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ABSTRACT

Experiential learning (EL) has great potential to transform students’ learning experiences. Few studies, 
however, have focused on the use of EL in computer science education. The purpose of this study 
was to examine students’ experiences with EL in computer science. Data were collected to examine 
the influence of EL on students’ attitudes and quality of learning. The antecedent variables included 
student involvement, learning expectancy, instructor impact, course structure, and prior experience. 
PLS-SEM with PLSc was used to test generated hypotheses. The findings indicated that student 
involvement positively correlated with attitudes and learning expectancy. Instructor impact is positively 
associated with student involvement, quality of learning, and attitudes. Prior experience positively 
correlated with learning expectancy. Finally, course structure positively moderated the relationship 
between student involvement and learning expectancy. It is concluded that EL is a promising pedagogy 
to improve student attitude and quality of learning in software engineering education.
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INTRODUCTION

Academic leaders in tertiary institutions have wrestled for over two decades with the persistent gap 
between software engineering education and industry needs. The conventional way of teaching students 
technical concepts in the classroom does not arm them with the skills that they need to succeed as 
professionals (Exter, 2014; Garousi, Giray, & Tuzun, 2019; Garousi, Giray, Tuzun, Catal, & Felderer, 
2020; Hanna, Jaber, Almasalmeh, & Jaber, 2014; Kövesi & Csizmadia, 2016; Radermacher & Walia, 
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2013; SREB.org, 2016; Tuzun, Erdogmus, & Ozbilgin, 2018). Simultaneously, there is a growing 
demand for software engineers (Garousi et al., 2020; Tuzun et al., 2018).

Most established universities that offer software engineering as part of their computer science 
programs offer courses designed to address the problem. Adopting experiential learning (EL) strategies 
could transform traditional pedagogy into a more learner-centered learning, thereby narrowing the 
skills gap in software engineering industry (Garousi et al., 2020; Holmes, Allen, & Craig, 2018; Ng 
& Huang, 2013). The EL pedagogy promises significant benefits for students, both academically 
and professionally, as it facilitates more profound learning, acquiring practical competencies, more 
engagement, appreciation of diversity, and exposure to professional networking opportunities (Coker & 
Porter, 2015; Holmes et al., 2018). Students who have taken an EL course find the overall experience 
positive - they appreciate the valuable mentorship gained from working on real projects with practical 
impact (Holmes et al., 2018).

Even though the EL pedagogy is transformative compared to the traditional pedagogy, students 
can often resist it (Chavan, 2011; Cornell, Johnson, & Jr, 2013; Hains & Smith, 2012; Lovelace & 
Brickman, 2013). Students are often reluctant to change from a traditional teacher-centered pedagogy 
that they know and trust (Bedawy, 2017; Hains & Smith, 2012). In other cases, students perceived 
the tasks involved as too complicated, or did not feel confident in their ability to complete the tasks, 
or were merely uncertain about how they would be assessed (Bedawy, 2017; Hains & Smith, 2012; 
Leveritt, Ball, & Desbrow, 2013; Lovelace & Brickman, 2013; Unda & Ramos, 2016). In some cases 
where EL was optional, some students preferred the traditional methods, which were perceived as 
more predictable (Brennan, 2014). Understanding the factors that lead students to resist EL could 
provide potential strategies to mitigate such resistance. Whether students have prior experience with a 
learner-centered course, or whether students perceive the instructor as knowledgeable, competent, and 
a good mentor could mitigate students’ resistance (Hains & Smith, 2012; Kahu, 2013; Redpath, 2012).

The EL pedagogy inherently incorporates students’ involvement as an essential ingredient for 
achieving learning outcomes (Kahu, 2013). In transitioning to EL, it makes sense to monitor students’ 
perceptions to confirm that attitudes are positive and that such a transformative pedagogy delivers 
a better quality of learning experience. In addition, quality of learning is a construct that reflects 
the degree of learning in terms of knowledge and skills gained and the extent to which students are 
satisfied with the learning process and experience (Thindwa, 2015).

The purpose of this study, therefore, was to examine the factors that would impact students’ 
attitude towards and learning quality of EL activities in a third-year software engineering course. 
Insights gleaned from the study could help identify promising instructional strategies to improve 
software engineering students’ preparation for future industry careers. The results could also be helpful 
to other software engineering programs considering introducing EL methods into their curriculum.

LITERATURE REVIEW

With the traditional teaching approach, often described as the teacher-centered, lecture-based approach, 
the instructor is actively involved in teaching while the learners are passive, receptive, and mainly 
listening. The EL approach is learner-centered and deliberately supports the compelling weaving 
together of educational learning, work, and personal development outcomes (Bavota, Lucia, Fasano, 
Oliveto, & Zottoli, 2012; Dragoumanos et al., 2017; Ellis et al., 2015; Holmes et al., 2018; Krutz et 
al., 2014; Stroulia et al., 2011). The preponderance of evidence in social science research indicates 
that EL not only improves student’s engagement and student’s overall performance but narrows the 
gap between the theoretical concepts taught in the classroom and the skills needed for graduates to 
succeed once they join the professional workforce (Accenture, 2018; Garousi et al., 2020; Hanna et 
al., 2014; Ng & Huang, 2013; Radermacher & Walia, 2013; Tuzun et al., 2018). Therefore, program 
designers in many tertiary institutions have explored various strategies to incorporate EL into their 
programs.
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Student involvement is a critical ingredient for learning. Involvement is a measure of the degree 
of attention, time, and effort devoted by students to accomplishing learning activities both inside and 
outside of the classroom (Groccia, 2018; Kuh, 2013; Rangvid, 2018; Woods, Price, & Crosby, 2019). 
According to Rangvid (2018), student involvement is a multidimensional construct that captures the 
degree of engagement, connectedness, commitment, and motivation to learn. Students must engage 
with the learning process on all levels. Various technologies and active learning methods, mentoring 
and coaching, can be deployed to improve student involvement and quality of learning (Bhati & Song, 
2019; Lietaert, Roorda, Laevers, Verschueren, & De Fraine, 2015).

Variables that are relevant to involvement are also included in the study. The Unified Theory of 
Acceptance and Use of Technology (UTAUT) is often used to study attitude, intention, and behaviour 
in technology adoption (Alshare & Lane, 2011; Fauzi, Ali, & Amirudin, 2019; Sair & Danish, 2018). In 
addition, Expectancy Theory is often used to explain how people’s anticipation of the desired outcome 
influences their choices and performance. In this study, learning expectancy relates to a student’s 
expectation that their learning activities’ involvement improves their learning quality and performance 
(Alshare & Lane, 2011; Shweiki et al., 2015; Unda & Ramos, 2016). Learning expectancy reflects 
the notion of perceived ease of use and EL pedagogy’s perceived usefulness (Sair & Danish, 2018). 
The strength of the association between student involvement and the desired outcome is a measure of 
motivation reflected in a student’s attitude. The introduction of EL was expected to improve students’ 
participation and positively influence students’ attitudes toward learning (Coker, Heiser, Taylor, & 
Book, 2017; Fauzi et al., 2019; Leal-Rodríguez & Albort-Morant, 2019; Shweiki et al., 2015). Hence, 
the following hypotheses were tested, which are also depicted in Figure 1:

Hypothesis 1 (H1): Student involvement in EL positively impacts attitude.
Hypothesis 2 (H2): Student involvement in EL positively impacts the perceived quality of learning.
Hypothesis 3 (H3): Student involvement in EL positively impacts perceived learning expectancy.
Hypothesis 4 (H4): Learning expectancy positively impacts perceived quality of learning.
Hypothesis 5 (H5): Learning expectancy positively impacts attitude.

EL is a learner-centered pedagogy that is informed by the constructivist approach (Allsop, 2016; 
Bada, 2015; Bose, 2018; Capacho, 2016; Jha, 2017; Kolb & Kolb, 2018; Passarelli & Kolb, 2011; 
Raihan & Lock, 2012). Through their efforts, the learner constructs knowledge, learning-by-doing 
as they partake in solving problems, either individually or collaboratively, and critically reflecting on 
any insights that emerge. The instructor’s role is primarily as a coach and mentor. In this study, the 
instructor’s impact was reflected by the degree to which the instructor was perceived as knowledgeable 
and effective in guiding and facilitating student learning. The instructor was expected to influence 
students’ involvement, attitudes, and quality of learning (Cooper, Ashley, & Brownell, 2017; Exter, 
2014; Fauzi et al., 2019; Fielding-Wells, O’Brien, & Makar, 2017; Leveritt et al., 2013; Schindler, 
Burkholder, Morad, & Marsh, 2017; Shweiki et al., 2015; Unda & Ramos, 2016). Student’s prior 
experience and the course structure could also influence participation. As such, the following 
hypotheses were also tested, and were depicted in Figure 1:

Hypothesis 6 (H6): Perceived instructor impact positively impacts student involvement.
Hypothesis 7 (H7): Perceived instructor impact positively impacts the perceived quality of learning.
Hypothesis 8 (H8): Perceived instructor impact positively impacts attitude.
Hypothesis 9 (H9): Perceived impact of course structure positively impacts student involvement.
Hypothesis 10 (H10): Perceived impact of course structure positively impacts perceived learning 

expectancy.
Hypothesis 11 (H11): Degree of prior experience positively impacts student involvement.
Hypothesis 12 (H12): Degree of prior experience positively impacts perceived learning expectancy.
Hypothesis 13 (H13): Degree of prior experience positively impacts perceived learning quality.
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DESIGN OF EL IN SOFTWARE ENGINEERING

EL in a software engineering course usually implies incorporating various learning-by-doing activities 
with an emphasis on enriching the students’ learning experience in either the engineering or project 
management aspects or both. These activities include: working on real-world software development 
projects to gain a deeper understanding of the complexities of the processes involved or the tools and the 
techniques necessary for developing quality software, and provide an opportunity to develop practical 
skills as well as real-world exposure to professional collaboration (Dragoumanos, Kakarountas, & 
Fourou, 2017; D’Souza & Rodrigues, 2015; Garousi et al., 2020; Gray & Christov, 2017a, 2017b; 
Hanna et al., 2014; Krutz, Malachowsky, & Reichlmayr, 2014; Ng & Huang, 2013; Regehr, 2018). 
Besides, students gain from ongoing mentoring, which is an opportunity to actively reflect on what 
they are working on, analyze, process, and apply any learnings to improve their deliverables. To get 
the best out of the experience, students must be actively involved.

Participation is an essential aspect of any course and an even more critical part of an EL course, 
as was the case in this study. As listed in Table 12 in Appendix A, the structure of the course sessions 
included two components. Each week’s first 90 minutes session was a lecture focused on the theoretical 
foundations and principles of software engineering. The second 90 minutes session concentrated on EL 
activities aimed at building on any theoretical foundations earlier introduced. The activities included 
expectations discussions, tools and environment setup exercises, hands-on practical exercises, a team 
project, unpacking discussion sessions, and EL assessments. The course syllabus, lecture slides, and 
supporting materials were organized and provided via a standard Learning Management System 
(LMS). The course materials and the lectures offered an organized learning experience and as much 
constructive aligned as possible so that students could readily match expected accomplishments with 
the corresponding assessment (Lackéus & Middleton, 2018). Also, independent student-centered 
learning was supported using a variety of media. The EL sessions involved students working in teams 
to tackle specific programming challenges, and the instructor acted primarily as a mentor or guide 
during those sessions. The instructor offered periodic or on-demand unpacking discussion sessions 
during which individual students or teams met to go over any aspects of the EL activities or even the 
assessments. The unpacking sessions were completely ungraded, outside of the class sessions, and 
many students took advantage of these to clarify any areas of ambiguity in the exercises or course 
materials. Additionally, students used these sessions to explore creative problem-solving ideas.

Figure 1. The proposed study model (broken lines signify moderation).
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METHODOLOGY

In this study, a quantitative research design was adopted to investigate EL pedagogy’s impact on 
students’ attitudes and learning experience. A quantitative approach is useful when exploring the 
factors that influence an outcome (Creswell, 2013). A questionnaire was designed, pretested on a 
separate sample of 15 undergraduate software engineering students; minor modifications were made 
to improve some question-statements perceived as ambiguous before it was administered to the 
participants via SurveyGizmo in December 2019.

Participants
The participants in this study were from four cohorts of undergraduate students majoring in software 
engineering at the American University of Nigeria (“AUN”), Yola, Nigeria. All participants had 
completed a mandatory third-year software engineering course in computer science unique in Nigeria 
because AUN programs emphasize critical thinking and problem-solving. The experiential learning 
pedagogy had been adopted for the course since Spring 2018 and led by the same instructor.

Of the 101 students who had completed the course since Spring 2018 and were invited to 
participate in the online survey, 76 students (75%) responded, nine responses were incomplete and 
eliminated, resulting in a total valid sample of 67 respondents, a 66% valid response rate. A response 
rate of 50% is considered acceptable for online student learning surveys (Liu & Wronski, 2018; 
Petrovčič, Petrič, & Lozar Manfreda, 2016; Saleh & Bista, 2017). The respondents’ demographic 
breakdown was male (78%) and under 25 years (91%).

Measures and Procedures
The main part of the questionnaire was dedicated to information on students’ perceptions of their 
learning experience. The instructor impact, course structure, and prior experience indicators were 
adapted from a previous study on student learning experiences (Alshare & Lane, 2011). The EL 
indicators, which included attitude, student involvement, learning expectancy, and learning quality, 
were adapted from a previous study on the assessment of EL (De Zan et al., 2015). The participants 
were asked to respond to question-statements based on a 5-point Likert scale ranging from strongly 
disagree (1) to strongly agree (5).

Analysis Methods
A variety of tools and techniques was used to conduct the data analysis. Confirmatory factor analysis 
(CFA), using parallel analysis with the oblique rotation method, was conducted. The CFA was used to 
test that the measured perception indicators were consistent with the latent constructs in the developed 
study model (Alshare & Lane, 2011; Marsh, Guo, Dicke, Parker, & Craven, 2020; Marsh, Morin, 
Parker, & Kaur, 2014; R Core Team, 2020; Revelle, 2020; RStudio, 2019). The oblique rotation 
method or “oblimin” was used instead of the traditional “varimax” because of expected correlations 
between the indicators and factors (Tóth-Király, Bõthe, Rigó, & Orosz, 2017). The model goodness 
of fit (GoF) and factor loadings were checked against generally recommended guidelines, and some 
non-significant factors were dropped (Dvorak, 2017; Kock, 2019; Kock, Avison, & Malaurent, 2017; 
Thoma et al., 2018). The model fit indices from the CFA, listed in Table 1, indicated that the model 
was acceptable for the instructor impact (II) and course structure (CS) factors (Xia & Yang, 2019). 
For the student attitude (SA), student involvement (SI), learning expectancy (LE), and quality of 
learning (QL) factors, the Tucker-Lewis index (TLI) was 0.764, which is barely acceptable, indicating 
that the model could be improved. However, because the other indices were acceptable and with the 
root mean square error of approximation (RMSEA) close to 0.60 (Xia & Yang, 2019), the model was 
used with no further improvements.

A partial least squares structural equation modeling (PLS-SEM) analysis of the study path models 
was conducted with latent variables based on the measured indicators, as listed in Table 2. All latent 
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variables were measured reflectively through multiple indicators except the prior experience indicator. 
WarpPLS 6.0 (Kock, 2017) was used to conduct a robust nonlinear path analysis because it supports 
the newer consistent PLS (PLSc) technique (Dijkstra & Henseler, 2015; Kock, 2019). The general 
WarpPLS model analysis settings selected included the “Factor-Based PLS Type CFM3” option for 
the outer model analysis algorithm because it relies on Dijkstra’s PLSc technique (Dijkstra & Henseler, 
2015). The “Warp3” algorithm was selected for the inner model since it caters to nonlinearity in the 
latent variable relationships (Kock, 2019). Finally, the “Stable3” resampling method was selected 
as it generates more stable path coefficients and reliable p-values when the sample size is small 
(N<100) (Kock, 2011, 2019).

We relied on the inverse square root method to estimate and validate the study sample size 
(Kock & Hadaya, 2018). The analysis confirmed that the sample (N=67) would result in statistical 
power equal to or greater than 80%, hence acceptable (Benitez, Henseler, Castillo, & Schuberth, 
2019; Kock & Hadaya, 2018). Based on expected statistical power estimates, some model paths with 
low β coefficients (β<0.30) (Kock et al., 2017) and non-significant paths were removed (Benitez 
et al., 2019; Hair, Hult, Ringle, & Sarstedt, 2016; Kock et al., 2017; Kock & Hadaya, 2018). The 
final estimated model, in Figure 2, was obtained after dropping all indicators with non-significant 
loadings (Kock, 2011, 2019), which also corresponded to those indicators with communalities lower 
than 0.30 in Table 1.

RESULTS

The final estimated model’s assessment in Figure 2 included its overall GoF, quality, or validity of the 
measurement and structural models, as listed in Table 3. The Tenenhaus GoF, a measure of the model’s 
explanatory power, was 0.553, indicating that the model had large explanatory power (Kock, 2019). 
For a good model, the APC, ARS, and AARS indices should be significant at the 5% level (Kock, 
2019). Table 3 shows that all three criteria were met. Similarly, both the AVIF and AFVIF indices, 

Table 1. Factor loadings from CFA

Note. Loadings omitted if less than 0.40
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which are vertical and full collinearity measures, met the tighter recommended threshold (Kock, 
2019). The SPR, which is a measure of the extent to which the model is free of Sympson’s paradox, 
was 1.0, and the related RSCR was 1.0. The SSR, which is a measure of statistical suppression, was 
also 1.0. Finally, the NLBCDR, which is a measure of the extent to which the bivariate nonlinear 
coefficients of association support the hypothesized directions of the model’s causal links, was 1.0. 
Therefore, the SPR, RSCR, SSR, NLBCDR were acceptable.

The latent variables’ composite reliabilities, which is a measure of the correlation between each 
latent variable and its construct indicator scores, were estimated. Composite reliability is acceptable 
if the latent variables’ Dijkstra’s rho_a is above the recommended threshold of 0.707 (Benitez et 
al., 2019; Kock, 2014, 2019). Table 4 shows that the composite reliabilities of all latent constructs 
were above the acceptable threshold, and the construct indicator scores were considered reliable. 
Convergent validity, a measure of the extent to which the indicators associated with a latent variable 
measure the same construct, was assessed for the latent variables. Convergent validity is acceptable 

Table 2. Latent variables and corresponding indicators

          

Figure 2. Final estimated model, with instructor impact (InstrImp), student involvement (ExpLearn), attitude (Attitude), learning 
expectancy (Exptancy), quality of learning (QuaLearn), prior experience (PriorExp), and course structure (CrsStruc)
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if the p-values associated with the latent variable’s indicator loadings are significant at the 5% level 
and each of its indicator loadings is equal to or greater than 0.50 (Benitez et al., 2019; Kock, 2014, 
2019). Additionally, the average variances extracted (AVE) for each latent variable should be greater 
than 0.50 (Benitez et al., 2019; Kock, 2019). As seen in Table 4, the convergent reliabilities of all 
the latent variables were acceptable.

Discriminant validity, a measure of the degree to which a latent variable construct is sufficiently 
distinct from other latent variables, was also estimated (Hair et al., 2016). It is acceptable if the AVE’s 
square roots for each latent variable are higher than any of its correlations between that latent variable 
and others (Benitez et al., 2019; Kock, 2019; Kock & Lynn, 2012). The entries on the diagonal of Table 
5 were compared with the entries in the row to the left of and the column below them (Kock, 2019; 
Kock & Lynn, 2012). The diagonals’ numbers should be higher if there is acceptable discriminant 
validity (Kock, 2019; Kock & Lynn, 2012). All latent variables had acceptable discriminant validity 
except the Attitude variable, indicating a possible collinearity presence in the model (Kock, 2019; 
Kock & Lynn, 2012). Variance inflation factor (VIF), a measure of vertical collinearity or collinearity 
among predictor latent variables in blocks where two or more predictors point at one criterion latent 
variable are involved, was also estimated. The rule of thumb is that a VIF with a value 3.3 or lower, 
or more relaxed lower than 5.0, indicates no vertical collinearity in the latent variable block (Kock, 
2019; Kock & Lynn, 2012). As seen in Table 6, all VIFs were below the expected threshold, suggesting 
no vertical collinearity in the model.

Another type of collinearity, lateral collinearity, a measure of collinearity among indicators of 
endogenous latent variables, was also estimated. The indicator VIFs, weights, and loadings were 
examined based on the criteria for acceptable VIFs stated earlier (Kock, 2019; Kock & Lynn, 2012). 
Table 4 shows that the measured indicator VIFs are all below the tighter threshold of 3.3. Additionally, 
almost all of the indicator weights were significant, except some of the Attitude, CrsStruc, and InstrImp 
indicators. Indicators with non-significant weights and weak effect size (ES) (ES<0.02) (Benitez et 
al., 2019; Kock, 2019; Kock & Lynn, 2012), and if doing so would not compromise construct validity 
(Kock, 2019; Kock & Lynn, 2012). A full multicollinearity test was also conducted, and as seen in 
Table 7, all the latent variables met the more relaxed threshold (VIF<5.0). All the indicator loadings 
in Table 4 were significant, and that all indicator ES values were above the recommended threshold. 
Therefore, all the suspect indicators were retained to preserve construct validity (Benitez et al., 2019; 
Kock, 2019; Kock & Lynn, 2012), despite the potential presence of lateral collinearity in the model.

Correlation among the latent variable error terms can help establish whether there is a possible 
existence of hidden confounder(s) or a third variable not represented or captured by the model (Kock, 
2019). To rule out any hidden confounders is none of the correlations should be significant at the 5% 
level, and the associated VIFs should meet the recommended threshold (Kock, 2019). Table 8 shows 

Table 3. Estimated model fit and quality indices
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Table 4. Measurement model evaluation
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Table 5. Latent variable correlations and square-roots of AVEs

Note. Square roots of AVEs are shown on the diagonal, within parentheses.

Table 6. Vertical collinearity estimates

Note. VIFs for each predictor (column) with reference to a criterion latent variable (rows).

Table 7. Estimated latent variable coefficients

Table 8. Correlations among latent variable error terms, associated VIFs (on diagonal)

Note: †p<0.10, *p < 0.05 for the error term correlations.
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that none of the error term correlations were significant, and all the VIFs met the recommended 
threshold, suggesting that there were no evident hidden confounders in the model.

The Stone-Geisser or Q-squared coefficient is a non-parametric measure of each predictor latent 
variable’s predictive validity or relevance through an endogenous criterion latent variable in a latent 
variable block (Kock, 2019). Acceptable predictive validity should be greater than zero (Kock, 2019). 
Table 7 shows that all the relevant latent variable blocks met the criteria, indicating acceptable model 
predictive validity.

Evaluating the Path Coefficients and Hypotheses
The estimated model path coefficients generated by WarpPLS are standardized regression coefficients. 
Each path coefficient indicates that if the independent latent variable changes by one standard unit, 
when all other explanatory constructs are kept constant, then the dependent latent variable can be 
expected to change by the coefficient amount (Benitez et al., 2019; Kock, 2019). Additionally, the 
effect size of any significant relationship between constructs should be investigated to establish its 
practical significance (Benitez et al., 2019; Kock, 2019; Kock & Hadaya, 2018; Marsh et al., 2020, 
2014). The effect size is a measure of the magnitude of an effect, independent of sample size. The 
effect size should range from 0.020 to 0.150 (weak effect), 0.150 to 0.350 (medium), or equal to or 
larger than 0.350 (large) (Benitez et al., 2019; Hair et al., 2016; Kock, 2019; Kock & Hadaya, 2018; 
Marsh et al., 2020, 2014; Tóth-Király et al., 2017). Table 9 shows that the estimated model’s effect 
sizes ranged from 0.142 (weak) to 0.465 (large).

Furthermore, the coefficient of determination (R-squared) is often used in ordinary least square 
regression to indicate the proportion of variance in the dependent construct explained by the model 
(Benitez et al., 2019; Kock, 2019; Kock & Lynn, 2012). It is a measure of the model’s in-sample 
predictive power in PLS-SEM (Benitez et al., 2019; Kock, 2019; Marsh et al., 2020). Figure 2 and 
Table 7 show that the construct R-squared values ranged from 0.142 (ExpLearn) to 0.703 (Attitude). 
The R-squared value for the student involvement construct was very small. Still, it was impossible 
to establish whether there was cause for concern because other comparable empirical studies on EL 
were not found.

Table 9. Path coefficients and effect sizes

Note: †p<0.10, *p < 0.05, **p < 0.01, ***p < 0.001, one-tailed test.
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As listed in Table 3, the model explained 53% (AARS=52.6) of the variation in the study outcomes 
of quality of learning and attitudes. Figure 2 and Table 7 also show that the instructor impact and 
learning expectancy explained 78.6% of the variation in learning quality. Similarly, instructor impact 
and student involvement explained 70.3% of the variation in attitudes and only 14.2% for student 
involvement. Finally, student involvement and prior experience explained 52.3% of the variation in 
learning expectancy.

All the path coefficients in the final model were significant at the 5% level, as seen in Figure 2 and 
Table 9. Figure 2 and Table 11 show that several of the hypothesized relationships were significant at 
the 5% level and supported. Instructor impact positively correlated with quality of learning (β=0.580, 
P<0.001), student involvement (β=0.377, P<0.001), and attitudes (β=0.754, P<0.001). Student 
involvement positively correlated with attitude (β=0.380, P<0.001), learning expectancy (β=0.359, 
P<0.001), but only indirectly with quality of learning (β=0.189, P<0.011) through learning expectancy. 
Similarly, learning expectancy positively correlated with quality of learning (β=0.527, P<0.001) but 
not attitude. Instructor impact positively correlated with student involvement (β=0.377, P<0.001), 
quality of learning (β=0.509, P<0.001), and attitude (β=0.610, P<0.001). Instructor impact also 
positively correlated indirectly with attitudes (β=0.144, P<0.043), learning expectancy (β=0.136, 
P<0.053), but not quality of learning (β=0.071, P<0.152). Therefore, any indirect effect on the 
quality of learning was solely because of student involvement. Prior experience positively correlated 

Table 10. Estimated total effects with associated path coefficients and (number of paths, effect size)

Note: †p<0.10, *p < 0.05, **p < 0.01, ***p < 0.001.

Table 11. Summary evaluation of hypotheses
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with learning expectancy (β=0.344, P<0.001) but nothing else. Finally, course structure positively 
moderated the student involvement relationship with learning expectancy (β=0.324, P<0.002).

Concerning the association involving attitudes, instructor impact had a much stronger effect than 
student involvement based on the path coefficients, as seen in Figure 2 and Table 10. For the association 
with quality of learning, instructor impact, and learning expectancy were almost equally impactful. For 
the association with learning expectancy, both student involvement and prior experience had an almost 
equal impact. Interestingly, instructor impact had a relatively moderate effect on student involvement. 
Given the relatively small coefficient of determination on student involvement (R-squared= 0.142), 
this may indicate that additional factors, not accounted for, influence student involvement. However, 
no comparable empirical studies could be found to make a considered assessment as to whether there 
was cause for concern.

DISCUSSION

As shown in the above section, a statistically significant SEM was fitted to survey the data, 
demonstrating that student involvement in EL was positively associated with attitude and quality 
of learning in an undergraduate software engineering course (n=67). The final model had a GoF of 
55% and good explanatory power (R2=0.526, P<0.05). In the model, instructor impact had the most 
significant overall influence on student attitude with a large effect size (ES=0.575). The instructor 
impact also significantly influenced the quality of learning with a large effect size (ES=0.438). 
The instructor impact had a significant influence on student involvement with a small effect size 
(ES=0.142). Student involvement had a significant influence on learning expectancy with a small 
effect size (ES=0.196). Student involvement also had a significant impact on student attitude with a 
moderate effect size (ES=0.237). Finally, learning expectancy significantly influenced the quality of 
learning with a large effect size (ES=0.402). These results corroborated other findings in the extant 
literature, which suggest that student attitude, involvement, and learning experience improve when 
the EL pedagogy is adopted (Lackéus & Middleton, 2018).

Interestingly, the course structure had a significant influence only as a moderator in the relationship 
between student involvement and learning expectancy (β=0.324, P<0.05), with a moderate effect size 
(ES=0.181). This moderator represented the conditional association of course structure on learning 
expectancy and could indicate that a proportion of the students felt that the course design helped them 
learn, potentially reducing complexity or providing an easy to follow roadmap. However, another 
factor that could also account for this result was prior experience, which had a significant influence 
on learning expectancy (β=0.344, P<0.05) with a moderate effect size (ES=0.147). Coincidently, 
prior experience did not significantly associate with other hypothesized factors such as student 
involvement or quality of learning. There were also mixed findings in the literature concerning the 
impact of prior experience on EL perceptions. Some researchers claimed that prior experience could 
influence learning expectancy, whereas others asserted that there could be moderating relationships 
from prior experience to other factors, including learning expectancy (Cooper et al., 2017; Fauzi et 
al., 2019; Fielding-Wells et al., 2017; Shweiki et al., 2015; Unda & Ramos, 2016). In this study, prior 
experience could have been preconditioned by student exposure with the same instructor from other 
computer science courses or the instructors being well-recognized and highly regarded across the 
university. Surprisingly, student involvement had only a small indirect effect on the quality of learning 
(β=0.189, P<0.05) with a weak effect size (ES=0.101). The lack of a direct relationship between 
student involvement and quality of learning could reflect some confusion within the survey items 
where quality of learning may have been perceived as driven by the instructor and thus associated with 
the instructor factor instead. Nevertheless, this finding was consistent with the a priori literature in as 
far as student involvement should relate to student attitude and learning expectancy but not directly 
to learning quality (Alkan, 2016; Armbruster et al., 2009; Bruegge et al., 2015). Other similar future 
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studies with larger samples in other higher education institutions may provide additional evidence or 
confirmation of the findings of this study.

CONCLUSION

A review of the relevant literature revealed that EL is a transformative pedagogy that promises student 
engagement and performance improvements. However, few empirical studies have examined how 
computer science students perceive learner-centered pedagogy in higher education institutions. In this 
study, EL was empirically examined within the context of an undergraduate soft engineering course. 
A statistically robust set of techniques was applied to test the hypotheses, using CFA and then PLS-
SEM with consistent partial least squares (PLSc) for the study model’s path analysis. As revealed 
and confirmed by the results, EL is a promising instructional technique that has the great potential 
to enhance student attitude and learning quality in software engineering education.
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APPENDIX A. TABLES 12 AND 13

Table 12 shows the breakdown of the experiential learning activities in the introduction to software 
engineering course, and Table 13 shows the perception indicators.

Table 12. Experiential learning activities in the software engineering course
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Table 13. Students’ perceptions indicators

Note. Each indicator was scored using a Likert scale (1=Strongly disagree, 2=Disagree, 3=Neutral, 4=Agree, 5=Strongly Agree); * Indicator was coded
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