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ABSTRACT

Command injection vulnerabilities are among the most common and dangerous attack vectors in IoT 
devices. Current detection approaches can detect single-step injection vulnerabilities well by fuzzing 
tests. However, an attacker could inject malicious commands in an IoT device via a multi-step exploit 
if he first abuses an interface to store the injection payload and later uses it in a command interpreter 
through another interface. The authors identify a large class of such multi-step injection attacks 
to address these stealthy and harmful threats and define them as higher-order command injection 
vulnerabilities (HOCIVs). They develop an automatic system named Request Linking (ReLink) to 
detect data stores that would be transferred to command interpreters and then identify HOCIVs. 
ReLink is validated on an experimental embedded system injected with 150 HOCIVs. According to 
the experimental results, ReLink is significantly better than existing command injection detection 
tools in terms of detection rate, test space, and time.
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INTRODUCTION

IoT devices provide daily services interacting with users and often handle large amounts of user-
provided data. All of this data can potentially be abused by an attacker to cause harm. Many different 
kinds of command injection attacks against IoT devices, such as OS command injection attacks and 
SQL injection attacks, are well understood. Such attacks can be prevented by sanitizing user input, 
and many approaches to address this problem were presented in the last few years.

One common assumption underlying many detection and prevention methods is that the data 
stored in the current IoT device or even devices connected to it is safe. However, an attacker might 
bypass the defenses via so-called higher-order injection vulnerabilities (HOCIVs) if he first stores the 
payload through a request and later uses this payload in a command interpreter through another request.

Consider a web service interface that saves the user’s setting parameter (e.g., syslog server’s 
address) to a config file. Another interface read the config file’s setting parameter to a command 
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shell. In this example, testing the former or latter interface in isolation could result in false negatives 
because they cannot trigger the vulnerability alone. Existing testing methods (Stasinopoulos, 2019) 
(Tool, 2020) need to enumerate and test all interface combinations to find this vulnerability, and it’s 
not realistic in IoT devices with many interfaces.

Such vulnerabilities are often overlooked, but they could have severe impacts in practice. For 
example, an OS command injection attack would gain persistence if the injection payload could be 
stored in a configuration file while executable directories are not writable. Thus, detecting HOCIVs 
is crucial to improve the security of IoT devices.

Detecting such vulnerabilities can be done via either static or dynamic approaches. For static 
approaches, Dahse et.al. (Dahse, 2014) proposed RIPS to detect second-order vulnerabilities and 
related multi-step exploits in web applications by analyzing reads and writes to the web server’s data 
stores. Redini et.al. (Redini, 2020) proposed Karonte to detect insecure multi-binary interactions 
in embedded firmware using a set of inter-process communication (IPC) data stores, it could find 
HOCIVs across multiple binary files. However, it is challenging to construct vulnerability PoCs (Proof 
of Concept) based on static analysis approaches, and a lot of manual analysis by source code or binary 
analysis expert is required. It is not realistic for the security testing of ever-changing IoT devices.

There are several dynamic approaches to detect command injection attacks in IoT devices via 
fuzzing (Stasinopoulos, 2019) (Tool, 2020), which do not require expert experience when testing. 
Such approaches are focused on fuzzing a single request and try to inject command injection payloads 
to all possible inputs. The analysis tools determine if the injected commands are executed. However, 
these approaches have high false-negative rates when detecting HOCIVs since triggering HOCIVs 
need to send different requests in specific orders.

In this paper, we present ReLink, a novel detection method for HOCIVs in IoT devices combining 
fuzzing and dynamic data flow tracking. First, we explore all network interfaces of the target IoT 
device by sending all possible requests on them and collect all data stores that are written to or read 
from by these requests. Second, we can get the data dependency graph between these requests based 
on the collected data stores and identify all possible request chains that may trigger HOCIVs based 
on the graph. Third, all the possible request chains are sent in order. A detailed data flow analysis 
is then performed to determine if the request chain could trigger commands’ execution with user’s 
input. Finally, we fuzz these selected request sequences to detect HOCIVs. With ReLink, we can 
detect HOCIVs with linear test space and low memory consumption, while most of the other methods 
require exponential test space and high memory consumption.

We implemented ReLink in a prototype for Linux-based IoT devices. We evaluated our approach 
by testing an experimental embedded system injected with 150 variants of HOCIVs compared our 
system with four well-known command injection fuzzing tools. Overall, ReLink detected 87.3% 
HOCIVs while reference tools missed more than 90% HOCIVs, indicating that these approaches 
do not correctly handle such vulnerabilities. ReLink cut more than 50% test space and time than the 
reference tools. In summary, we make the following contributions:

We introduce novel combinations of dynamic analysis techniques to perform cross-request taint 
analysis. To do so, we design a novel approach to precisely apply and propagate taint information 
across multiple requests.

We propose ReLink, a novel dynamic analysis approach to identify HOCIVs triggered by request 
sequences. ReLink radically reduces the number of test cases, making real-world IoT devices analysis 
practical.

We implement and evaluate our prototype of ReLink on an experimental IoT device with 150 
HOCIVs, showing that our tool can successfully propagate taint information across multiple requests, 
resulting in the discovery of 87.3% preset HOCIVs.
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ATTACK MODeL AND COMMAND INJeCTION VULNeRABILITIeS

Attack Model
IoT devices process data through the network. This data can come directly from the user through 
the various interface (e.g., through a web interface). In this paper, we assume that the attacker could 
access the target IoT device’s various services by sending network requests either through a local 
network or the Internet.

This attack scenario is common since IoT devices are designed to provide users (including 
attackers) with various network interfaces. It is also easy to extend. For example, combining with 
a CSRF attack, the attacker could perform the attack even without interacting with the IoT devices 
directly.

Requests to IoT Devices
IoT devices usually provide a large number of interfaces. Users can send requests to these interfaces 
to achieve interaction with the device. Different requests sent to an IoT device are often handled by 
different threads or processes. These requests usually share data through a finite set of inter-thread 
or inter-process communication channels, especially data stores that can be persisted for stable 
communications. For example, a request first writes a configuration file, then another request reads 
the file and processes the configuration.

This paper distinguishes different types of requests as follows:
Inputting and writing request: A request that accepts the user’s input and writes it to a data store.
Reading and writing request: A request that reads a data store and writes the data store’s content 

to another data store.
Reading and processing request: A request that reads a data store and processes the data store’s 

content.
However, we could also identify the inputting and processing request that could lead to common 

command injection vulnerabilities, but we ignore them since this paper focuses on HOCIVs.
Data stores are important links between different requests. They are mainly divided into the 

following types: file, database, socket, pipe, network location, shared memory, environment variable, 
HTTP Session, hostname, directory and symbolic link.

Command Injection Vulnerabilities in IoT Devices
Command injection is an attack in which the goal is to execute arbitrary commands on the host 
operating system via a vulnerable application. Command injection attacks are possible when an 
application passes unsafe user-supplied data (forms, cookies, HTTP headers, etc.) to a command 
interpreter (generally refers to the OS command shell, including SQL, NoSQL, SMTP, and LDAP, 
etc. in this paper).

It is easier to exploit command injection vulnerabilities because it just uses command scripts to 
complete attacks. Many IoT malware exploits this type of vulnerability, such as Mirai (CVE-2020-
5902, 2020). Therefore, such vulnerabilities bring significant security risks to IoT devices.

HIGHeR-ORDeR COMMAND INJeCTION VULNeRABILITIeS

Motivation example
CVE-2019-7297 in D-Link DIR 823G with firmware version no larger than 1.02B03 is a typical 
higher-order command vulnerability. The vulnerability triggering process is divided into two steps:

1)  Sending payload through SetNetworkTomographySettings request.
2)  Trigger payload through GetNetworkTomographyResult request.
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First, the payload was stored in the data store through the first request, and then the payload in the 
data store was read and processed through another request, which finally triggered the vulnerability.

Definition
Unlike traditional command injection vulnerabilities triggered directly within a one-step request for 
a single process (we call them first-order command injection vulnerabilities, FOCIVs), higher-order 
command injection vulnerabilities (HOCIVs) are triggered through multi-step requests across different 
threads, processes, or devices. To exploit HOCIVs, attackers need to save the payload through the 
inputting and writing request and trigger the payload through the reading and processing request.

Among HOCIVs, 2-step request triggered is called second-order command injection vulnerabilities 
(SOCIVs), 3-step request triggered is called third-order command injection vulnerabilities (TOCIVs), 
and so on.

Modeling
The general form of HOCIV can be described as state transitions triggered by multiple requests:

1)  Inputting and writing request r1 reads the payload p from attacker u and writes the payload into 
data store l1.

2)  Reading and writing requests (r2-ri-1) would lead copying or transferring of the payload p from 
one data store to another.

3)  Reading and processing request ri triggers the command injection with reading payload p from 
one of all the possible locations storing p.

HOCIV’s triggering process is shown in the following expression:

HOCIV={r1(read(u,p),write(l1, p)), r2(read(l1,p),write(l2, p)),…,ri(read(l1||…||li-1, 
p),triggered(p))}                  (1)

where read(v1,v2) / write(v1,v2) stands for reading or writing the data of v2 from or to the location 
v1, i=2 for the SOCIVs, i=3 for the TOCIVS, and so on.

Challenges
HOCIVs are inevitable and difficult to detect in modern IoT devices. There are challenges for both 
static and dynamic analysis approaches.

For static analysis, IoT devices’ compositions are becoming more complex and interconnected, 
including many third-party components composed of many code libraries and million lines of code. 
So, it isn’t easy to analyze the entire IoT system efficiently, and lots of security expert experience is 
also required.

For dynamic analysis, black-box fuzzing approaches are challenging to detect HOCIVs because 
HOCIVs require precise request sequences to be triggered, while these approaches focus on fuzzing 
one single request. Grey-box fuzzing approaches need to inject codes into all the tested processes, 
which is an unacceptable cost for the IoT devices with limited memory and computing resources, 
and also some online systems cannot modify their executable files for protection while simulating 
these systems is also challenging due to the reliance on a lot of hardware input.

Approach Overview
To detect HOCIVs, we designed and implemented a lightweight and efficient automated detection 
system named Request Linking (ReLink) combining fuzzing with dynamic data flow tracking. ReLink 
is for Linux-based IoT devices. Fig.1. shows the system block diagram. ReLink mainly includes six 
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modules: stracing, requests exploring, request dependency graph recovery, request chains testing, 
request chain data flow tracking, and higher-order fuzzing.

As is shown in Fig.1., the work process of ReLink is as follow:

1)  Stracing module traces all the system calls of all the network service processes in target IoT 
device and provides log file to other modules of ReLink.

2)  Requests exploring module explores and records all the legal requests on the public interfaces 
of target IoT device.

3)  Request dependency graph recovering module recovers dependency graph for the explored 
requests based on system call logs traced by strace and generates request chains based on the 
graph.

4)  Request chains testing module tests the generated request chains based on the explored requests 
recorded by requests exploring.

5)  Request chain data flow tracking module tracks data flows of these tested request chains based 
on strace logs and matches request chains that might trigger HOCIVs.

6)  Higher-order fuzzing module fuzzes the inputting and writing request of matched request chains, 
replays the other requests in chains, and detects HOCIVs if the injection payload is excuted.

DeSIGN AND IMPLeMeNTATION

This section will detail the design and implementation of ReLink.

Stracing
Stracing module installs on the target IoT devices and monitors the selected system calls (Page, 2020) 
of all the network service processes using the command-line tool strace (Strace, 2020).

Strace exists on most real-world Linux-based IoT devices though many Linux tools have been cut 
according to our findings. Strace is a lightweight, diagnostic, debugging, and instructional userspace 
utility for Linux. It is used to monitor and tamper with interactions between processes and the Linux 
kernel, including system calls, signal deliveries, and process state changes.

Figure 1. Framework of Relink
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The memory and CPU resources occupied by strace are meager (usually less than 1% on CPU 
and memory usage). Therefore strace is suitable for online testing of resource-constrained IoT devices.

Stracing focuses on system calls with reading/writing on data stores (Table I) and writing to 
command interpreters (Table II) triggered by network requests.

Stracing records these logs into a file and provides the file to request dependency graph recovering 
and request chain data flow tracking of ReLink.

Table 1. Observable readings/writings on data stores in strace log

Data Store Type
Observable System Calls

Read Write

File
read/readv/pread/preadv/preadv2/readahead(file 
fd,…) 
mmap(…, file fd,…)

write/writev/pwrite/pwritev/pwritev2(file 
fd,…)

Database read/readv/pread/preadv/preadv2(database server 
socket fd,…)

write/writev/pwrite/pwritev/
pwritev2(database server socket fd,…)

Socket read/readv/pread/preadv/preadv2(socket fd,…) write/writev/pwrite/pwritev/
pwritev2(socket fd,…)

Pipe read/readv/pread/preadv/preadv2(pipe fd,…) write/writev/pwrite/pwritev/
pwritev2(pipe fd,…)

Network Location read/readv/pread/preadv/preadv2(network server 
socket fd,…)

write/writev/pwrite/pwritev/
pwritev2(network server socket fd,…)

Shared Memory shmat(shmid,…) shmat(shmid,…)

Environment Variable execve(“/bin/echo”,…) write(etc/profile fd,…)

HTTP Session read(session file fd/session server socket fd,…) write(session file fd/session server socket 
fd,…)

Hostname gethostname()/getdomainname()/hostname/uname sethostname()/setdomainname()

Directory open(pathname,…)/openat(dirfd,…)/
creat(pathname,…) mkdir(pathname,…)/mkdirat(dirfd,…)

Symbolic Link readlink(pathname,…)/readlinkat(dirfd,…) symlink(pathname,…)/
symlinkat(dirfd,…)

Table 2. Observable writings to command interpreter in strace log

Interpreter Type Observable System Calls

OS Shell execve(pathname,argv,…)/execveat(…, pathname,argv,…)

SQL write(SQL server_socket fd,…)

NoSQL write(NoSQL server socket fd,…)

IMAP/SMTP write(IMAP/SMTP sever socket fd,…)

LDAP write(LDAP server socket fd,…)
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Requests exploring
Requests exploring module explores all the network requests that could be sent to the target IoT device 
such as requests of Web, SNMP, UPNP requests. It consists of two stages, service identification and 
request exploration.

Service identification identifies open service through the network scanner tool Nmap (nmap, 
2021).

Request exploration explores the available requests that could be sent to the open service through 
exploration tools based on service type. Such as we can use Web crawler tool to explore request that 
could be sent to the web service, SNMP walking tool to explore all the availbale SNMP requests.

Request Dependency Graph Recovering
Given the strace log triggered by the exploring requests, request dependency graph recovering module 
identifies different types of requests as mentioned in section II.B, builds a Request Dependency Graph 
(RDG), and generates request chains based on RDG.

Request type identifying: Request type is identified by system calls of the request handler thread 
in target IoT device according to the strace log.

For an inputting and writing request, the thread reads user’s input and writes full or part of the 
input to a data store from the strace log.

For a reading and writing request, the thread reads a data store and write full or part of the data 
store’s content to another data store.

For a reading and processing request, the thread reads a data store and processing full or part of 
the data store’s content in a command interpreter (as shown in Table II).

It is recorded with the following keys for every identified request:
{id, time, source address, target address, content, type, precondition, postcondition}.
Key precondition and postcondition have sub keys as following:
{ type(reading / writing / inputting / processing), value(data store location description / inputting 

content / processing command)}

Algorithm 1 Request Dependency Graph Recovery Algorithm

function RDG_recovery(R)

E¬{}

for ra Î R:

for rb Î {R-ra}:

if ra.postcondition.type=reading

if rb.precondition.type=writing

if ra.postcondition.value=rb.precondtion.value

E.add(ra,rb)

end if

end if

end for

end for

return {R,E}

end function
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RDG building: RDG is a directed graph that models communications among exploring requests. 
The RDG is iteratively recovered by leveraging data store linking based on the identified requests, 
which can reason about the different inter-request communication paradigms. RDG recovery algorithm 
is as follows:

Request chain generating: A request chain is a path in the RDG, starts from an inputting and 
writing request, ends with a reading and processing request, and connected by sharing data stores. It 
represents a request sequence that may trigger an HOCIV.

However, these generated request chains may have false positives, mainly because many requests 
read or write the same data store that does not contain user input. Therefore we need to test these 
request chains further.

Request Chains Testing and Data Flow Tracking
Given request chains generated from RDG, request chains testing module sends these request chains 
based on the recorded requests sent and tacking their data flow using strace again.

Given the strace log triggered by request chains testing, request chain data flow tracking module 
tracks input data flows of these tested request chains to detect whether there is an input data flow. 
Without input data flow, a request chain could not trigger HOCIVs since the user’s input is not 
injected into the executed command.

In detail, this module checks whether the user’s input content of the inputting and writing request 
appears in the processing command of the reading and processing request. If yes, filter out this request 
chain for further testing.

This module outputs the matched request chains that have input data flows.

Higher-Order Fuzzing
Given the matched request chains, higher-order fuzzing module fuzzes the inputting and writing 
request and replays the other requests in the chain to detect whether the injection payload is executed.

This module is based on popular command injection detection tools, such as Commix (Github, 
Commixproject/Commix, 2020) and Sqlmap (Tool, 2020). We use these tools to fuzz the inputting 
and writing request. But we modified their logic of judging vulnerabilities. The logic of determining 
whether there is an HOCIV is executed after all requests in the request chain are sent.

The original command injection vulnerability detection logic is as follows:

1)  Send a request with an injection payload.
2)  Detect whether the payload is executed.

The modified detection logic is as follows:

1)  Send an inputting and writing request with injection payloads.
2)  Send reading and writing requests in order(if there are).
3)  Send a reading and processing request.
4)  Detect whether the payload is executed.

Comparison with existing Fuzzing Approaches
A good fuzz-based detection method aims to detect all vulnerabilities with a small number of test cases. 
Existing fuzz methods need to enumerate all possible combinations of requests to detect all HOCIVs.

Fig.2. shows the comparison between ReLink(lower part) and existing fuzzing approaches (upper 
part) when detecting HOCIVs triggered by three steps.
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The number of existing fuzzing approaches’ test cases is: n*(n-1)*(n-2)*s*s*s, where n represents 
the number of explored requests, s represents the maximum number of fuzz requests for each explored 
request.

The number of ReLink’s test cases is: p*s, where p represents a constant number of request 
chains matched by ReLink.

From this example, we can see that ReLink has greatly reduced the test space through fewer test 
cases(>n*(n-1)*(n-2)*s times smaller).

It can be inferred that the greater the number of explored requests, the longer the HOCIV request 
chain, and the greater the test space ratio that ReLink can reduce.

eXPeRIMeNTAL ReSULTS

We did a comparative test with top-ranked command injection fuzzing tools, such as Commix, 
Sqlmap, shelling(works with Burpsuite (Portswigger, 2020)) (Github, Ewilded/Shelling, 2020), and 
fuzzdb(works with ZAP (Owasp, 2020)) (Github, Fuzzdb-Project/Fuzzdb, 2020).
• Commix: a top-ranked open-source OS command injection detection tool.
• Sqlmap: a top-ranked open-source SQL injection detection tool.
• Shelling: a popular open-source OS command injection detection tool, usual-ly works with 

Burpsuite.
• Fuzzdb: a popular open-source injection (OS command injection, NoSQL injection, LDAP 

injection, SMTP injection, etc.) detection tool, usually works with ZAP.
Although there are some research related to high-order vulnerabilities (Dahse, 2014) (Pellegrino 

G. &., 2014) (Olivo, 2015) (Alhuzali A. E., 2016) (Alhuzali A. G., 2018) (Zhang, 2019) (De Meo, 
2020) (Redini, 2020) (Xiao, 2020), we could not find any open source tool that can be used to detect 
HOCIVs in IoT devices without major modification, so we will compare them with them in the 
related work section.

Target Device
We implemented an experimental embedded system based on ARM Vexpress OS simulated in QEMU 
with 150 HOCIVs implanted for evaluation. We have implemented 150 applications with HOCIVs 
written in C/C++/Bash/Lua, all of which have network interfaces.

An example of vulnerable applications is shown in Listing 1-3.

Figure 2. ReLink vs traditional fuzzing on detecting HOCIVs
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1 http_args = ngx.req.get_uri_args();
2 config = http_args[“config”];
3 file = io.open(“test.config”, “w”);
4 assert(file);
5 file:write(config);
6 file:close();

Listing 1: Inputting and writing request handler

1 reading_file = io.open(“test.config”, “r”);
2 assert(reading_file);
3 local config = reading_file:read(“*a”);
4 reading_file:close();
5 writing_file = io.open(“ip.config”, “w”);
6 assert(writing_file);
7 writing_file:write(config);
8 writing_file:close();
9 file:close();

Listing 2: Reading and writing request handler

1 file = io.open(“ip.config”, “r”);
2 assert(file);
3 local config = file:read(“*a”);
4 file:close();
5 local r = io.popen(‘ifconfig ‘ .. config);

Listing 3: Inputting and processing request handler
Table III shows a summary of developed vulnerable applications. Each type of HOCIVs’ triggering 

process covers 10 data stores, and the corresponding applications cover three programming languages 
(C/Bash/Lua). Application types include Web, SNMP, analog private protocols, etc. Application’s 
concurrent methods include multi-process and multi-thread.

The applications with SOCIVs provides two external interfaces, the applications with TOCIVs 
provides three external interfaces, and the applications with FOCIVs provides four external interfaces. 
A user can send a request containing a parameter to these interfaces.

Table 3. HOCIVs implanted in vulnerable applications

Command Injection Type
Number of HOCIVs

SOCIV TOCIV FOCIV

OS Shell 10 10 10

SQL 10 10 10

NoSQL 10 10 10

IMAP/SMTP 10 10 10

LDAP 10 10 10
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Testing with ReLink and Reference Tools
We first installed the stracing script in the experimental embedded system for ReLink. Stracing was 
activated when ReLink started testing.

To facilitate comparison, we set the number of payloads of each tool for each type of injection 
attack to the same since each tool comes with a different number of payloads.

We directly offer the explored requests data as input for each tool since 3/4 of the reference tools 
don’t support service exploring.

Results and Analysis
For detection rate: As shown in Table IV, 87.3% of all the vulnerable embedded applications with 
HOCIVs had been detected by ReLink.

After detailed analysis, the false negatives of ReLink are HOCIVs using the hostname as the 
data store. The main reason is that the system restricts the value of hostname and cannot contain 
most special characters. At present, it is impossible to construct a valid payload through hostname, 
although this is still a potential injection vector in some situations.

However, the reference tools could not find more than 90% of the HOCIVs, mainly because 
they are most suitable for single-process applications. Anyway, these reference tools did detect some 
HOCIVs mainly because they happened to send requests in the right orders. But they can’t reproduce 
the injection attack because they cannot know which requests triggered the attack.

For test cases and time spent: ReLink sent 48% less test requests than other reference tools when 
detecting SOCIVs with two explored requests, 64.7% less when detecting TOCIVs with three explored 
requests, 73% less when detecting FOCIVs with for explored requests. The more explored requests 
of the test target, the more obvious the advantage of ReLink to reduce the test space. The reduction 
in the number of test requests directly reduces the time spent on testing, as shown in Table IV.

Table 4. Experimental result

Type Tools
Detection Results

Detection Rate Requests Sent Time Spent

S 
O 
C 
I 
V

ReLink 45/50 5200 <10min

Commix 4/50 10000 >20min

SQLmap 5/50 10000 >20min

Shelling 3/50 10000 >20min

Fuzzdb 2/50 10000 >20min

T 
O 
C 
I 
V

ReLink 44/50 5300 <10min

Commix 1/50 15000 >30min

SQLmap 2/50 15000 >30min

Shelling 0/50 15000 >30min

Fuzzdb 0/50 15000 >30min

F 
O 
C 
I 
V

ReLink 42/50 5400 <10min

Commix 0/50 20000 >40min

SQLmap 0/50 20000 >40min

Shelling 0/50 20000 >40min

Fuzzdb 0/50 20000 >40min
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Comparisons to Related Work
Research on multi-step triggering vulnerabilities using is relatively few. Existing work can be divided 
into static analysis, dynamic analysis, and dynamic-static mixed analysis.

For static analysis: Karonte (Redini, 2020) detects malicious interactions between firmware 
modules through dynamic taint tracking using IPC channel identification. It can successfully track 
and constrain multi-binary interactions including security bugs, and could find HOCIVs across multiple 
binary files. SVHunter (Xiao, 2020) could effectively identify data dependency creation and chaining attacks 
on SDN controllers. It combines data flow backtracking, an event reasoning language used to formally 
specify the preconditions and postconditions of data dependency chaining events, and automated causality 
reasoning. ChainSAW (Alhuzali A. E., 2016) tackled the problem of automated exploit generation for 
web applications. It is based on precise models of application workflows, database schemas, and native 
functions to achieve exploit generation. It could analyze open source Web applications and generate 
first- and second-order injection exploits. RIPS (Dahse, 2014)could detect second-order vulnerabilities 
and related multi-step exploits in web applications using an automated static code analysis approach. 
However, it relies on modeling and analyzing PHP and other source code, which does not apply to IoT 
devices composed of multiple components. Our work is not limited to any programming language that 
can run on Linux. Torpedo (Olivo, 2015) is a static analysis approach for detecting second-order DoS 
vulnerabilities in web applications. It can successfully detect second-order DoS vulnerabilities in widely 
used web applications written in PHP.

However, these static approaches rely on modelling and analyzing the source code or binary code, 
which does not apply to multi-interaction systems composed of complex components. They also produce 
many false positives, and the problem would be more serious when applied to large-scale multi-interaction 
systems involved in this paper. In contrast, our work is not limited to any specific programming language 
and has few false positives due to our adopted dynamic analysis method.

For dynamic analysis: Navex (Alhuzali, 2018) is the follow-up work of chainsaw, it combines dynamic 
analysis that is guided by static analysis techniques in order to automatically identify vulnerabilities and 
build working exploits. It can scale the process of automatic vulnerability analysis and exploit generation 
to large applications and to multiple classes of vulnerabilities. SrFuzzer (Zhang, 2019) is an automated 
fuzzing framework for testing physical SOHO devices. It continuously and effectively generates test cases 
by leveraging two input semantic models, i.e., KEY-VALUE data model and CONF-READ communication 
model, and automatically recovers testing environment with power management. It can trigger multi-type 
vulnerabilities. Deemon (Pellegrino G. J., 2017) is an automated security testing framework to discover 
CSRF vulnerabilities. It is based on based on a new modeling paradigm which captures multiple aspects of 
web applications, including execution traces, data flows, and architecture tiers in a unified, comprehensive 
property graph. WAFEx (De Meo, 2020) is a formal and automated approach that allows one to (i) reason 
about vulnerabilities of web applications and (ii) combine multiple vulnerabilities for the identification 
of complex, multi-stage attacks. Giancarlo Pellegrino and Davide Balzarotti (Pellegrino, 2014) presents a 
black-box testing technique to detect logic vulnerabilities in web applications. It is based on the automatic 
identification of a number of behavioral patterns starting from few network traces in which users interact 
with a certain application’s functionality.

We also use the dynamic analysis method, the above methods are more closely related to our work. 
Navex is based on source code while it is hard to extend to IoT devices usually without source code. SrFuzzer 
is based on black-box testing and specific vulnerability patterns and can not find vulnerabilities more than 
three steps. Deemon is also based on specific vulnerability triggering patterns and is hard to extend to the 
injection vulnerabilities addressed in our work. WAFEx is heavily on modelling existing vulnerabilities. 
While our work is based on data flow tracking inside the system, we can find vulnerabilities triggered in 
multiple steps. For taint-style vulnerability, our work is more general and efficient.
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CONCLUSION

In this paper, higher-order command injection vulnerabilities (HOCIVs) are proposed to expose the stealthy 
yet harmful threats in IoT devices. Using features extracted from the HOCIV models, a dynamic-data-
flow-tracking-based fuzzing method is presented to detect HOCIVs, and an automated detection system 
named ReLink is developed to realize the solution. We will apply the developed approach to more complex 
real-world IoT devices using static analysis methods in our future work.
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