 
conditions. This algorithm used bi-level model to schedule tasks in the Cloud. But, this bi-level model 
fails to address resource utilization issue. In MCC, many methodologies used to find when a user 
should offload task to Cloudlet (Cuervo et al., 2010)(Gkatzikis & Koutsopoulos, 2013)(Das et al., 
2014)(Jiwei Li et al., 2013)(Van et al., 2009)(Islam et al., 2016)(R. Somula & Sasikala, 2018)(R. S. 
Somula & Sasikala, 2018)(R. Somula & Sasikala, 2019b)(Devare et al., 2010). In(Taleb & Ksentini, 
2013), the author proposed service migration based on user mobility in MCC.

In the proposed model, the Cloudlet manager makes a decision on Cloudlets based on distance 
and execution time of the task. When VM is scheduling to another Cloudlet server the size of the data 

Figure 1. Cloudlet Architecture
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to be transferred is also considered in the proposed model. Most of the scheduling approaches do not 
consider the distance, bandwidth and load of the server in mcc which increases the response time of 
the applications. When we schedule task or VM among Cloudlets we must consider load, distance 
and bandwidth in order to handover task to another VM in another Cloudlet. If we don’t consider 
bandwidth, the transferring time of the task increases. In this approach we consider GA methodology 
for balancing the load among Cloudlets and predicts optimization Cloudlet.

MCC eNVIRONMeNT

When mobile user offload task to Cloud environment the task first will be received by Cloudlet 
Manager (CM). The CM maintains the status of all available Cloudlets. Based on available information, 
the CM makes a decision to which Cloudlet the user task is to transfer by considering distance and 
load of the Cloudlet. Each Cloudlet is a collection of multiple VM’s. Each VM in Cloudlet is resource 
provisioned (Bandwidth, Storage and CPU). The user task is allocated to VM’s in Cloudlet based on 
execution time, transferring time and load of the server. If the user moves from one Cloudlet to another 
Cloudlet in a Cloud environment, then the corresponding VM is scheduled in another Cloudlet. In 
MCC environment, a set of AP’s establishes network communication among Cloudlets. The set of 
available Cloudlets are denoted as C= {C1, C2… CN}. Each of these Cloudlets communicates through 
CM. the bandwidths between Cloudlet a, b are represented as Ba,b. E ach Cloudlet has fixed memory 
Ma and processing power Pa.

Task Completion Time
The task completion time depends on available resources to VM in Cloudlet. Let us denote 
mathematically, An k

a
, illustrates minimum task completion time of VMk for each nth individual, when 

scheduling VM from one Cloudlet ‘a’ to another Cloudlet ‘b’. If VM is not scheduled from Cloudlet 
‘a’, it is same as ‘b’. Then following equation (1) calculates minimum task completion time.
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VM Transfer Time

The time required for scheduling VM from Cloudlet ‘a’ to Cloudlet ‘b’ is denoted as �
,
,T
n k
a b . When 

Cloudlet a, b is equal to zero, that is � ,T
k
a b = 0 . The following formula (2) is used to predict VM 

transferring time.
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VM Current Load
When the user moves from one Cloudlet to another Cloudlet, the execution time increases, so that 
the Cloudlet schedule VM in another Cloudlet. The following equation (3) is used to predict a load 
of the Cloudlet.
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Available Bandwidth
The bandwidth of each VM in network differs from other VM. The task transfer to another VM when a 
task takes more time for processing. The following equation (4) is used to predict bandwidth of the VM.
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Available Memory
The task length of Cloudlet is considered as one of the objectives to optimize scheduling in MCC. 
When task arriving rate increases, then the length of task queue increases. In order to achieve optimize 
scheduling, then the length of task queue has to be reduced. The length of task queue VM

K
can be 

controlled by QL (VM
K

) by calculating remaining memory R (VM
K
mem ) and no. of available CPUs 

R (VM
K
CPU .) the following equation (8) is used to predict available memory of the VM.
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Problem Formulation
In this section, the problem statement describes about multi-object VM scheduling among Cloudlets. 
These objective functions focus on execution time, transfer time, load, available bandwidth and 
memory of the server and available bandwidth among VM’s.

Problem:

F f f f f
1 1 2 3 5
= { }, , ,  

F f
2 4
= { }  
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MULTI-OBJeCTIVe GeNeTIC ALGORITHM BASed 
LOAd BALANCING IN MCC (MOGALMCC)

In this model, when the user moves towards another Cloudlet the VM’s scheduled to another Cloudlet 
which is load free and near to mobile user. There are many existing load balancing algorithms but they 
don’t provide an optimal solution in polynomial time. Existing algorithms scheduled VM’s based on 
load and size of the task. In our model, we used GA for scheduling VM’s among Cloudlets by taking 
load, distance and bandwidth as constraints for selecting Cloudlet. GA is known for solving NP-hard 
problems. In order to achieve good performance, we must modify operators to get better performance. 
The GA performs following operations: population generation, selection, crossover, mutation. In the 
first step, GA selects N number of populations randomly. Then remaining operations follow one by 
one to generate child population. Then the first child population and parent generations are merged 
to generate the second generation.

Chromosome Representation

In genetic algorithm, the population can be represented by set of chromosomes C C C C
N1 1 2

= …{ }, , ,  
of length N. each of these chromosomes contains set of bits. Each bit of chromosome considered as 
one VM in our model and value of the VM can be used to find target Cloudlet. The number of tasks 
process by Cloudlet is equal to number of VM’s available in Cloudlet.

Initialization of Population
Population initialization is a major step in the genetic algorithm. If the population is good then it 
leads to good selection in search space. Otherwise bad optimization selection. In our model, we first 
assume population as Ip which changes for every generation. We consider set of access points as 
population Ak for each VM in Cloudlet ‘a’. Each Cloudlet calculates the probability of accessibility 
P
k b
A
,

for each VM ‘k’ in A Cloudlet ‘b’. The following equation (9) P
k b
a
,

evaluates probability of 
accessibility for each VM:
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Fitness Function
In this section, the cross over operation will perform between two individuals. Each individual section 
probability (9) the following equation (1), (2), (3), (4) and (8) evaluate n value.

F F F= { }1 2
,  (10)

Algorithm 1   Population Initialization 
1.     The Probability of Each VM K in AP b is calculated 
2.     P

B
→ (Previous Access Point)

3.     If Pavilable
b( ) then

4.     Use P
B
 with a probability of P

k b
A
,

5.     If user does not belong to current then P
B
 does not 

belong to current then P
B
 is not used for that user.

6.     The AP which is available in P
B
 will have higher 

Probability. 
7.     This process continues using Roulette Wheel Selection, 
AP for each VM. 
8.     In this selection process, The AP with Higher 
Probability of having more chances to be selected. 
9.     Else  
10.     Generate Population using Roulette Wheel selection 
strategy. 
11.     End if

The individual who have high probability has a higher chance of getting selected.

Crossover Operation
In this section, the cross over operation will perform between two individuals. Each individual section 
probability  p

s
n . The following equation (11) evaluates n value.

P
F

F
n
c n
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Mutation Operation
Mutation operation will perform between two chromosomes to produce diverse population for next 
generation. The mutation is done by replacing bit positions randomly between chromosomes. The 
Mutation Probability (MP) must always be less; otherwise it leads to re-initialization of the population. 
Algorithm.2 describes complete process of an improved multi-objective VM scheduling among 
Cloudlets in MCC.
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Algorithm 2 Multi-Objective Genetic Algorithm based Load Balancing 
in MCC (MOGALMCC) 
1.     Algorithm 1 generate initial population  
2.     Calculate the Fitness function of Each individual by 
using eq.(3.1), eq.(3.2), eq.3.3), eq.(3.4) and eq.(3.8) perform 
crossover and mutation for generating offspring population. 
3.     Parent chromosome Replace with newly generated child 
population until finding suitable Cloudlet for VM scheduling.

SIMULATION SeTUP

We have evaluated proposed MOGALMCC algorithm in NS-3 Simulation Environment. We observed 
resource scheduling among Cloudlets by sending a random number of request VMs by considering 
completion time, transfer time, load, available bandwidth and memory. We conducted extensive 
simulation by generating a random number of Cloudlets, requests and distance values for observing 
the performance of the proposed algorithm with a comparison of conventional existing algorithms. 
The required parameters for simulation are listed in Table 1.

eXPeRIMeNTed ReSULTS

In this section, we have compared our model with existing Greedy, Round Robin, FIFO algorithms 
(X. Wang et al., 2014)(Yagoubi & Slimani, 2007).

Fig.2 illustrates task execution time before and after scheduling using MOGALMCC. The x-axis 
represents no of VM’s and y-axis represents execution time in seconds. Dynamic VM scheduling 
using a genetic algorithm, the execution time of each VM is reduced considerably.

Fig.3 represents the VM’s response time in seconds for GA, RR, and FIFO. The x-axis shows 
number of VM’s and y-axis represents execution time in seconds. It is clearly noticeable that the 
MOGALMCC consumes less time compared with other existing algorithms.

Fig.4 shows VM’s Makespan for MOGALMCC, RR, FIFO and Greedy. the x-axis represents 
no. of VM’s or tasks and y-axis represent makespan in seconds. This graph clearly shows that our 
proposed model is more efficient compared with other existing algorithms. we have done simulation 
by using nearly 500 VMs.

Fig.5, the graph shows the imbalance among Cloudlets with and without proposed GA algorithm. 
X-axis for no. of tasks and y-axis for the degree of imbalance.

Fig.6 represents degree of imbalance among VM’s by using different algorithms (RR, FIFO, 
and DLB, GA). We compared VM migration balancing among Cloudlets. VM migration means the 
no. of VM’s re-assigned to other Cloudlets in the network area. Our proposed model show better 
performance compare with greedy and no migration methods.

Table 1. Simulation setup

Parameters Value

Max Iteration 800

Crossover Probability 0.8

Mutation Probability 0.1

Size of the Population 300

Simulation Time 1000 Seconds
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Fig.7, Fig.8, Fig.9 describes VM migration when a number of Cloudlets vary from 3-8 for GA and 
Greedy algorithm. In all the cases proposed method out performed compared with other algorithm. 
X-axis for no. of VMs and y-axis for number of VMs migration.

Degree of Load Imbalance (DI) = 
max min

, ,

,

j j

avg J

n k
i

n k
i

n k
i

( )− ( )
( )

 

CONCLUSION

In this paper, we have implanted GA based VM load balancing on Cloudlets in MCC. The performance 
of the proposed method can be achieved considering different factors such as bandwidth, Memory, 
a load of Cloudlet server and distance to find optimal Cloudlet. This proposed technique works well 
for heterogeneous environment, which tries to bring Cloud resources close to mobile users. We have 
compared our proposed with other popular load balancing algorithm in MCC, which is evident that 
proposed GA based VM load balancing algorithm achieved better performance. In future, we plan 
to extend our work by considering other factor such as “task size” to improve the performance of the 
algorithm by reducing response time, VM failure rate.

Figure 2. Comparison of Execution Time before and after MOGALMCC
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Figure 3. VM Response Time for RR, FIFO, Greedy and MOGALMCC

Figure 4. Comparision of Execution Time for RR, FIFO, Greedy and MOGALMCC
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Figure 5. Comparison of Degree of Load Imbalance between VM’s for before and after MOGALMCC

Figure 6. Comparison of Degree of Load Imbalance for RR, FIFO, Greedy and MOGALMCC
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Figure 7. Comparison of VM Migration among 4 Cloudlets

Figure 8. Comparision of VM Migration among 5 Cloudlets
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Figure 9. Comparision of VM Migration among 7 Cloudlets
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