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ABSTRACT

Detecting the communities that exist within complex social networks has a wide range of application 
in business, engineering, and sociopolitical settings. As a result, many community detection methods 
are being developed by researchers in the academic community. If the communities within social 
networks can be more accurately detected, the behavior or characteristics of each community within 
the networks can be better understood, which implies that better decisions can be made. In this paper, 
a discrete version of an unconscious search algorithm was applied to three widely explored complex 
networks. After these networks were formulated as optimization problems, the unconscious search 
algorithm was applied, and the results were compared against the results found from a comprehensive 
review of state-of-the-art community detection methods. The comparative study shows that the 
unconscious search algorithm consistently produced the highest modularity that was discovered 
through the comprehensive review of the literature.
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INTRODUCTION

The amount of research dedicated to complex networks has increased over the last decades due to its 
wide range of applications. For example, by researching complex networks, the research community 
has investigated various phenomena within economic, social, and technological settings (Chen & 
Redner, 2010). Within these problem areas, social structures can also be represented as a complex 
network. Social networks consist of a set of communities, which are sometimes referred to as called 
clusters or modules. This particular area of study is also receiving more attention from the research 
community. For example, Internet social networks (Lambiotte & Ausloos, 2005), scientific reference 
networks (Chen & Redner, 2010), biological networks (Diao, Li, Feng, Yin, & Pan, 2007), neurological 
networks (Schwarz, Gozzi, & Bifone, 2008), epidemiology networks (Sun & Gao, 2007), transportation 
networks (Barigozzi, Fagiolo, & Mangioni, 2011), and even political networks (Porter, Mucha, 
Newman, & Friend, 2007) are some of the areas being investigated by practitioners and researchers.

Detecting the structure of the communities within a network receives a lot of attention from the 
research community because it plays a vital role in understanding the behavior among the various 
communities within a network (Gleich & Seshadhri, 2012). To detect the structure of the communities 
within a complex network, a clustering operation is used (Zhou, Yang, Xie, Yang, & Huang, 2019). 
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As a result, decision-makers can make better, more informed, and more effective decisions depending 
on the application of the complex network being investigated.

Detecting communities in a social network is an NP-hard problem. Given this complexity, 
several methods have been proposed in the literature involving this particular problem. For example, 
spectral methods, divisive methods, agglomerative methods, maximization of the modularity, local 
methods, method selection, and roles of vertices are methods dedicated to detecting the structure of 
the communities within complex networks (Costa, Rodrigues, Travieso, & Villas Boas, 2007). The 
unconscious search (US) algorithm is a method that is designed to tackle the continuous optimization 
problems (Ardjmand, Park, Weckman, & Amin-Naseri, 2014). However, the unconscious search 
algorithm can be modified to solve discrete optimization problems. In this paper, the US algorithm 
is explored as a community detection method. Using the US algorithm as a method for detecting 
community structures has not been previously explored by researchers. Thus, the focus of the research 
presented in this paper involves a comprehensive comparative study of how well the US method 
preforms when comparing its results against other state-of-the-art methods found within recent 
academic research.

The comprehensive comparative study presented in this paper is primarily based on the concept 
of modularity, which is a popular measure in community detection literature. This measure is utilized 
to determine the strength of the division of a network. In other words, to detect the structure of the 
communities within a social network, a network N  can be partitioned in a manner that creates a 
subset of nodes containing a maximum number of internal links while minimizes the number of 
possible links with nodes outside of a given cluster (Girvan & Newman, 2002).

LITERATURE REVIEW

Several methods have appeared in the literature that attempt to define the communities hidden within 
complex networks. These methods include, but are certainly not limited to the spectral bisection 
algorithm (Fiedler, 1973), Kernighan-Lin algorithm (Kernighan & Lin, 1970), spectral partitioning 
(Elsner, 1997; Fjällström, 1998), and hierarchical clustering (Wasserman & Faust, 1994). As noted, 
detecting community structures within complex networks is an emerging field of study. As a result, it 
is not surprising that the methods explored by researchers are quite diverse and the creativity exhibited 
from the research community is not lacking. For example, the theory of dynamics of excitable systems 
has used to developed a method to detect community structures (Li, Li, Hu, Di, & Fan, 2010). Also, 
a novel cellular learning automate-based algorithm was developed to tackle the community detection 
problem within social networks that were both undirected and unweighted (Khomami, Rezvanian, 
& Meybodi, 2018).

Detecting communities within social networks associate itself naturally to clustering methods. 
For example, a dynamic clustering method that utilizes a cluster’s desynchronization properties of 
phase oscillators has been explored (Boccaletti, Ivanchenko, Latora, Pluchino, & Rapisarda, 2007). 
It is quite common to find clustering methods being used to detect communities within structures. 
At times, the fundamental properties of the clusters are used to identify the communities within a 
network. However, clustering methods have also been used to enhance the development of community 
detection algorithms. For example, k-means clustering has been used in conjunction with a simulated 
annealing metaheuristic algorithm to detect communities within complex networks (Liu & Liu, 2010). 
Clustering methods are classified as unsupervised learning methods. Although they are commonly 
used to detect communities within networks, they are not the only unsupervised learning methods 
that have been used by researchers. For example, a vector partitioning approach was adopted to detect 
community structures within network graphs (Wang, Shen, & Ouyang, 2008).

In terms of community detection methods, many researchers have developed their methodologies 
around the premise of maximizing the modularity of a network, but they differ in their approach 
(Gach & Hao, 2013). For example, a simulated annealing algorithm has been used as a method to 
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maximize the modularity within a network (Medus, Acuna, & Dorso, 2005). Though the concept 
of maximizing modularity has been integrated into many methods throughout the years, it still is 
a popular choice among researchers exploring more flexible algorithms to tackle the community 
detection problem (Zhou et al., 2019).

Research articles often focus on comparing the benefits and limitations of community detection 
methods. One consideration that researchers must consider is a method’s ability to accurately 
detect the communities within networks. They must also take into account the time required to 
implement and produce accurate clusters within large networks. Some methods have been noted to 
be computationally expensive, while others were successfully applied to large datasets. For example, 
one method maximizing the modularity measure was applied to a network of ‘collaboration among 
physicists’ which was composed of about 50 thousand nodes (Newman, 2004). The researchers 
concluded that the algorithm was highly capable of detecting community structures in a short amount 
of time relative to other benchmark methods explored. Other methods can be found in the literature 
that aims to rapidly locate the core of each cluster residing inside a network (Chen, Fu, & Shang, 
2009). In addition, large undirected and unweighted networks with linear time complexity have also 
been used to examine an online community structure (Pan, Wangsheng, Zhaohui, & Shijian, 2014).

From an efficiency standpoint, detecting communities within excessively large networks can 
be a considerable challenge that researchers must overcome. For example, label propagation has 
been used and was found to be an efficient approach from a computational time perspective when 
detecting the structure of the communities within excessively large networks (Liu & Murata, 2010). 
However, traditional agglomerative algorithms have also been applied successfully to extremely large 
networks as well (Clauset, Newman, & Moore, 2004). Although agglomerative approaches have been 
introduced as a method to determine community structures some time ago, they remain a popular 
choice among active researchers. For example, a degenerate agglomerative hierarchical clustering 
algorithm based on a reachability matrix was recently introduced by researchers (Maria Fiscarelli, 
Brust, Danoy, & Bouvry, 2019).

Even though modularity remains to be the primary measure when determining the structure 
of communities within networks, it is certainly not the only measure being used by researchers. 
For example, a maximum flow factor has been utilized within community detection methods that 
are designed to eliminate the weakest links within a network (Mann, Matula, & Olinick, 2008). 
Methods of this nature have the benefit of simplifying the overall structure of the complex network 
being investigated. A measure of node similarity has also been applied to complex networks and it 
was considered to be a fast and efficient method for detecting community structures within complex 
networks (Pan, Li, Liu, & Liang, 2010). Other methodologies that use a measure other than modularity 
also exist. For example, a method leveraging structural similarity was applied to unweighted and 
undirected networks with promising results (Dabaghi Zarandi & Kuchaki Rafsanjani, 2018). In 
addition, a communicability measure, which was inspired by how an epidemic pattern propagates 
through a network (Estrada & Hatano, 2008, 2009; Rajtmajer & Vukičević, 2010), has been used 
to determine a network’s structure. It is clear from the literature, that there is not a shortage of 
inspiration when it comes to creating various measures detecting the communities within structures. 
For example, information discrepancy has also been used as a measure for community detection. Like 
other measures, it aims to determine the quality of detecting communities within complex networks 
(Zhang, Zhang, & Zhang, 2008).

As noted, one consistent theme found in the literature is that many methods are developed to 
maximizing the modularity measure within complex networks. However, it is becoming more popular 
for researchers to develop community detection algorithms that utilize more than one measure. In 
addition to modularity, many examples within the literature can be found that formulate the structure 
of networks with other measures. For example, researchers have presented a parallel partitioning 
strategy based on two distinct measures for community detection. More specifically, researchers 
have developed an approach that accounts for the modularity of a network as well as a network’s 
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community recursive coefficient (Shen, Pei, Wang, Li, & Wang, 2008). Another hybrid approach 
uses the affinity between nodes to determine the stability among the communities that are detected. 
This particular method strikes a balance between normalized mutual information and modularity to 
discover the communities hidden within complex networks (Zeng, Chenxi Shao, Xingfu Wang, & 
Miao, 2020). Many other hybrid systems can also be found in the literature. For example, a community 
detection algorithm was developed that utilizes a graphlet measure to determine the structure of a social 
network (Abduljabbar, Hashim, & Sallehuddin, 2020). For this novel work, the authors proposed two 
contradictory optimization functions, which are inspired by the cooperation between the neighborhood 
relationships and the signature similarity measures. In terms of another hybrid approach, attracting 
and recommending degree measures were utilized within an AR-clustering framework to strengthen 
the similarities among the vertices within social networks (Zhou, Li, Li, Zhang, & Cui, 2017).

Although clustering methods are classified as unsupervised learning methods, the act of detecting 
communities within social networks is not limited to traditional clustering-based approaches. For 
example, a semi-supervised method for solving network community structure detection problems have 
also been introduced (Ma, Gao, Yong, & Fu, 2010). The problems relating to community detection 
have also been formulated as optimization problems (Duch & Arenas, 2005), which has led many 
researchers to formulate additional community detection methods based on evolutionary algorithms. 
Evolutionary algorithms are emerging in the literature for community detection and they often 
utilize measures of modularity to investigate the structure of complex networks (Guerrero, Montoya, 
Baños, Alcayde, & Gil, 2017). One reason genetic algorithms are becoming a popular choice among 
researchers is because of their ability to model large complex networks (Li, Liu, & Lao, 2013) and 
it is clear that these methods continue to evolve in their performance (Moradi & Parsa, 2019). For 
example, quantum-inspired evolutionary algorithms are now being applied to very complex social 
networks (Yuanyuan & Xiyu, 2018). Many other forms of evolutionary-based methods are now being 
explored. For example, a clonal section algorithm that maximizes modularity has been developed 
(Cai, Gong, Ma, & Jiao, 2015). In addition, a discrete bat algorithm has been used to estimate the 
global optimality of community detection within complex networks (Song, Mingbo, Xuehai, Wei, 
& Ke, 2016). Finally, a novel multi-objective optimization algorithm using an ant colony algorithm 
was used to confront the community detection problem (Shahabi Sani, Manthouri, & Farivar, 2018).

The research dedicated to social networks has increased dramatically over the last decade. Research 
relating to social networks is becoming more popular to cope with a great variety of phenomena 
and systems that have been classified as complex systems. Additionally, due to the sensitivity of 
the information on social networks, further privacy issues should be also considered. The main 
applications to the social network are the telecommunication industry, marketing purposes, online 
communities, search engines, etc. For these reasons and areas of application, methods dedicated to 
detecting community structures within complex networks are needed. Therefore, the motivation of 
the research contained in this article relates to exploring a new method for detecting community 
structures within complex networks that have not been previously explored. The dissemination of 
this research is considered significant given the novelty and the overall accuracy that was obtained 
by testing the performance of the algorithm on several complex networks that regularly appear in 
research dedicated to this specific topic. Investigating new methods of detecting community structures 
is significant because they can ultimately lead to advances in several areas of engineering, business, 
and other technology-focused fields of study. The evolutionary search-based method proposed in this 
article is based on the extremal optimization method (Duch & Arenas, 2005). The method employs 
the discrete version of an optimization algorithm known as the unconscious search (US) algorithm 
(Ardjmand & Amin-Naseri, 2012) to search for the optimum value of modularity.

The remainder of the article is organized as follows: Section 3 is devoted to a discussion of the 
US algorithm. Section 4 contains the results of the US method to popular benchmark networks that 
often appear in research exploring new methods for community detection. These commonly referenced 
networks include the ‘Computer-Generated,’ the ‘Karate Club,’ and the ‘Dolphin’ networks. Finally, 
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Section 5 contains the conclusions reached by the authors using the US method as a community 
detection method with respect to the comprehensive comparative investigation that was performed.

METHODOLOGY

The methodology in this paper is based on the maximization of network modularity (Q) by using 
an unconscious search (US) algorithm. In the following sections, the concepts of community and 
modularity are introduced and the proposed algorithm is described.

Community
A community is represented by a group of nodes, which can be fully or partially interconnected 
to other nodes within the cluster (Newman, 2006). Figure 1 depicts a general representation of a 
structure with three distinct communities. In general, there are more connections that link the nodes of 
a community together than there are links connecting the communities within a network (Kenward & 
Carrott, 2006). For example, the connections in groups A, B, and C are denser than between groups. 
There are 6, 11, and 10 between groups A, B, and C, respectively.

Mathematically speaking, a network N  may be represented by a set of nodes n i n
i
| , ,= …{ }1  

and a set of links l i n j n
ij
| , , , , ,= … = …{ }1 1 . In this particular framework, l

ij
= 0  if there are no 

connections between the corresponding nodes n
i
 and n

j
. Thus, l

ij
= 1  if a connection is present. 

Complex networks are usually characterized by their edge weights. Considering these characteristics, 
complex networks can be classified into two types, unweighted networks and weighted networks 
(Buttner & Krieter, 2018). In an unweighted network, the edge weights are ignored, and the structure 
of the graph defines the characteristics of the network. In a weighted network, the edge weights and 
structure of the graph play an important role in understanding the behavior of the network being 
investigated. Additionally, the networks can be classified as either undirected networks or directed 
networks. In an undirected network, there is only one edge that connects two notes together. This is 
unlike directed networks where there could be multiple edges between certain nodes (Newman, 
2003b). Our proposed algorithm in this paper investigates unweighted and undirected networks, where 
l l
ij ji
= .

Figure 1. An Example Community Structure with Three Communities
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Modularity (Q)

For example, a typical partition P  of network N  is composed of p  communities P
1

, P
2
, …, P

p
. 

Considering a p p×  symmetric matrix e  where, e
ij

 denotes the ratio of all edges that connected 

vertices in P
i
 to vertices in P

j
. Furthermore, the trace of matrix e  (Tre e

i
ii

=∑ ) presents the 

fraction of edges in the network, and e2  estimates the sum of all elements of the matrix e  Newman, 
2003a; Newman & Girvan, 2004). Thus, modularity can be calculated by Equation 1, which is shown 
below:

Q e e e Tre e
i
ii

ijk
ij ki

= − = −∑ ∑ 2 	 (1)

In Equation 1, the modularity is represented by Q  and it is indicative of the ratio of internal 
links in a given community to the total number of links less than the expected value of the same ratio 
for the case where the links are distributed randomly across the network (Fan et al., 2018). Thus, the 
value of Q  must lie within the range between -1 and +1. If the value is closer to 1, it implies that P  
can reflect the quality of modularity in a graph. As a result, the problem of detecting the community 
structure in a network comes down to choosing the partition P  such that the corresponding value of 
Q  is maximized. The degree of modularity can be also determined by Equation 2, were L  represents 
the total number of links in the network and l

s
 signifies the number of links in the sth module, while 

d
s

 denotes the total of the degrees of nodes in the sth module:

Q
l

L

d

Ls

p
s s= −
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
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2
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The Unconscious Search Algorithm
The unconscious search (US) algorithm is a meta-heuristic propounded by Ardjmand and Amin-
Naseri (2012) and later adopted and applied by Xing and Gao (2014) and Molina et al. (2020). The 
US algorithm is a multi-start, memory-based metaheuristic that mimics the process of psychoanalytic 
psychotherapy proposed by Sigmund Freud, where the therapist tried to find the root cause of a 
patient’s mental disorder based on their unconscious (Freud & Strachey, 1996).

In each step, the US algorithm maintains a list of the best solutions that have been found in a set 
called a measurement matrix (MM). Once solutions are found, the US algorithm tries to find a good 
starting point and direction for the next search. For this purpose, US uses two types of measures, 
which are called displacement and condensational memories. Displacement memory attempts to learn 
the most promising starting point, while condensational memory attempts to find the most promising 
search directions. Whenever US finds a solution, it compares the performance results produced by 
the solutions within the MM against the performance of new solutions. In this manner, only the best 
performing solutions are stored, and the algorithm continues to test solutions until there is not an 
improvement to its modularity.

The US algorithm has four main steps, which include construction, construction review, a local 
search, and a measurement matrix update. In the construction step, a new solution is constructed. In 
the construction review, a solution is generated based on the results from the prior solutions that were 
found. These candidate solutions are based on a search that shows a promising direction. A local search 
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enhances the best solution found in the first two phases, while in the last step, the measurement matrix 
is updated. The construction review phase in the US is mainly designed for continuous optimization 
problems. Several studies have utilized the US method to solve problems. For example, it has been 
used to solve an uncapacitated facility location problem (Ardjmand et al., 2014), and it has been 
used to solve a production planning with price uncertainty problem (Ardjmand, Weckman, Young, 
Sanei Bajgiran, & Aminipour, 2016). However, the proposed methodology presented in this article 
is applied to discrete problems (i.e. number of clusters), which means that this particular phase is not 
needed (Ardjmand et al., 2014). As a result, the proposed US algorithm will only have three phases, 
which include construction, a local search, and a measurement matrix update.

To apply the US to community detection problems within complex networks, a network is initially 
divided into two partitions in such a way that the modularity measure is maximized. Next, the two 
partitions are divided into two sub-partitions to ensure that the modularity of each sub-partition is 
maximized. The procedure is repeated, using the US algorithm, until the modularity measure, which is 
shown in Equation 2, is not improved upon. The process of using the US algorithm for the community 
detection problem is summarized in Figure 2.

In the first iteration of the US algorithm, a set of random solutions (i.e. a network with nodes 
randomly assigned to two clusters) is generated. These solutions are stored in a measurement matrix 
(MM). The size of the MM is shown by MM  and this measurement defines the number of best-
performing solutions that are stored. Thus, if MM = 10 , the 10 best-performing solutions are stored.

To construct a new solution, the US assigns each node of the network to a cluster. For example, 
based on the best solutions stored in MM, if a node is assigned to Cluster 1 60% of the time, and 
it is assigned to Cluster 2 40% of the time, then based on the new solution, the node will have a 
60% chance of being assigned to Cluster 1, and a 40% chance being assigned Cluster 2. In terms of 
creating new solutions, this type of memory is referred to as displacement memory (Ardjmand & 
Amin-Naseri, 2012).

Figure 2. US algorithm for Clustering Networks
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For the local search, after a solution is constructed, a node will be picked randomly and transferred 
from one cluster to another. If this move improves the modularity, the assignment will be accepted. 
Otherwise, if this is not the case, the solution will be rejected. This process continues until the 
modularity ceases to improve any further.

The last step of the US algorithm is the local search. In this step, if a given solution is an 
improvement over the worst-performing solution stored in MM, the new solution will be inserted 
in MM and the worst performing solution found in the MM will be discarded. Likewise, if the new 
solution does not perform better than the worst solution stored in MM, it will be discarded, and the 
MM will not be updated.

RESULTS

To evaluate the performance of the US algorithm as a new community detection method, three complex 
networks were explored. These particular networks are commonly used by researchers exploring 
new methods for community detection. Given the popularity of these benchmark networks, the 
results obtained from the US algorithm were compared to the results published by authors exploring 
community detection methods. Computer-Generated Networks (CGN).

The first complex network that was investigated in this research was the Computer-Generated 
Network (CGN). CGN involves a series of graphs representing pre-identified community structures. 
The CGN consists of 128 nodes and four pre-defined clusters. Each node was linked with an average 
of z

in
 number of nodes to the same cluster, and an average of z

out
 number of nodes to other clusters, 

such that z z
in out
+ = 16 . To produce measures that can be compared against other published results, 

a large number of graphs were created from the US algorithm that consisted of z
out

 values that ranged 
between 0 to 10. The CGN problem has been explored by many researchers. Figure 3 shows a summary 
of the results obtained by other researchers who investigated the CGN problem with various community 
detection algorithms. In particular, the graph shows the percentage of nodes that were correctly 
clustered by each community detection algorithm. The US algorithm’s ability to detect community 
structures for values of z

out
≤ 8  preformed just as well or better than the other results found in the 

literature. However, for z
out
> 8  the US outperformed all other methods recorded from the literature.

Karate Club Network
The Karate Club Network (KCN) problem was the second complex network that was explored. This 
network was first introduced by Zachary (1977) but has remained popular with researchers exploring 
community detection algorithms. The KCN consists of 34 nodes and 78 links, where the network 
represents the membership of a karate club and the friendship between the members. The objective 
of this problem is to detect the communities within the social network. When the US algorithm was 
applied to the KCN, it produced a modularity of 0 420. . The graph network based on the US solution 
is shown in Figure 4, where four communities or clusters were detected.

As noted, the KCN is popular among researchers investigating new community detection methods. 
To assess how well the US algorithm performed as a community detection method, a comprehensive 
review of the literature was conducted. As a result of this investigation, a total of 26 references were 
found that solved the KCN with a variety of community detection methods. The summary of this 
review is shown in Figure 5, where research utilizing the KCN dates back as far back as 2005 and 
includes studies as recent as 2020. The US algorithm was able to produce a modularity of 0.42 for 
the KCN network. In terms of this metric, the US algorithm was able to outperform many other 
techniques that were found during the comprehensive review of the literature. The US algorithm 
produced the highest modularity that has discovered during the review of existing literature exploring 
the KCN. However, as shown in Figure 4, many other methods were capable of producing this value 
of modularity as well. It should be noted that additional information about the studies shown in Figure 
4 is provided in Section 5.
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Dolphin Network
The third and final complex network that was evaluated in this study was the Dolphin Network. Just 
like the two previous networks investigated, this network has been utilized by many other researchers 
exploring community detection algorithms. The Dolphin Network problem involves a network of 62 
nodes and 159 links, which represent the interaction between dolphins in the network. The US 

Figure 3. Benchmark Results for the Computer-Generated Network

Figure 4. Unconscious Search Algorithm Results for the Karate Club Network
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algorithm was used to partition the network into four subsets. The communities detected by the US 
algorithm are illustrated in Figure 6, where the resulting modularity was found to be 0 527. .

Given its complexity and size, the Dolphin Network is another network that is widely used 
by researchers exploring advances within community detection algorithms. In total, 24 references 
utilizing the Dolphin Network were found through the process of reviewing the literature. Based on 
the review of literature, the studies that were found that utilized the Dolphin Network ranged in years 
from 2010 to 2020. As shown in Figure 7, the US algorithm produced a modularity of 0.527 for the 
Dolphin Network. Based on the comparative study, these results were similar to the outcome of the 
KCN study. In other words, the US algorithm was able to outperform many other community detection 
methods; however, even though it produced the highest value of modularity that was observed, it was 
not the only method to do so.

CONCLUSION

The US algorithm is a multi-start, memory-based metaheuristic that mimics the process of 
psychoanalytic psychotherapy. In this article, the US algorithm was adapted to solve community 
detection problems of small dimensional scale. Several complex networks appear in the related 
literature surrounding community detection. Of these networks, three were selected and used to 
compare the results of the US algorithm to the results based on other state-of-the-art methodologies 
that have appeared recently in the literature. These networks included the Computer-Generated 
Network (CGN), the Karate Club Network (KCN), and the Dolphin Network.

With respect to the networks explored in this study, the use of the US algorithm showed promising 
results. For example, the US method was able to produce results that were among the highest, or 
in certain situations, was the highest performing method when applied as a community detection 

Figure 5. Benchmark Results for the Karate Club Network
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method to the CGN. For the KCN and Dolphin Network problems, the modularity obtained by the US 
algorithm performed equally as well as the best results that were discovered from a comprehensive 
review of related literature. Table 1 contains additional information related to the comprehensive 
review of state-of-the-art community detection methods for the KCN and the Dolphin Network. As 
the table shows, the US algorithm consistently produced highly accurate results.

Figure 6. Unconscious Search Algorithm Results for the Dolphin Network

Figure 7. Benchmark Results for the Dolphin Network
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In conclusion, the US algorithm was able to produce results that were consistently among the 
best results found from a comprehensive review of recent literature. The networks that were explored 
were small in scale; however, these networks are consistently used by the research community to judge 
how well algorithms discover the communities that are hidden within complex networks.

The downside of the algorithm was the local optimal solution. In this case, the immigration 
operator should be applied when there is no improvement in the generations due to the premature 
convergence to a local optimum. This relaxation helped the US algorithm to reach the optimal solution 
in many situations. Additionally, the research conducted in this article was restricted to small-scale 
unweighted and undirected networks. The proposed algorithm solved the three complex networks 
that were selected for this study in only a few minutes. In all cases that were explored, the US 
algorithm detected the communities within two minutes. Given the scope of the research conducted, 

Table 1. Comparison Summary of Community Detection Algorithm

Reference Karate 
Club

Dolphin Community Detection Method Description

Zhou, et al., (2012) 0.370 0.450 Greedy Algorithm

Saoud, et al., (2018b) 0.401 0.490 Detection Based on Node Similarity and Modularity

Bilal, et al., (2017) 0.380 0.460 Evolutionary algorithm

Huang, et al., (2013) 0.371 0.401 Multi-Agent based decentralized algorithm

Xu, (2019) 0.372 0.511 Communicability Distance Algorithm

Xu, (2020) 0.419 0.528 Spectral algorithm

Aung, et al., (2019) 0.419 0.520 Discrete artificial bee colony algorithm

Le, et al., (2019) 0.419 0.528 Meta-Heuristic based label propagation

Zarezade, et al., (2020) 0.371 0.379 SD-GCN Algorithm

Zeng, et al., (2020) 0.418 0.521 Affinity Between Nodes & Stability of Community

Xiao, et al., (2018) 0.419 0.528 Differential Evolution Algorithm

Saoud, et al., (2018a) 0.370 0.380 Genetic Algorithm

Liu, et al., (2017) 0.419 0.524 A Biogeography-based Optimization Algorithm

Hu, et al., (2017) 0.223 0.340 Novel Algorithm J-SC

Cai, et al., (2017) 0.417 0.508 Particle Swarm Optimization Algorithm

Liu, et al., (2016) 0.418 0.526 Genetic algorithm

Zhang, et al., (2016) 0.396 0.436 Fuzzy community detection approach

Hosseini, et al., (2015) 0.303 0.485 Memory-based Label Propagation Algorithm

Noveiri, et al., (2015) 0.419 0.524 Ant Colony Algorithm and Fuzzy Clustering

Liu, (2010) 0.415 0.505 Simulated Annealing Strategy

Saoud, (2018) 0.370 0.440 Artificial Bee Colony

Liu and Liu (2010) 0.420 0.523 Simulated Annealing with k-means Algorithms

Duch, et al., (2005) 0.418 - Extremal Optimization Method

Liu, et al., (2010) 0.420 0.529 Label Propagation Algorithm

Zhang, et al., (2008) 0.411 - Iterative Procedure based on Information Discrepancy

Shirzad, et al., (2016) 0.420 0.520 Hierarchical approach

Unconscious Search 0.420 0.527 Unconscious Search Algorithm
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the performance of the US algorithm on large-scale, weighted, and directed networks is unknown. 
Researchers are advised to take this under consideration until these types of are explored, Thus, future 
research will focus on using the US method to detect community structures within larger complex 
networks that are weighted and directed.
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