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ABSTRACT

Recently, due to the advance and impressive results of deep learning techniques in the fields of 
image recognition, natural language processing and speech recognition for various long-standing 
artificial intelligence (AI) tasks, there has been a great interest in applying towards security tasks 
too. This article focuses on applying these deep taxonomy techniques to network intrusion detection 
system (N-IDS) with the aim to enhance the performance in classifying the network connections as 
either good or bad. To substantiate this to NIDS, this article models network traffic as a time series 
data, specifically transmission control protocol / internet protocol (TCP/IP) packets in a predefined 
time-window with a supervised deep learning methods such as recurrent neural network (RNN), 
identity matrix of initialized values typically termed as identity recurrent neural network (IRNN), 
long short-term memory (LSTM), clock-work RNN (CWRNN) and gated recurrent unit (GRU), 
utilizing connection records of KDDCup-99 challenge data set. The main interest is given to evaluate 
the performance of RNN over newly introduced method such as LSTM and IRNN to alleviate the 
vanishing and exploding gradient problem in memorizing the long-term dependencies. The efficient 
network architecture for all deep models is chosen based on comparing the performance of various 
network topologies and network parameters. The experiments of such chosen efficient configurations 
of deep models were run up to 1,000 epochs by varying learning-rates between 0.01-05. The observed 
results of IRNN are relatively close to the performance of LSTM on KDDCup-99 NIDS data set. 
In addition to KDDCup-99, the effectiveness of deep model architectures are evaluated on refined 
version of KDDCup-99: NSL-KDD and most recent one, UNSW-NB15 NIDS datasets.

Keywords
Clock-Work Recurrent Neural Network, Deep Learning, Gated Recurrent Unit, Identity-Recurrent Neural 
Network, KDDCup-99, Long Short-Term Memory, NSL-KDD and UNSW-NB15, Recurrent Neural Network

This article, originally published under IGI Global’s copyright on July 1, 2019 will proceed with publication as an Open Access article 
starting on February 2, 2021 in the gold Open Access journal, International Journal of Digital Crime and Forensics (converted to gold Open 
Access January 1, 2021), and will be distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/

licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the author of the original work and 
original publication source are properly credited. 



International Journal of Digital Crime and Forensics
Volume 11 • Issue 3 • July-September 2019

66

INTRODUCTION

Information and communication technology (ICT) systems have played a major role in most of the 
organizations, business, and so on. Human activities highly depend on this system. Alongside, the 
cyber-crimes to ICT systems are versatile in cyberspace and it has been exists since the birth of the 
computers. As ICT systems continues to evolve, cyber-crimes change accordingly. The taxonomy 
of cybercrimes, issues and methods is discussed in detail by (Lallement, 2013). The various attacks 
and its techniques used for cyber-crime are briefly reported by (Vaidya, 2015). To attack these cyber-
crime activities and forensic investigation require a glaring need of comprehensive research study of 
an appropriate solutions system. One commonly studied critical area by industries and organization 
for the past several years is intrusion detection (ID). It is an important approach in network security. 
Many concepts and approaches of machine learning are transferred to ID with the aim to enhance 
the performance in distinguishing between the abnormal behaviors on the system from the normal 
network behavior. (Anderson, 1980) is an initial contributor towards the work in ID through a paper 
“Computer Security threat monitoring and surveillance” published in 1931. Fundamentally, the IDSs 
are categorized into two types based on the network type and its behaviors such as (1) network basis 
IDS (N-IDS): depend as far as the data prior to packets in network traffic to identify the malicious 
activities (2) host basis IDS: rely on the contents as far as the log files such as software logs, system 
logs, sensors, file systems, disk resources of particular host or a system. An organization uses the 
intercross as far as network and host-based system to effectively attack the malicious activities in real 
time environment. This has become an indispensable part of ICT systems and networks. However, 
the performances of detecting the unforeseen attacks are not acceptable with the existing traditional 
approaches in N-IDS.

Anomaly detection, state full protocol analysis and misuse detection are main significant methods 
used for network traffic data classification. Misuse detection is also termed as signature detection that 
depends on the predefined signatures and filters to efficiently determine the familiar intrusions. For 
anonymous intrusions, the performance is unacceptable, which may be due to the fact that signature 
detection relies on human task to constantly update the corpus of signatures with the aim to maintain 
the signature of new attacks. Anomaly detection aims at detecting the unknown intrusions based on 
heuristic approaches. Anomaly detection is not a reliable method for unknown intrusions mainly due 
to results in high false positive rate. Most of the commercial tools that exists in the market have used 
the hybrids of misuse detections and anomaly detections. A most commonly used powerful approach 
is state full protocol analysis. State full protocol analysis uses features that proprietarily designed by 
the software vendor to determine the divergence of specific conventions and applications.

The commercial tools prevailing in market are based on threshold computing approaches or 
statistical measures that utilize parameters for trafficking such as flow size, inter-arrival time, packet 
length and so on as features to learn the trafficking patterns for the network in a particular time window. 
The commercial system may limit the performance in detecting the complex attacks mainly due to 
the measures computed statistically based on packet header and packet length.

In recent days, to detect and classify the malicious activities from benign characteristics, self-
learning systems are used. Self-learning systems are machine learning methods that are either 
supervised or unsupervised. These methods use a large corpus of malicious and benign connection 
records to learn the network traffic behaviors with the aim to distinguish between the benign and 
attack connections. Self-learning system has capability to detect the unknown intrusions that helps 
in taking the necessary countermeasures against all types of contingencies in a time constrained 
fashion. Machine learning (ML) methods are current prominent methods used largely for IDS. These 
ML based solutions to real-time IDS is not an effective approach mainly due to the model’s outputs 
in a high false positive rate and ineffective in identifying the novel intrusions (Lee, Fan, Miller, 
Stolfo, & Zadok, 2002). The main reason is that the machine learning models learns the attack 
patterns of simple features of TCP/IP packets locally. However, the recent development of machine 
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learning models resulted in a robust and advanced learning technique, named as ‘deep learning’. 
Deep learning models have achieved significant results in various fields includes natural language 
processing (NLP), image processing (IP) and speech recognition (SR) (LeCun, Bengio, & Hinton, 
2015) comes under the purview of artificial intelligence (AI) tasks. Deep learning approaches have 
two essential characteristics (1) Ability to learn the complex hierarchical feature representation of 
TCP/IP packets globally (2) Ability to memorize the past information in large sequences of TCP/
IP packets. The performance of deep learning methods is transferred to ID (Staudemeyer, & Omlin, 
2014; (Staudemeyer, 2015; Kim, & Kim, 2017). Moreover, recently (Hodo, Bellekens, Hamilton, 
Tachtatzis, & Atkinson, 2017) outlined the taxonomies and the precursory works of trivial deep 
learning algorithms to ID. Following, this paper compares the effectiveness of IRNN and other 
approaches introduced to solving the long-range temporal dependencies for N-IDS. Both LSTM 
and IRNN network is complex and remained as a black-box. This makes reverse engineering the 
system with exact same specifications by a malicious adversary quite impossible unless he/she is in 
possession of the exact same training sample used to build the system.

The rest of the paper contains the literature study of machine learning and neural network-based 
solutions for IDS, necessary details about what are deep learning algorithms and how they are trained, 
details of evaluation of experiments of various network structure and parameters of topologies, the 
detailed evaluation results, future work and conclusion are positioned at last.

DEEP LEARNING

Convolutional neural network (CNN) and recurrent neural network (RNN) are most commonly 
used deep learning methods. CNN are heavily used in the field of computer vision that extracts the 
complex features through layer by layer by applying the filters on rectangular area. The complex 
features represent the hierarchical feature representations in which the features exist in higher level are 
composed from a set of lower level features. The hierarchical feature representation allows CNN to 
learn the data in various levels of abstraction. A single or a set of convolution and pooling operations 
and a non-linear activation functions are primary building blocks of CNN. In recent days, the advantage 
of using the ReLU as an activation function in deep learning architectures is widely discussed due 
to ReLU as an activation function is easy to train in comparison to sigmoid or tanh function (Nair, 
& Hinton, 2010). RNN is mainly used for sequential data modeling in which the hidden sequential 
relationships in variable length input sequences is learnt by them. RNN mechanism has significantly 
performed well in the field of NLP and SR (LeCun, Bengio, & Hinton, 2015). In initial time the 
applicability of ReLU activation function in RNN was not successful due to the fact that RNN results 
in large outputs. As the research evolved, authors showed that RNN outputs vanishing and exploding 
gradient problem in learning long range temporal dependencies of large scale sequence data modeling. 
To overcome this issue, research on RNN progressed on the 3 significant directions. One was towards 
on improving optimization methods in algorithms; Hessian-free optimization methods belong to this 
category (Martens, 2010). Second one was towards introducing complex components in recurrent 
hidden layer of network structure; (Hochreiter, & Schmidhuber, 1997) introduced long short-term 
memory (LSTM), a variant of LSTM network reduced parameters set; gated recurrent unit (GRU) 
(Cho, Van Merriënboer, Gulcehre, Bahdanau, Bougares, Schwenk, & Bengio, 2014), and clock-
work RNN (CWRNN) (Koutnik, Greff, Gomez, & Schmidhuber, 2014). Third one was towards the 
appropriate weight initializations; recently, (Le, Jaitly, & Hinton, 2015) authors have showed RNN 
with ReLU involving an appropriate initialization of identity matrix to a recurrent weight matrix is able 
to perform closer in the performance in compared to LSTM. This was substantiated with evaluating 
the 4 experiments on two toy problems, language modeling and SR. They named the newly formed 
architecture of RNN as identity-recurrent neural network (IRNN). The basic idea behind IRNN is 
that, while in the case of deficiency in inputs, the RNN stays in same state indefinitely in which the 
RNN is composed of ReLU and initialized with identity matrix.
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RELATED WORK

Researchers have introduced various machine learning based solutions to N-IDS. Applying machine 
learning for the enhancement of improvement in detecting the malicious activities is largely used in 
recent days. This section delves into detailed studies of machine learning basis solutions to IDS till 
date and disclosed with the issues of KDDCup-99 data set.

Most of the research studies considered N-IDS as a classification task that finds a separating 
plane for the behaviors of normal and attacks in network traffic data. A substantial number of methods 
introduced following the first paper about N-IDS (Denning, 1987). In that, machine learning and data 
mining techniques appeared as prominent methods that are largely used towards IDS. However, their 
performance is less due to N-IDS is an evolving problem with new types of attacks. Due to this, IDS 
has been under active research for the past 25 years.

The openly available data set for creating an effective machine learning model for N-IDS is very 
less. A few data sets exist, but each suffers from its own issues. A most commonly occurred issue is 
that the data set have failed to represent the real-time network traffic characteristics. KDDCup-99 
is the most commonly used de facto standard N-IDS data set for benchmarking the performance of 
machine learning models. KDDCup-99 data set was used as part of N-IDS challenge conducted by 
third International Knowledge Discovery and Data Mining Tools Competition. The task was to classify 
the connection records as either benign or attack. Totally, 24 teams were participated and submitted 
their results. The detailed evaluations of these results were published by (Lippmann, Haines, Fried, 
Korba, & Das, 2000) and KDDCup-98 evaluation results were published by (Lippmann, Fried, Graf, 
Haines, Kendall, McClung, ... & Zissman, 2000). The first 3 place occupied teams were used the 
decision tree and its variants. The 9th place occupied team used 1-nearest neighbor classifier. The 
first 17 place occupied teams have a very tiny difference in detection rate and a large difference is 
found between 17th and 18th entries. This infers that the first 17 winning entries methods for N-IDS 
were robust. After challenge, KDDCup-99 data set is most regularly utilized data set for assessment 
as far as various machine learning classifiers. Most of the research studies used 10% data set for 
N-IDS in the case of feature reduction. Other few studies have used their own custom-built data sets 
(Sung, & Mukkamala, 2003; Kayacik, Zincir-Heywood, & Heywood, 2005). These custom-built in 
data set are constructed using the random selection of connection records from 10% train and test 
connection records.

After the KDDCup-99 challenge many research studies have used KDDCup-99 for N-IDS. These 
studies are not directly comparable to triumphant entries as far as KDDCup-99 trial due to the reason 
that the research studies have used variations of KDDCup-99 data. With misuse detection context, 
(Sabhnani, & Serpen, 2003) analyzed the effectiveness of various machine learning algorithms for 
the same KDDCup-99 trial data set. In addition, the authors proposed the multi-expert classifier 
and achieved the enhancement in false alarm and detection rate in correlation to the KDDCup-99 
triumphant entries. They claimed with various experiments using any machine learning classifiers 
achieving acceptable detection rate for low frequency attacks (‘U2R’ nearly 30% and ‘R2L’ nearly 
10%) may not be possible in the context of the misuse detection. The following published results are 
not directly comparable. (Sinclair, Pierce, & Matzner, 1999) used domain knowledge with machine 
learning approaches particularly genetic algorithms and decision trees to create the rule for expert 
systems that classifies the network connections as benign and malicious in expert systems. (Yeung, 
& Chow, 2002) discussed the non-parametric density estimation approach using the gaussian kernels 
for parzen-window density estimation. (Mukkamala, Sung, & Abraham, 2004) authors have discussed 
the effectiveness of linear genetic algorithms over artificial neural networks (ANN) and support 
vector machines (SVM).

A few research studies have used hybrid classifiers such as neural networks with other classifiers. 
(1) Neural network with SVM (Mukkamala, Sung, & Abraham, 2003) (2) ANN with a Fuzzy networks 
(Peddabachigari, Abraham, Grosan, & Thomas, 2007) (3) decision trees with neural networks 
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(Golovko, Kachurka, & Vaitsekhovich, 2007) (4) neural network with RNNs (Shah, Dave, & Chavon, 
2004). To understand the sequential relationships between network events, (Ourston, Matzner, Stump, 
& Hopkins, B. 2003) authors modeled the temporal patterns of normal and malicious behaviors of 
network connection records with hidden markov model (HMM). The HMM model is significantly 
performed well in comparison to MLP. (Debar, & Dorizzi, 1992) observed the application of RNN 
for IDS. The relative analysis between neural network and RNN is analyzed by (Chowdhury, 2008). 
The effectiveness of RNN and a variant of RNN, LSTM is comprehensively studied and published 
(Staudemeyer, & Omlin, 2014; October & Staudemeyer, 2015).

BACKGROUND

The section discusses the concepts of various deep learning algorithms and how they are trained. In 
addition, gives notion of how deep learning algorithms are adopted towards N-IDS.

Recurrent Neural Network (RNN)
The introduction of long established neural network in 1980’s for sequence data modeling (Elman, J. 
L. 1990) is supplemented by recurrent neural network (RNN). It is similar to feed-forward networks 
(FFNs) except the past states information influences the current states. The cyclic connections from 
a unit to it facilitate to store and update the values at a particular time step based on its present and 
past information. In addition, the traditional FFN adopts different parameter for each input feature, 
RNN use the same parameters across time steps. The shared parameters in RNN help to make it to 
generalize the characteristics in sequences such as the positions and its length. The shared parameters 
generalize the RNN in various positions of data in time series and different time-series lengths. 
RNN have established as a promising method for modeling sequence data of arbitrary length over 
traditional FFN. RNN network architecture is a basic and remained as baseline architecture for the 
newly introduced architectures.

In general, RNN consider x x x x x
T T

= −( , ...., )
, ,1 2 1

 as input and maps them to hidden and output 
vector sequences as hl hl hl hl hl

T T
= −( , ,..., , )

1 2 1
 and op op op op op

T T
= −( , ,..., , )

1 2 1
 from t = 1  to T

through the following equations in the forward direction:

HL x hl A w x w hl b
xhl hlhl

( , ) ( )= + + 	

HL m n n:� � �× → w
hx

n m∈ ×� w
hh

n n∈ ×� b k∈ � 	

where A b w, ,  denotes activation function, bias vector and weight matrices respectively.
To learn the temporal dependencies, RNN feds the initial step hl0  layer value to the next time 

step hidden layer hl HL x hl
1 1 0
= ( , )  and this is defined recursively as hl HL x hl

T T T
= −( , )

1
. Next, we 

can feed hl
T

 to stacked recurrent hidden layer or output layer through softmax  or sigmoid  as 
non-linear activation function. At each time-step t , the output node op  value is estimated using the 
hidden node value hl  at time-step t  as:

op sf w hl b
t ophl t op
= +( ) 	

RNN are converted to FFN using Unfolding or Unrolling. This helps to understand the inherent 
dynamics of each time-step t . Unfolded RNN contains hl  hidden layers for the input sequences of 
length l .
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As in Figure 1, the unfolded RNN looks similar to deep neural network except that the weights 
w w w
xh hh ho
, ,  are shared across time steps.
RNN is a parameterized function and to find the right parameters, loss function is used. Loss 

function gives the units of difference between the predicted and target values. This is defined for 
subnet in unfolded RNN at each time-step t  as:

L d tv pv d tv pv
i

T
= =

=∑( , ) ( , )
1

	

The full sequence is considered as one training vector for example ( , , , )x x cl
1 41
� . So, total loss 

is estimated by summing the loss at each time-step. Next, to minimize the loss, gradient of the loss 
with respect to the weight parameters ( )w  has to be found and the appropriate parameters for weight 
parameters is selected through stochastic gradient descent (SGD). Like the previously mentioned 
process of total loss, one training vector require sum of gradient vector at each time step t . A gradient 
is calculated using backpropagation with a chain rule to iteratively compute the gradient from the 
unfolded computational graph. However, unfolded RNNs share its weight parameters across time-
steps. So, this process is called backpropagation through time (BPTT) (Sutskever, 2013). While in 
the process of backpropagating error across many time-steps, the weight matrix has to be multiplied 
with the gradient signal. This causes the vanishing issue when a gradient becomes too small and 
exploding gradient issue when a gradient becomes too large (Bengio, Simard, & Frasconi, 1994). As 
results RNN found to be inefficient in learning the long-range context in sequence data modeling. 
To overcome from these issues, authors recommended regularization to automatically set the 
appropriate value at each time step (Pascanu, Mikolov, & Bengio, 2013). They also recommended 
gradient clipping and a soft constraint for exploding and vanishing issue. Further, Real time recurrent 
learning (RTRL) approach is introduced (Williams, & Zipser, 1989) that estimates the error derivative 
at each time step to do a single update in forward direction. However, this RTRL was not familiar 
due to the reason RTRL produces more computational cost in comparison to BPTT. Truncated back 
propagation through time (TBPTT) is an amendment of back propagation through time (BPTT) that 
offers flexibility in removal of exploding gradient issue in continuously running networks (Williams, 
& Peng, 1990). TBTT required setting the number of time steps in which the error can be propagated. 
As further the research on RNN in handling vanishing and exploding gradient issue, (Hochreiter, & 
Schmidhuber, 1997) introduced long short-term memory (LSTM) that followed entirely a new kind 
of architecture to enhance the storing capacity of values for long time-steps. LSTM contains a memory 
block and adaptive multiplicative gating units such as input, forget and output gate to control a memory 

Figure 1. Unfolded over time steps t t= =0 1,  and RNN
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cell (Gers, Schmidhuber, & Cummins, 1999; Gers, Schraudolph, & Schmidhuber, 2002). Generally, 
the forward pass of LSTM is formulated as follows:

x hl mc hl mc
t t t t t
, , ,− − →1 1

	

in g w x w hl w ml b
t xin g t hlin g t mcin g t in g

_ ( )
_ _ _ _

= + + +− −σ
1 1

	

fr g w x w hl w ml b
t xfr g t hlfr g t mcfr g t fr g

_ ( )
_ _ _ _

= + + +− −σ
1 1

	

mc fr g mc in g w x w hl b
t t t t xmc t hlmc t mc
= + + +− −_ _ tanh( )� �

1 1
	

op w x w hl w mc b
t xop t hlop t mcop t op
= + + +−σ( )

1
	

hl op mc
t t t
= � tanh( ) 	

where in g_ , fr g_ , op  are input, forget and output gating functions respectively, mc  denotes 
memory cell, hl  output of hidden layer.

As Figure 2 shows that a memory cell contains complex set of operations with a single memory 
cell, 3 adaptive multiplicative units and a self-connection with a fixed weight 1.0. To alleviate the 
number of units, many variants of LSTM is introduced. CWRNN and GRU is most prominent one.

Gated recurrent unit (GRU) is a variant of LSTM network (Cho, Van Merriënboer, Gulcehre, 
C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. 2014). Generally, the forward pass of 
GRU is formulated as follows:

x hl hl
t t t
, − →1 	

i f w x w hl b
t xi f t hli f t i f

_ ( )
_ _ _

= + +−σ
1

(Update gate)	

f w x w hl b
t xf t hlf t f
= + +−σ( )

1
(Forget or reset gate)	

ml w x w fr hl b
t xml t hlml t ml
= + +−tanh( ( ) )�

1
(Current memory)	

hl f hl f ml
t t
= + −−� �

1
1( ) (Updated memory)	

Figure 2. Schema of RNN unit (left) and LSTM memory block (right) as adopted from (Elman, 1990; Hochreiter, & Schmidhuber, 
1997; Gers, Schmidhuber, & Cummins, 1999; Gers, Schraudolph, & Schmidhuber, 2002)
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The GRU comprises of gates (update and forget) which is dissimilar to LSTM memory cell gate 
list (input, output and forget) that are collaboratively balance the inflow as far as data within the unit. 
Figure 3 shows the architecture of gated recurrent unit.

Clockwork Recurrent Neural Network (CWRNN)
Clockwork RNN (CWRNN) is a variant to standard RNN architecture (Koutnik, Greff, Gomez, & 
Schmidhuber, 2014) in which the hidden layer subdivided into parallel M  modules. Each such M  
module runs at various clock rates T

m
 and weight matrices in modules are get updated based on the 

condition t T
m

mod = 0  across time steps t  otherwise the previous states are retained. In addition, 
hidden layer with many time steps of CWRNN network facilitate to learn both the short term and 
long term dependencies of the temporal patterns in sequence data. The modules are connected from 
hidden to context layer in an increasing ordered fashion (T T

n m
≥ ) (Figure 4). The formulae and the 

network representation is given below:

hl w x w hl b
t xhl t hlhl t hl
= + +−σ( )

1
	

op w hl b
t ophl t op
= +−σ( . )

1
	

Figure 3. Architecture of Gated recurrent unit as adopted from Cho, Van Merriënboer, Gulcehre, Bahdanau, Bougares, Schwenk, 
& Bengio (2014)

Figure 4. Schematic view of CWRNN, similar to SRNNs with X
t

 as input layer h
t

 as hidden layer and o
t

 as output layer
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w w
xhl hlhl
,  are get updated based on the t T

m
mod = 0  at each time step t .

Identity-Recurrent Neural Network (IRNN)
(Le, Jaitly, & Hinton, 2015) proposed a new RNN, named as identity-recurrent neural network (IRNN) 
with minor changes to RNN that has significantly performed well in capturing long-range temporal 
dependencies. The minor changes are related to initialization tricks; to initialize the appropriate 
RNNs weight matrix using an identity matrix or its scaled version and use ReLU as non-linear 
activation function. Moreover, this method performance is closer to LSTM in 4 important tasks; 
two toy problems, language modeling and speech recognition. In one of the toy problem, IRNN 
outperformed the LSTM networks.

IRNN use ReLU  activation function and identity matrix is initialized to hidden layer weight 
matrix w

hlhl
 and the terms of bias are set to zero. By following the described section of RNN, the 

objective function op( )θ with a single training set ( , )x y  is defined as:

op S op y
tt

=∑ ( , ( ))θ 	

where θ denotes the weights and biases parameters in the case of multi-class classification:

S op y
t tjj tj
=−∑ log( ) 	

According to (Werbos, 1990), backpropogation through time training algorithm (BPTT) follows 
the gradient computation as given below:
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Each Jacobian:

∂
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+hl
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t
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is obtained by multiplying the hidden layer recurrent weight matrix and diagonal matrix with a non-
linearity activation function ReLU . When x

t
=0  (infers no input), each Jacobian:

∂

∂
+hl

hl
t

t

1 	
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produces L2  norm as 1. It infers that the gradient of errors exponentially slow at decaying or growing 
over time-steps.

To understand IRNN network design, let’s define the recurrent relation with two hidden units. 
In IRNN, these units are composed of ReLU , inputs and biases are zero and hidden layer weigh 
matrix w

hlhl
is positive definite:

hl D hl
t t

~ ~

= −1 	

If hl
t− >1 0
~

	

hl
t

~

=0Otherwise	

where D Q W Q
hlhl

= −1  is a diagonal matrix that composed of eigenvectors of W
hlhl

 and hl D hl
t t

~

= −1 .

EXPERIMENTS

GPU enabled Tensorflow is utilized to run all experiments (Abadi, Barham, Chen, Chen, Davis, 
Dean, ... Kudlur, 2016, November). Back propagation through time (BPTT) approach is used to train 
all the deep learning algorithms.

Description of Data Sets for Network Intrusion Detection System
Due to privacy issues, the openly available data set for N-IDS is very less. Though a few data sets 
exists; KDDCup-99, modified KDDCup-99 i.e. NSL-KDD and recently introduced data set namely, 
UNSW-NB15, each data set suffers from a major issue as not real representative of real network traffic. 
In the following, we outline the details regarding the methods employed to collect TCP/IP packets.

As the first time with the sponsorship from Defense Advanced Research Projects Agency (DARPA 
ITO) and Air Force Research Laboratory, the DARPA ID Assessment Group (currently the Cyber 
Systems and Technology Group) has collected network traffic data of 1000’s UNIX machines in raw 
tcpdump format for 9 weeks. The data was distributed in KDDCup-98 challenge. The attacks were 
ingested to UNIX machines from outside perimeter of its area using SunOS, Windows NT, UNIX, 
Linux, and Solaris environments. Later, to enhance the detection rate, the same raw tcpdump data 
were preprocessed and converted to a set of connection records with features and a corresponding 
class label using the Mining Audit information for automated models for ID (MADMAID) data 
mining feature construction framework. The detailed evaluation of KDDCup-98 and KDDCup-99 
were published in (Lippmann, Haines, Fried, Korba, & Das, 2000; Lippmann, Fried, Graf, Haines, 
Kendall, McClung, ... Zissman, 2000). The KDDCup-99 data set has made available, its data set 
in two forms (1) full data set (2) 10% of full data set. The comprehensive description of 10% of 
KDDCup-99 is displayed in Table 1.

The published results of KDDCup-99 challenge and other published results after the challenge 
achieved the higher detection rate for the attack categories DoS and Probe and performance of R2L 
and U2R attacks categories is very less, particularly not acceptable. The background reason for behind 
this was evaluated by (Al-Subaie, & Zulkernine, 2007) and made a statement that achieving the higher 
detection rate is not possible. One way to improve may be to add a few more connection records of 
R2L and U2R to the existing KDDCup-99 data set. Though with a mixed data set, authors didn’t 
show the performance of attack categories of R2L and U2R. Another study (Sabhnani, & Serpen, 
2003) reported, the connection records of ‘snmpgetattack’ were similar in both the Normal and R2L 
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classes. Subsequently the machine learning classifiers performance is not effective in classifying the 
connection records of ‘snmpgetattack’ exist in Normal and R2L classes.

In initial time the performance of the traditional IDS was not shown for the KDDCup-99 data 
set. To overcome, (Bouzida, & Cuppens, 2006) used Snort IDS with the KDDCup-98 traces as input. 
Snort system performance was good for the connection records belong to low frequency attacks; R2L 
and U2R in comparison to the high frequency attack; DoS and Probe. This is due to the fact that 
the Snort used the fixed signatures as an approach. Still, with the harsh criticisms, the KDDCup-99 
data set was used in many research studies to evaluate the effectiveness of various machine learning 
classifiers in the last years (Brugger, & Chow, 2007).

NSL-KDD is a filtered version of KDDCup-99 (Tavallaee, Bagheri, Lu, & Ghorbani, 2009). 
The applied filters are (1), duplicate connection records were removed and as a result it protects the 
classifier from being biased towards the frequent connection records. (2) Test Connection records 
existing in index number 136,489 and 136,497 were removed entirely. (3) The connection records for 
NSL-KDD were chosen randomly with maintaining the degree of difficulty inversely proportional to 
KDDCup-99. (4) The existing number of connection vectors in train and test data set is reasonable 
complement to each class difficulty levels. (5) The records of NSL-KDD are balanced in both the 
train and test data. NSL-KDD performance is acceptable for misuse or anomaly detection. Even, 
NSL-KDD lack behind in representing the characteristics of real world network traffic. The other 
issues are (1) Instead of time to live value as 126 or 253 the NSL-KDD attack packets have 127 or 
254 (McHugh, J. 2000). The probability distribution of attack vectors between train and test data 
are not unique (Mahoney, M. V., & Chan, P. K. 2003, September). As a result, the machine learning 
classifiers are biased or skewed towards the more frequent connection records. The NSL-KDD is not 
a complete representative of present-time connection vectors of normal and attacks.

To overcome the reported issues of KDDCup-99 and NSL-KDD, the Australian Centre for Cyber 
Security group introduced UNSW-NB15 (Moustafa, & Slay, 2016). Mainly the data set includes the 
recent data patterns of network traffic. The data set consist of Normal and malicious connection 
features as related to intrusions, applications, protocols, or lower level network entities including 
the various profiles as e-commerce, military, academia, social media, and banks. The data packets 
of normal and attack were generated using the IXIA PerfectStorm tool. Common Vulnerabilities 
and Exposures (CVE) houses the present-day attacks and IXIA tool continuously looks at CVE for 
knowing the latest malicious activities. The test bed configuration contains 2 servers for normal 
activities and one server for malicious activities. Using the tcpdump tool the traces were collected 
nearly around 100GBs on Jan. 22 for the duration of 16 hours and Feb 17, 2015 for the duration of 
15 hours. After, the collected Pcaps are transformed to 1,000 MB file by loading in tcpdump tool. 
Argus and Bro IDS are used to extract features from each 1,000 MB pacap’s file and in addition to 

Table 1. Description of KDDCup-99 and NSL-KDD challenge data set

Attack Category

Data Instances – 10% Data

KDDCup-99 NSL-KDD

Train Test Train Test

Normal 97,278 60,593 67,343 9,710

DoS 3,91,458 2,29,853 45,927 7,458

Probe 4,107 4,166 11,656 2,422

R2L 1,126 16,189 995 2,887

U2R 52 228 52 67

Total 4,94,021 3,11,029 1,25,973 22,544
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extract the higher-level features, the contents of packets are analyzed using the 12 algorithms. These 
are developed by them using C# programming. The data set is openly available in two forms (1) full 
data set (2) a small subset of full data set. A small sub set of data set has 175,341 connection records 
for train and 82,332 connection records for test. The comprehensive description of UNSW-NB15 is 
displayed in Table 2.

Hyperparameter Selection in IRNN and LSTM Networks
The deep networks such as, RNN, IRNN, CWRNN, LSTM and GRU are parameterized functions, 
finding the best parameter is an important task. This is primarily because the attack detection rate 
implicitly depends on the optimal network parameters. At beginning, the experiments are done on 
basic IRNN network. This composed of 3 layers such as input layer, hidden layer and an output 
layer. An input layer contains 41 neurons, and hidden layer contains memory blocks in the range 
[4-64] containing one memory cell each. The connection between the units in input layer and the 
memory blocks in the hidden layer are fully connected. The output layer contains the five neurons in 
categorizing the attacks to corresponding categories or two neurons in categorizing the connection 
record as either normal or an attack.

The models are trained on 10% of KDDCup-99 training data set and the performance of them is 
evaluated on the 10% corrected test data set. To monitor the train accuracy, 30% of 10% KDDCup-99 
training data set is used. The feature values in the connection records are normalized. Various 
configurations of experiments are done for network parameters such as learning-rate within the 
limit 0.01-0.5, number of units / memory blocks in the range [4-64] and network structure (hidden 
recurrent layers in the range [1-4]). The performance of each network is identified by using the 

Table 2. Description of partition from UNSW-NB15

Attack Category Description
Data Instances – A Partition From 

UNSW-NB15

Train Test

Normal Connection records without malicious activities 56,000 37,000

Fuzzers Intruder puts network resources down by feeding 
data randomly to them continuously 18,184 6,062

Analysis Port scan, html file penetrations and spam attacks 
belongs to the analysis attacks category 2,000 677

Backdoors Intruder gets access to a specific computer by 
evading the baseline security 1,746 583

DoS
Dos is an attack conducted to put network resources 
down and as a result even a legal user not able to 
access network resources

12,264 4,089

Exploits The security hole of a software is understood by 
intruder and make an attempt to exploit vulnerability 33,393 11,132

Generic Generic is an attack on a block cipher 40,000 18,871

Reconnaissance An attacker work closely to the targeted system to 
capture the information related to vulnerability 10,491 3,496

Shell code A small piece of code used in exploitation of 
software vulnerability 1,133 378

Worms With replicating themselves, worms are distributed 
through computer network 130 44

Total 175,341 82,332
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confusion matrix. All experiments were run for 300 epochs with batch size 32, ADAM optimizer and 
categorical cross entropy as loss function. Two challenges of tests are run for the parameters related 
to the number of units in IRNN with one hidden recurrent layer in the range [4-64]. Experiments with 
64 units performed well in comparison to the other units. Moreover, the experiments with less number 
of units have completely learned the high frequency attacks. But they are completely ineffective in 
detecting the low frequency attacks. Based on the detection rate of low frequency attacks, 64 units are 
set for the remaining parts of the experiments. The performance of experiments associated with lower 
learning-rate is good in identifying the connection record as normal or an attack and categorizing 
to their corresponding categories. Most importantly, the experiments with learning-rate 0.05 have 
performed well in comparison to the other learning-rates. Experiments with lower learning-rate 
i.e. less than 0.05 has required more than 5,000 epochs to attain considerable performance for low 
frequency attacks. By reviewing the training time and the detection rate, the learning-rate is set to 0.05 
for the rest of the test. Moreover, the test with learning-rate 0.05 has required at least 1000 epochs to 
assimilate the ambush patterns as far as low prevalence attacks. The best performed IRNN network 
detection rate of each attack is shown in Figure 5.

Network Topologies
The following network architectures are used to choose the best network structure for training an 
IDS model with KDDCup-99:

1. 	 RNN/IRNN/LSTM/CWRNN/GRU 1 layer
2. 	 RNN/IRNN/LSTM/CWRNN/GRU 2 layer
3. 	 RNN/IRNN/LSTM/CWRNN/GRU 3 layer
4. 	 RNN/IRNN/LSTM/CWRNN/GRU 4 layer

Each network configuration is subjected to two trails of experiments, for 400 epochs. Each of 
the network configurations contains 64 memory blocks. Most of the network topologies gave higher 
detection rate for the high frequency attacks such as DoS and Probe, but performed underwhelmingly 
for low frequency attacks, where the detection rates were low. This evidence that the 400 epochs is 
not adequate to acquire the attack patterns as far as low prevalence attacks. Next, the experiments 

Figure 5. Performance as far as IRNN network for learning-rate between 0.01-0.5
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associated with each of the network topologies are run till 1,000 epochs. In all configurations of 
experiments, IRNN and LSTM executed well in relative to the other networks. The best performed 
IRNN network structure performance of each attacks is shown in Figure 5. The IRNN network has 
achieved highest detection rate for the normal and DoS for epochs in the range [50-150]. After that, 
it followed fluctuations in detection rate till 1,000 epochs. This is primarily due to over fitting. It 
specifically signifies that the network has initiated to keep records or began to remember connection 
records from the train data, which results in lower generalization performance over any given task. 
The Probe attack has seen higher detection rate at epoch in range [150-300] and after it seen sudden 
decrease in detection rate and at last it achieved highest detection rate too. The detection rate of low 
frequency attack has followed improvement in detection rate for 1,000 epochs. This infers that each 
attack has required different number of iterations to learn its behaviors.

In next configuration of experiments, three sets of trials are performed for all network architectures 
to detect a specific interdependence record as normal or attack. IRNN has completely learned the 
patterns to differentiate between the interdependence records as either normal or attack epochs in range 
[500-600], see Figure 6. More importantly, complex IRNN network has took numerous number of 
iterations to attain acceptable detection rate. And finally, they are able to attain highest detection rate.

Experiments With Minimal Feature Sets
Three trials of experiments were performed on 4 layer RNN/IRNN/LSTM/GRU/ network for each 
of the minimal feature sets that are proposed by (Staudemeyer, & Omlin, 2014). The train data set 
is randomly divided into two sets such as 70% for training and 30% for validation. The validation 
accuracy of network topologies of three types as far as minimal attribute sets is shown in Figure 
7. The validation accuracy of all network topologies with 11 attribute set is good compared to the 
other attribute sets. This is primarily due to over fitting in the deep networks. The performance of 
all network topologies with 11 and eight minimal attribute sets is good in relation to the 4 minimal 
attribute set. Moreover, the network topology with 11 attribute set is performed well in comparison 
to the 8 attribute set. The detailed statistics is displayed in Table 3. As Table 3 shows that the IRNN 
network outperformed LSTM in all three types of minimal attributes sets.

Figure 6. Performance as far as IRNN network with 4 layer over epochs between 0-1000
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Figure 7. Performance of IRNN networks for minimal feature sets KDDCup-99 and NSL-KDD

Table 3. Summary of test results for minimal attribute sets of KDDCup-99 and NSL-KDD

KDDCup-99

Algorithm
NORMAL DoS Probe U2R R2L

ACC
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

LSTM 11 0.999 0.058 0.941 0.002 0.948 0.019 0.414 0.0 0.258 0.001 0.933

RNN 11 0.999 0.076 0.941 0.003 0.927 0.01 0.129 0.0002 0.107 0.0001 0.928

GRU 11 0.999 0.058 0.941 0.003 0.939 0.02 0.5 0.0 0.215 0.0 0.932

IRNN 11 0.994 0.073 0.959 0.014 0.754 0.002 0.0 0.0 0.0 0.0 0.936

LSTM 8 0.998 0.082 0.939 0.038 0.782 0.002 0.0 0.0 0.014 0.001 0.922

RNN 8 0.994 0.093 0.938 0.015 0.733 0.002 0.0 0.0 0.0 0.0 0.92

GRU 8 0.998 0.092 0.938 0.01 0.762 0.002 0.0 0.0 0.001 0.0 0.921

IRNN 8 1.0 0.081 0.938 0.059 0.642 0.001 0.0 0.0 0.0 0.0 0.924

LSTM 4 0.982 0.093 0.938 0.015 0.769 0.003 0.0 0.0 0.0 0.0 0.918

RNN 4 0.983 0.097 0.934 0.018 0.744 0.002 0.0 0.0 0.041 0.0 0.916

GRU 4 0.984 0.093 0.938 0.015 0.772 0.003 0.0 0.0 0.001 0.0 0.919

IRNN 4 0.996 0.081 0.939 0.051 0.721 0.001 0.0 0.0 0.006 0.0 0.921

NSL-KDD

LSTM 11 0.997 0.124 0.747 0.018 0.898 0.093 0.45 0.001 0.429 0.002 0.832

RNN 11 0.996 0.111 0.809 0.022 0.879 0.088 0.493 0.001 0.344 0.002 0.840

GRU 11 0.996 0.093 0.781 0.024 0.848 0.076 0.448 0.001 0.53 0.015 0.849

IRNN 11 0.992 0.299 0.738 0.034 0.625 0.058 0.0 0.0 0.047 0.005 0.750

IRNN 8 0.999 0.199 0.805 0.08 0.586 0.063 0.0 0.0 0.089 0.001 0.777

IRNN 4 0.999 0.112 0.757 0.190 0.755 0.047 0.0 0.0 0.001 0.0 0.768
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EVALUATION RESULTS

Two experimental scenarios were executed for each network on KDDCup-99, NSL-KDD and 
UNSW-NB 15. The detailed result of best executed network is described in Table 4. IRNN performed 
better compared to LSTM and other network topologies. Additionally, IRNN has attained highest 
AUC of 0.999, as shown in Figure 8. For NSL-KDD, LSTM attained highest AUC of 0.999, 
as shown in Figure 9. The performance of all network topologies is good for KDDCup-99 and 
NSL-KDD in comparison to the UNSW-NB 15. This is primarily due to the fact that the hyper 
parameter selection is not followed for the UNSW-NB 15. Each topology is made to undergo three 
experimental trials for identifying and categorizing an attack to their corresponding classification. 
All challenges of tests are run for 500 epochs. The best executed model is evaluated on the test data 
set of 10% KDDCup-99. The detailed analyses of test results are reported in Table 5. Additionally, 
the same network topologies are evaluated on the NSL-KDD and UNSW-NB 15 data set; results 
are shown in Table 6 and Table 7 respectively.

Generally, the input connection records are propagated through more than one hidden recurrent 
layers in IRNN to capture the time dependencies. The activation score in each layer helps to distinguish 
an interdependence record as normal or attack, and further classifies the attack to the particular class. 
The activation values of penultimate layer are passed to t-SNE (Maaten, & Hinton, 2008). This gives 
us a reduced 2D representation of the original high dimensional feature vector. The two-dimensional 
vectors are shown in Figure 10. The connection records belong to normal and DoS are well separated. 
The IRNN network is also able to learn the characteristics of Probe attacks. The attacks related to 
low frequency attacks such as U2R and R2L have not completely appeared in a separate cluster.

To identify the significant features which contribute towards identifying an attack, the 
backpropagation methodology is employed (Simonyan, Vedaldi, & Zisserman, 2013). The Taylor 
expansion is applied on the feature vectors penultimate layer to estimate the first order partial derivative 
of them. This gives the silent features which are most significant towards identifying an attack. As 
shown in Figure 11, the connection record is belonging to the Probe. But the features also have 
similar characteristics of the DoS attack. There are few features of R2L contains same characteristics 
of features of Probe. The confusion matrix of IRNN and LSTM for KDDCup-99 data set is shown 
in Figure 12 and Figure 13 respectively. Likewise, confusion matrix of IRNN and LSTM for NSL-
KDD is shown in Figure 14 and Figure 15 respectively. The connection records belong to U2R are 
completely misclassified in both KDDCup-99 and NSL-KDD.

CONCLUSION AND FUTURE WORKS

This paper examines the effectiveness as far as the IRNN and other RNN variants for ID. The detection 
rates attained for KDDCup-99 intrusion data set from IRNN mechanisms are closely comparable to 
other RNN variants. The rationale behind the network structure and its parameters are studied in detail 
with the various experiments of IRNN and RNN variants architectures. Experiments are evaluated 
with full data set and minimal feature sets to understand the importance of each features. IRNN and 
RNN variants are shown effective performance for ‘DoS’ and ‘Probe’ attacks due to the fact that 
they formed a unique time series of network events. However, the performance in classifying low 
frequency attacks is good in relation to the KDDCup-99 challenge triumphant entries. This might be 
improved by promoting training or stacking a few more layer to the existing architectures or adding 
new features to the existing data. In most of the cases, the low frequency attack categories produce a 
single connection record. These low frequency attacks extraction appears to be hard, when information 
of them concealed in other connection records. Overall the RNN and its variants have enhanced the 
performance in detection rates in relation to the KDDCup-99 challenge triumphant entries and other 
previously published results. In addition, the comprehensive performances of IRNN mechanisms are 
evaluated for NSL-KDD and UNSWNB-15 N-IDS data sets.
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continued on following page

Table 4. Detailed results of KDDCup-99, NSL-KDD and UNSW-NB15

Algorithm Accuracy Precision Recall F-Score

MLP 1 0.924 0.996 0.908 0.950

MLP 2 0.934 0.995 0.922 0.958

MLP 3 0.938 0.988 0.934 0.960

MLP 4 0.939 1.0 0.924 0.960

IRNN l 0.933 1.0 0.917 0.957

IRNN 2 0.949 1.0 0.937 0.968

IRNN 3 0.981 1.0 0.977 0.98

IRNN 4 0.999 1.0 0.999 0.99

LSTM 1 0.924 0.996 0.909 0.950

LSTM 2 0.929 0.999 0.913 0.954

LSTM 3 0.938 0.999 0.923 0.960

LSTM 4 0.983 1.00 0.979 0.989

RNN 4 0.942 1.0 0.928 0.962

GRU 4 0.997 1.0 0.997 0.998

NSL-KDD

MLP 1 0.799 0.717 0.879 0.790

MLP 2 0.811 0.701 0.879 0.817

MLP 3 0.861 0.766 0.977 0.859

MLP 4 0.861 0.766 0.977 0.859

IRNN l 0.946 0.891 0.995 0.940

IRNN 2 0.951 0.901 0.996 0.946

IRNN 3 0.968 0.931 1.0 0.964

IRNN 4 0.989 0.976 1.0 0.988

LSTM 1 0.926 0.859 0.992 0.921

LSTM 2 0.896 0.814 0.984 0.891

LSTM 3 0.914 0.838 0.992 0.909

LSTM 4 0.973 0.944 0.996 0.969

RNN 4 0.978 0.958 0.992 0.975

GRU 4 0.989 0.974 1.0 0.987

UNSW-NB 15

MLP 1 0.661 0.619 0.999 0.765

MLP 2 0.687 0.676 0.829 0.745

MLP 3 0.690 0.649 0.951 0.771

MLP 4 0.694 0.647 0.977 0.778

IRNN 1 0.873 0.863 0.966 0.912

IRNN 2 0.894 0.878 0.980 0.926
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Table 4. Continued

Algorithm Accuracy Precision Recall F-Score

IRNN 3 0.895 0.882 0.976 0.926

IRNN 4 0.899 0.889 0.973 0.929

LSTM 1 0.747 0.945 0.667 0.782

LSTM 2 0.753 0.782 0.766 0.774

LSTM 3 0.798 0.927 0.764 0.838

LSTM 4 0.845 0.897 0.872 0.884

RNN 4 0.883 0.876 0.965 0.918

GRU 4 0.897 0.886 0.973 0.928

Figure 8. ROC curve of classical and deep networks for KDDCup-99

Figure 9. ROC curve of classical and deep networks for NSL-KDD
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The attacks to computers and its networks are dynamically evolving in contemporary days. 
DARPA IDS evaluation is remained as a baseline work in most of the IDS for the past several years. 
However, in recent days this is considered as outdated due to the fact that the attacks are common and 
inherent issues in connection records. Though NSL-KDD introduced, it appeared as not representative 
of real network traffic. UNSW-NB15 introduced recently with containing the characteristics of modern 
day attacks, we shortfall behind in evaluating the detailed examine of them. This will be considered 
as one of future direction.

Table 5. Summary as far as test results KDDCup-99 in multi-categorize setting

Algorithm
NORMAL DoS Probe U2R R2L

ACC
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

LSTM 1 0.996 0.082 0.939 0.005 0.819 0.01 0.0 0.0 0.008 0.0 0.923

LSTM 2 0.997 0.08 0.94 0.005 0.82 0.009 0.0 0.0 0.067 0.0 0.925

LSTM 3 0.999 0.056 0.939 0.003 0.932 0.019 0.326 0.0001 0.33 0.001 0.934

LSTM 4 0.998 0.073 0.941 0.003 0.842 0.001 0.0 0.0 0.466 0.002 0.937

IRNN 1 0.986 0.078 0.940 0.050 0.616 0.001 0.0 0.0 0.132 0.001 0.922

IRNN 2 0.986 0.076 0.939 0.022 0.709 0.002 0.0 0.0 0.332 0.003 0.928

IRNN 3 0.979 0.071 0.959 0.023 0.708 0.003 0.0 0.0 0.6 0.001 0.933

IRNN 4 0.999 0.072 0.94 0.001 0.862 0.001 0.171 0.0 0.499 0.003 0.938

RNN 4 0.998 0.073 0.941 0.005 0.867 0.009 0.029 0.0004 0.186 0.001 0.93

CWRNN 4 0.998 0.077 0.940 0.004 0.831 0.001 0.0 0.0 0.395 0.002 0.935

GRU 4 0.998 0.076 0.94 0.003 0.84 0.001 0.0 0.0 0.401 0.002 0.935

MLP 7 0.997 0.078 0.941 0.005 0.819 0.009 0.0 0.0 0.111 0.0004 0.927

Table 6. Summary as far as test results for NSL-KDD in multi categorize setting

Algorithm
NORMAL DoS Probe U2R R2L

ACC
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

LSTM 1 0.985 0.124 0.782 0.007 0.968 0.121 0.403 0.0009 0.164 0.002 0.814

LSTM 2 0.986 0.126 0.782 0.007 0.978 0.095 0.493 0.026 0.134 0.001 0.812

LSTM 3 0.991 0.048 0.800 0.016 0.919 0.099 0.388 0.006 0.394 0.025 0.845

LSTM 4 0.994 0.053 0.841 0.012 0.934 0.071 0.299 0.0003 0.680 0.001 0.896

IRNN 1 0.995 0.084 0.828 0.073 0.839 0.113 0.0 0.0 0.002 0.004 0.799

IRNN 2 0.974 0.232 0.774 0.015 0.854 0.091 0.0 0.0 0.023 .001 0.776

IRNN 3 0.976 0.149 0.777 0.059 0.816 0.065 0.0 0.0 0.343 0.007 0.812

IRNN 4 0.976 0.149 0.777 0.059 0.816 0.065 0.0 0.0 0.343 0.007 0.783

RNN 4 0.985 0.113 0.780 0.014 0.939 0.104 0.433 0.001 0.33 0.002 0.83

CWRNN 4 0.980 0.075 0.773 0.009 0.967 0.114 0.448 0.002 0.325 0.022 0.828

GRU 4 0.99 0.101 0.839 0.005 0.988 0.09 0.388 0.002 0.305 0.001 0.855

MLP 4 0.982 0.091 0.777 0.014 0.922 0.111 0.0 0.0 0.261 0.026 0.816



International Journal of Digital Crime and Forensics
Volume 11 • Issue 3 • July-September 2019

84

Table 7. Summary as far as test results for UNSW-NB15 in multi categorize setting

Figure 10. t-SNE visualization of penultimate layer activation values

Figure 11. Saliency map for Probe attack
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Figure 12. KDDCup ‘99’ confusion matrix for the best performed IRNN network

Figure 13. KDDCup ‘99’ confusion matrix for the best performed LSTM network

Figure 14. NSL-KDD confusion matrix for the best performed IRNN network
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And instead of openly accessible data sets such as KDDCup-99, NSL-KDD and UNSW-NB15, 
it is better to evaluate the performance on the real time generated intrusion information. While, 
transforming the real time tcpdump data to connection records, there is a possibility in enriching 
them by appending the secondary behaviors from various logs, firewalls, alarms of each system, 
syslog servers, routers, and switches. Each connection records will be manually labeled by domain 
experts and this process may be extremely time consuming. Even once the labeled data set will be 
available, the behaviors of traffic outdated and the machine learning model perform in detecting the 
malicious activities inconsistently. We make concrete statement such that the deep learning will be 
a promising direction in detecting novel intrusions with the present-day network traffic connection 
records. To substantiate this, in second direction of our future works we will create such labeled 
connection records and effectiveness of deep learning family mechanisms will be evaluated on the 
same connection records.
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Figure 15. NSL-KDD confusion matrix for the best performed LSTM network
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