
DOI: 10.4018/IJCINI.20211001.oa29

International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4 • October-December 2021

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Many-Objective Particle Swarm 
Optimization Algorithm Based 
on New Fitness Allocation and 
Multiple Cooperative Strategies
Weiwei Yu, Beihang University, China

Li Zhang, Beihang University, China

Chengwang Xie, Nanning Normal University, China

ABSTRACT

Many-objective optimization problems (MaOPs) refer to those multi-objective problems (MOPs) with 
more than three objectives. In order to solve MaOPs, a multi-objective particle swarm optimization 
algorithm based on new fitness assignment and multi cooperation strategy (FAMSHMPSO) is 
proposed. Firstly, this paper proposes a new fitness allocation method based on fuzzy information 
theory to enhance the convergence of the algorithm. Then a new multi-criteria mutation strategy is 
introduced to disturb the population and improve the diversity of the algorithm. Finally, the external 
files are maintained by the three-point shortest path method, which improves the quality of the 
solution. The performance of FAMSHMPSO algorithm is evaluated by evaluating the mean value, 
standard deviation, and IGD+ index of the target value on dtlz test function set of different targets 
of FAMSHMPSO algorithm and other five representative multi-objective evolutionary algorithms. 
The experimental results show that FAMSHMPSO algorithm has obvious performance advantages 
in convergence, diversity, and robustness.

Keywords
Fitness Allocation, High-Dimensional Multi-Objective Optimization, Multi-Criteria Variation, Particle Swarm 
Optimization

1. INTRODUCTION

In today’s scientific research and engineering practice, the problems faced by decision makers are 
becoming more and more complex, and often need to deal with multiple objectives at the same time. 
Usually, this type of problem that requires multiple objectives to achieve the optimal design is called 
Multi-objective Optimization Problem(Wang, Zhang, Li, Zhao et al, 2018; Wu et al., 2017)(MOP). 
Generally, the goals of the MOP problem conflict with each other, and it is often difficult to obtain the 
optimal solution to the problem. As the number of goals increases, this defect becomes more obvious. 
Therefore, there is no unique optimal solution for the MOP problem so that each target can obtain 
the optimal value at the same time, but a solution set consisting of a set of compromise solutions, 
that is, a Pareto solution set. Because the MOP problem model is highly complicated, it is difficult 
to make general analysis methods effective, So many researchers have done a lot of research(Nayyar, 
Garg, Gupta et al, 2018; Nayyar, Le, & Nguyen, 2018; Nayyar & Nguyen, 2018a), most of them use 
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multi-objective optimization algorithm(Nayyar & Nguyen, 2018b; Nayyar & Singh, 2016) to obtain 
the approximate value of Pareto solution set. Particle Swarm Optimization(Kennedy & Eberhart, 
1944)(PSO) is a heuristic group intelligent random algorithm for simulating the evolution process 
of natural biological groups. It has the advantages of fast convergence, simple parameter setting and 
easy programming. Because it has the characteristics of independent problem model, the adaptability 
of optimization process, the implicit parallelism and the robustness of solving complex nonlinear 
problems in single-objective optimization, some scholars have begun to apply it to Multi-objective 
optimization problems and widespread attention in the field of multi-objective optimization. So far, 
researchers have proposed a variety of multi-objective particle swarm optimization algorithms based 
on different research backgrounds and perspectives. Among them, D2MOPSO(Moubayed et al., 2014) 
and OMOPSO(Kaur & Kadam, 2018) algorithms based on decomposition ideas are some of the more 
classical algorithms. But most articles about particle swarms deal with low-dimensional multi-objective 
problems, that is the number of targets is generally 2-3. In reality, problems that require more and 
more targets to be optimized at the same time are constantly emerging. Researchers generally call the 
problems of simultaneously optimizing 4 or more targets as Many-objective optimization problem(Li, 
Liang, Yang et al, 2019)(MaOP). Compared with the MOP problem, the MaOP problem is more 
difficult to solve. The reason is as follows: For many-objective optimization problem, the search 
ability of these traditional algorithms is greatly reduced. As the target spatial dimension increases, the 
number of non-dominated solutions in the population will increase exponentially, even close to the 
entire Pareto frontier. For example, for the MaOP problem of m targets, the k solutions are distributed 
on each target, and mkm-1 solutions are needed to represent the Pareto frontier. Pareto dominance is 
a strong sorting relationship. When the dimension of the optimization problem is high, it will cause 
the evolutionary algorithm to generate a large number of non-dominated solutions in a finite-scale 
group. There is a lack of certain comparison criteria between these non-dominated solutions, making 
it difficult to choose from them, and the search ability of the algorithm will be greatly weakened. 
Visualization of non-dominated solution sets for many-objective optimization is also a problem. The 
commonly used Cartesian coordinate system can only represent 3D at most, and it is not suitable 
for high-dimensional multi-target problems, which creates obstacles for the final choice of decision 
makers. Because the Pareto dominance relationship is degraded in the high-dimensional target 
space, the distribution retention mechanism becomes the dominant factor of the algorithm selection 
individual, but the selection mechanism dominated by the individual density information may not be 
able to effectively drive the approximate Pareto front to approximate the real Pareto front. It may even 
have a negative impact on the optimization process. many-objective optimization needs to calculate 
more Pareto optimal solutions to approximate the Pareto frontier, so the complexity of the algorithm 
is also higher. Recent studies have also shown that the traditional Pareto-dominated PSO algorithm 
performs even worse than the random search algorithm when the number of optimization problems 
increases to 10 or more.

In the past few decades, PSO algorithms have developed rapidly, and they are not only widely 
used in the field of multi-objective optimization, but also have a good performance on many-objective 
optimization problems. In summary, it can be divided into the following categories: 1)Combining 
effective strategies to improve the performance of particle swarm algorithm(Li et al., 2018; Li, Wang, 
& Li, 2019; Wang et al., 2017). This type of method is to increase the diversity and convergence of 
the particle swarm algorithm by using effective elite particle selection, local search, and Gaussian 
chaos mutation strategies. For example: Wang et al.(2018) proposed a hybrid PSO algorithm using 
adaptive learning strategy (ALPSO) in order to balance the global search ability and convergence 
of the PSO algorithm. The algorithm designed a tolerance-based search direction adjustment 
mechanism It improves the convergence accuracy and convergence speed of the PSO algorithm. 2)
Add new particle speed and position update methods(Wang et al., 2017; Zhang et al., 2008). This 
type of method is an innovation of the original particle update formula of the PSO algorithm, so that 
the new particle speed and position update formula can greatly improve the optimization speed and 
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accuracy of particles. For example: Kumar et al.(2016) proposed a self-learning MOPSO algorithm 
to deal with multi-objective optimization problems. This algorithm proposed 4 kinds of calculation 
methods on particle speed and position update, which effectively improved the effectiveness of each 
particle search. 3)A method of adding user preferences(Wang et al., 2019; Zhou et al., 2018). The 
preference of such methods in multi-objective optimization means that the decision maker assigns 
different values to the goal to indicate its importance or priority order. It enables the search process 
or optimization results to be in the area of interest of the decision maker, but requires the user to 
specify preferences in advance or requires interaction with the search process, thereby increasing 
the difficulty for users to use the algorithm. For example, Ki-Baek Lee et al.(2011) proposed a 
preference-based solution selection algorithm (PSSA) in order to solve the defect that the number 
of non-dominated solutions increases exponentially with the increase in the number of MOPSO 
algorithms. The user’s preference is added to the MOPSO algorithm, so that the user can choose the 
required solution from it, which greatly improves the efficiency of the algorithm. 4)Develop new 
fitness allocation strategies(Jaszkiewicz, 2002; Kaliszewski et al., 2012). This type of method uses the 
individual’s fitness allocation to guide the evolution of the algorithm, because the fitness allocation 
mechanism determines the performance of the algorithm. A good fitness allocation strategy can 
not only reduce the calculation time complexity of the algorithm, but also improve the algorithm’s 
solution performance. For example, Wei et al.(2006) proposed an allocation strategy based on 
Pareto priority relationship ordering and an allocation strategy based on random weight summation. 
Later, more and more scholars carried out more in-depth research on multi-objective particle swarm 
optimization (MOPSO)(Figueiredo et al., 2016; Lin et al., 2018; Zhao, 2018). For example, Raquel 
et al.(2005) used crowding distance as the fitness value to sort particles; Li et al.(2017) used the 
method of integrating GMR (Global margin ranking) and particle density information of particles 
to sort particles, which can efficiently and quickly select pbest and gbest Particle; Lin et al.(2015) 
use aggregate function to process multiple objective functions; Dai et al.(2015) use the method of 
objective space decomposition to ensure the diversity of particle optimal solution; In addition, the 
MOPSO and other optimization algorithms are cross used to carry out collaborative optimization 
through a certain proportion, such as teaching and learning method(Cheng et al., 2017), differential 
evolution method(Su & Chi, 2017), Gaussian mutation method(Jordehi, 2015; Wei, 2012), etc. Among 
the above types of methods, the preference method and the combination of effective strategies are 
commonly used methods, and each has its own advantages and disadvantages. The development of 
new particle speed and position update methods is not only poorly versatile and the effect cannot be 
guaranteed, and new adaptations are developed. The degree allocation strategy works well and the 
method is simple. In addition, the PSO algorithm based on the new fitness allocation strategy does 
not essentially change the original particle swarm algorithm but simply starts with fitness allocation, 
so it does not affect the integration of other algorithm update strategies or methods. For example, a 
decomposition strategy can be used to simplify the optimization problem. A new fitness allocation 
strategy can be used to enhance the performance of the algorithm. At the same time, a better particle 
update formula can be added to further improve the performance of the algorithm. Therefore, the 
new fitness allocation PSO algorithm has the potential to solve complex optimization problems.

Based on the existing PSO algorithm and its variants, this paper proposes a new high-dimensional 
particle swarm evolution algorithm based on the characteristics of many-objective optimization 
problems. This algorithm is different from the existing high-dimensional particle swarm evolution 
algorithms in that: 1) Combined with fuzzy information theory, a fitness allocation method based on 
fuzzy correlation entropy is proposed, which objectively allocates fitness values, which increases the 
pressure of population selection, eliminates the influence of external uncertain factors on the algorithm, 
simplifies the algorithm process, effectively avoids the disadvantage of insufficient population 
selection pressure caused by traditional fitness allocation, and makes the algorithm having better 
convergence. 2) A new multi criteria mutation strategy is introduced, which can effectively disturb 
the process of particle updating, enhance the diversity of the algorithm, and prevent the algorithm 
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from falling into local optimum. 3) Using three-point shortest path method to maintain the external 
files, further improve the quality of the whole solution set. The above three strategies constitute the 
main characteristics of FAMSHMPSO algorithm. They are implemented in different stages of the 
algorithm, taking into account the convergence and diversity of the algorithm, and improving the 
overall performance of the algorithm to solve many objective optimization problems. Section 1 of 
the paper introduces the theory of many-objective optimization problems. Section 2 describes the 
important components of the FAMSHMPSO algorithm and the algorithm flow. It is the key chapter 
of this article. Section 3 is the experimental results and analysis, and the last section is the conclusion 
of this article.

2. RELATED WORK OF FAMSHMPSO ALGORITHM

2.1. Basic Knowledge
Without loss of generality, a multi-objective optimization problem with n decision variables and m 
objective functions, taking the minimization problem as an example, can be expressed as the form 
of equation (1).
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In equation (1), x is called decision vector, X is n-dimensional decision space; y is called 
objective function, Y is m-dimensional target space; objective function F defines mapping function 
and m targets that need to be optimized simultaneously. Whenm ≥ 4 , the formula (1) is called the 
many-objective optimization problem. If X is a connected and closed region in space Rn , and the 
objective function f i m

i
( , , , )= 1 2�  is continuous with respect to x , then equation (1) is a continuous 

many-objective optimization problem. Unless otherwise stated, this article only discusses this type 
of optimization problem.

For any two pointsx x X
1 2
, ∈  in the decision space, when the objective function of x

1
 is not 

greater than and there is at least one objective function smaller than x
2

, x
1
 Pareto is said to dominate 

x
2

, which is recorded as x x
1 2
≺ . If x X* ∈  is not subject to other individuals in the population, 

then x *  is called Pareto non-dominated solution, and the set of all non-dominated solutions in the 
population is called Pareto Set (PS), and the corresponding set of objective functions is called Pareto 
Front (PF).

2.2. FUZZY SET THEORY
Fuzzy Theory refers to the theory of using the basic concept of fuzzy set or continuous membership 
function, and also the method of studying fuzzy phenomena and inaccurate concepts. In the classical 
set theory of accurate mathematics in real life, there are only two possibilities for the relationship 
between an object and a set: belonging or not. The relationship between an object and a fuzzy set in 
fuzzy set theory of fuzzy mathematics is expressed as the degree to which the object belongs to the 
fuzzy set. Its scientific definition is:

Given a given domain U and any mapping µ
A
U: [ , ]→ 0 1 of U to [ , ]0 1 , then µ

A
determines a 

fuzzy sub set A of U .	
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Where µ
A

 is called the membership function of A , and µ
A
u u U( )( )∈  is the degree to which u  

belongs to fuzzy sub set A . It is called the membership degree of u  to A , and can also be directly 
recorded as A u( ) . For the sake of easy understanding, give a simple example.

There are five classmates x x x x x
1 2 3 4 5
, , , ,  in a class group, that is, the domain is 

U x x x x x= { , , , , }
1 2 3 4 5

. Now we assign a score to each student’s personality stability. Dividing the 
score by the percentage system and dividing it by 100 is actually a mapping from the to the closed 
interval, Table 1 shows the fuzzy set of this example.

This determines a fuzzy subset A , which indicates how well the group’s classmates fit into the 
vague concept of “stable character”.

Entropy is a measure of the uncertainty of things, and fuzzy information entropy is a measure 
of fuzzy sets on fuzzy information(Dadid & Cihan, 2014; Li et al., 2015). The fuzzy association 
entropy is proposed based on the fuzzy set theory. Its coefficient represents the similarity of the fuzzy 
information of the two fuzzy sets, and the uncertainty of the fuzzy association entropy mainly comes 
from internal rather than external factors. At present, some researchers have used fuzzy correlation 
entropy to solve problems in decision analysis, image processing, and fuzzy recognition. The results 
are good. These methods can be roughly divided into two categories: the association entropy method 
of rough fuzzy sets(Meng et al., 2014) and the association entropy method of intuitionistic fuzzy 
sets(Moubayed et al., 2014). These two kinds of association entropy methods require upper and lower 

Figure 1. Fuzzy set schematic.

Table 1. Fuzzy set instance

U µ
A
U: [ , ]→ 0 1

x
1      88 µ

A
x( )

1 0.88

x
2      77 µ

A
x( )

2 0.77

x
3      99 µ

A
x( )

3 0.99

x
4      44 µ

A
x( )

4 0.44

x
5      66 µ

A
x( )

5 0.66
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approximation of two groups of memberships, but the relational entropy method of rough fuzzy sets 
is a very harsh condition in the application of equivalence relations(Qiu et al., 2015). But the binary 
relationship in the domain of many-objective optimization is not equivalent. The association entropy 
method of intuitionistic fuzzy sets needs to determine the attribute weight of the target first when 
calculating the correlation entropy coefficient. However, it is very difficult to calculate the attribute 
weight of the target in the many-objective optimization problem, and it is essentially affected by 
external uncertain factors.

2.3. FITNESS ALLOCATION METHOD BASED ON FUZZY ASSOCIATION ENTROPY
This article analyzes the difficulties in applying fuzzy association entropy method to many-objective 
optimization problems. It is found that if different sets are mapped to fuzzy sets based on fuzzy 
information entropy theory and membership function, By comparing the correlations of different 
fuzzy sets, calculating the similarity of the two fuzzy sets, and classifying different fuzzy sets, they 
can just make up for the shortcomings of the above two methods of association entropy.

Therefore, based on the above ideas, this paper proposes a fitness allocation method (FAMOFAE) 
based on fuzzy association entropy to solve many-objective optimization problems. The core idea of 
this method is to use the membership function of the fuzzy set to map the ideal solution in the many-
objective optimization problem and the Pareto solution obtained by the many-objective optimization 
algorithm into a membership fuzzy set containing all the information. Then use the fuzzy information 
entropy theory to process the information contained in the fuzzy set, that is, based on the membership 
fuzzy sets corresponding to the ideal solution and the Pareto solution, to analyze the problem by 
determining how much the Pareto solution contains the ideal solution information (fuzzy association 
entropy coefficient). Finally, the fuzzy association entropy coefficient of the membership fuzzy sets 
is used as the fitness value of the Pareto solution to dominate the selection. It is considered that the 
Pareto solution with a large fuzzy association entropy coefficient is closer to the ideal solution, thereby 
guiding the algorithm evolution. The key of FAMOFAE to achieve many-objective optimization is to 
use the membership function of fuzzy association entropy to map the Pareto solution and ideal solution 
of many-objective optimization algorithm to membership fuzzy sets. The fuzzy sets corresponding to 
the Pareto solution and the ideal solution are effectively correlated, and the association between the 
Pareto solution and the ideal solution is fully mined, thereby solving the basic problem of applying 
fuzzy information association entropy to many-objective optimization.

The advantage of FAMOFAE is to use the fuzzy set theory to take the similarity between the ideal 
solution and the Pareto solution (fuzzy association entropy coefficient) as the fitness to simplify the 
evolution process of the algorithm. Improve the quality of the Pareto solution set, thereby avoiding 
the disadvantage of insufficient population selection pressure caused by traditional fitness allocation, 
and better guide the algorithm evolution.

The general process of FAMOFAE in the many-objective optimization process is as follows: 
First, each sub-objective of the many-objective problem is solved as a single objective to obtain the 
optimal solution, and then these optimal solutions correspond to the decision variables to form the 
ideal solution. Then, a multi-objective PSO algorithm is used to generate a set of Pareto solutions. The 
membership function of the fuzzy set theory is used to map the ideal solution and the Pareto solution 
into a membership fuzzy set containing all the information, and then the information contained in the 
fuzzy set is processed by the fuzzy information entropy theory. That is, based on the membership fuzzy 
set of the ideal solution and the Pareto solution, the problem is analyzed by determining how much of 
the ideal solution information the Pareto solution contains. Finally, the fuzzy correlation coefficient 
is used as the fitness value. It is considered that the Pareto solution with a large fuzzy correlation 
coefficient is closer to the ideal solution, and this solution is added to the external elite file to guide 
the evolution of the high-dimensional multi-target PSO algorithm. All in all, the fuzzy information 
entropy theory and membership function are used to fully mine the similarity between the Pareto 
solution and the ideal solution. The specific implementation process of FAMOFAE is as follows:
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Step 1: Determine the ideal solutionF
B

and Pareto solutioF
i
. The many-objective optimization 

problem containsM sub-goals. The single-objective PSO algorithm is used to obtain the k -sub-
objective optimal solution function value corresponding to the decision variable so that the ideal 
solution X x x x xk k k k

N
k= ( , , , , )

1 2 3
� , so that the ideal solution F X X X X

B
M= ( , , , , )1 2 3 � .

Step 2: Similarly, any Group i  Pareto solution generated by the multi-objective PSO algorithm is 
F X i X i X i X i
i

M= { ( ), ( ), ( ), , ( )}1 2 3 � , and X ik ( )  is the decision variable corresponding to the
k th sub-object of the Group i  Pareto solution and X i x i x i x i x ik k k k

N
k( ) ( ( ), ( ), ( ), , ( ))=

1 2 3
� .

Step 3: Using the fuzzy set theory, calculate the membership degree of each sub-goal and establish 
the fuzzy set of membership degree. The membership function is used to extract the uncertainty 
of each sub-objective, and the normalized membership function is used to map each to the 
membership fuzzy set, eliminating the influence of each sub-target dimension and magnitude 
on the algorithm. The normalized membership function is used to calculate the membership 
degree of each sub-object as follows: 
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Where f B
k
( )  is the optimal solution function value of thek th sub-object of the ideal solution F

B
, 

f i
k
min( ) is the minimum function value of the k th sub-object of the Pareto solution of the i -group, 

and f i
k
max( ) is the largest function of the k -th sub-object of the Pareto solution of the i -group Value, 

U k
N
( )  is the k th target membership.

Step 4: Using the mapping result of equation (2), the membership degrees of the ideal solutionF
B

and the Pareto solutionF
i
sub-objects are respectively composed into the ideal solution 

membership degree fuzzy set FS
FB

 and the Pareto solution membership degree fuzzy set FS
Fi

, 

w h e r e  FS U U
F F FB B B
= { ( ), ( ),1 2  U U k U M

F F FB B B
( ), , ( ), , ( )}3 � � a n d

FS U U U k U M
F F F F Fi i i i i
= { ( ), ( ), , ( ), , ( )}1 2 � � . The fuzzy set of membership degree is equivalent 

to the rich information in the solution, which is the basis of the application of fuzzy information 
entropy theory to many-objective optimization.

Step 5: The uncertainty of the fuzzy set is calculated. Based on the fuzzy set of membership degree, 
the fuzzy entropy E F

B
( ) andE F

i
( )corresponding to the ideal solutionF

B
and the Pareto solution

F
i
 are calculated by using the fuzzy entropy formula.

E A K U k U k U k U k
N N N N

k

M

( ) [ ( ) ln ( ) ( ( )) ln( ( ))]= − + − −
=
∑ 1 1
1

	 (3)
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WhereK is the normalization factor and K > 0 ,K M= 1 2/ ln andM are the number of sub-targets. 
After obtaining the fuzzy entropy E F

B
( ) andE F

i
( )corresponding to the ideal solutionF

B
and the 

Pareto solutionF
i
, the fuzzy entropy of the two needs to be correlated to determine the similarity 

between the Pareto solutionF
B

and the ideal solutionF
i
. Then the fuzzy deviation entropy using the 

fuzzy set theory is very suitable, because the fuzzy deviation entropy is to determine the degree of 
deviation between the two fuzzy entropies, the formula is as follows:

The fuzzy deviation entropy formula of the fuzzy entropy of the Pareto solutionF
i
for the fuzzy 

entropy of the ideal solutionF
B

is as follows.

E F U k U k U k U k
F i F F F F

k

M

B B i B i
( ) [ ( ) ln ( ) ( ( )) ln( ( ))]= − + − −

=
∑ 1 1
1

	 (4)

The fuzzy entropy formula of the fuzzy entropy of the ideal solutionF
B

for the fuzzy entropy of 
the Pareto solutionF

i
is as follows.

E F U k U k U k U k
F B F F F F

k

M

i i B B B
( ) [ ( ) ln ( ) ( ( )) ln( ( ))]= − + − −

=
∑ 1 1
1

	 (5)

Fuzzy entropy and fuzzy deviation entropy in fuzzy set theory are both a measure of the uncertainty 
of fuzzy sets. It can be seen from the calculation process of fuzzy entropy and fuzzy deviation entropy 
that the fuzzy correlation coefficient method (FCCM) eliminates the problem that the algorithm is 
sensitive to the number of sub-targets and its given order in the multi-objective optimization process.

Step 6: After obtaining the partial entropy of Pareto solutionF
i
and ideal solutionF

B
, we can determine 

the similarity between Pareto solutionF
i
and ideal solutionF

B
, that is, fuzzy correlation 

coefficient. Fuzzy correlation coefficient can be expressed by fuzzy set theory association entropy 
formula.

C F F
M E F E F

E F E Fi B
i B

F i F BB i

( : )
ln [ ( ) ( )]

( ) ( )
=

+

+

2
	 (6)

Equation (3) considers the interaction between the sub-objects of the Pareto solution, and equations 
(4) and (5) consider the relationship between the Pareto solution and the sub-objects of the ideal 
solution. Formula (6) starts from the combination of the two, considers the relationship between the 
Pareto solution and the ideal solution, and makes full use of various information. In fact, the fuzzy 
correlation coefficientC F F

i B
( : ) is a measure of the similarity between the Pareto solutionF

i
and the 

ideal solutionF
B

. It can be seen from the implementation process of FCCM that it is a method using 
fuzzy set theory to calculate the amount of information that the Pareto solution contains the ideal 
solution. This method of fitness allocation starts from the Pareto solution and the ideal solution and 
its internal data of each sub-objective. It has no relationship with each sub-target weight, and has no 
relationship with the number of sub-objects and its given order, and only relates to the ideal solution 
and the Pareto solution itself. Different from other fitness allocation mechanisms, FCCM not only 
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compares the advantages and disadvantages between sub-goals, but also considers the similarity 
between Pareto solution and ideal solution. Taking multiple sub-goals as a unified mutual constraint, 
the population selection pressure is increased, the fitness value is objectively distributed, the influence 
of external uncertain factors on the algorithm is eliminated, and the algorithm process is simplified.

2.4. Multi-Criteria Mutation Strategy
From the whole particle algorithm, we can know that the role of individual optimal value and global 
optimal particle plays an important role in the whole population. In the update of particle individual 
optimal value and global optimal value, the standard MOPSO algorithm particles will often appear 
“premature” phenomenon, which makes the population converge prematurely and fall into local 
optimum. Many studies(Bin, 2010; Guo & Wang, 2017; Qing et al., 2017; Yang et al., 2017) have 
found that adding some disturbances when the particle position is updated can easily jump out of 
the local optimum to avoid “premature”. Therefore, this paper proposes a method of adding multi-
criteria criteria to mutate the location update to make the particles dynamically update. The number of 
iterations is introduced into the mutation factor, so that the mutation factor works in a dynamic form. 
According to the change of the number of iterations, the particles are dynamically mutated according 
to different criteria. First, we must analyze the variation ability of each particle in each generation, 
and determine the variation factor of each generation of particles as shown in the following formula:

P t

t
T

d
( ) .

exp( )

(exp( ) )
max= +

−
−
−

−
0 05

5 5
1

1

2 5 1
	 (7)

Where t is the current number of iterations, andT
max

is the maximum number of iterations of the 
algorithm. The idea of particle variation in the algorithm uses the following algorithm 1, where 
pop i j pbest i j gbest i j( , ), ( , ), ( , ) represent the current particle, the individual optimal particle, and the global optimal 
particle, respectively. P t

d
( ) is a variation factor that is related to the number of iterations and varies 

with t . normrnd( , )µ σ is a normal distribution function formula in which the average value is µ and the 
standard deviation is σ in the Matlab function library. For example, unifrnd ( , , , )0 1 1 1 refers to a function 
formula for generating a random number of 1 row and 1 column 0 to 1 in the Matlab function library.
Algorithm 1 Multi-criteria mutation strategy in HMOPSO
Input. pop (Initial population), N (Population size), M (Target 
dimension),µ (Mean value), σ (Standard deviation), P t

d
( )(Variation 

factor), T
max

(Maximum number of iterations).
Output. New position after particle variation.
1: The number of iterations is from 1 to the maximum number of 
iterations, andis calculated in equation (7) 
2: if unifrnd( , , , ) .0 1 1 1 0 5<
3: 

pop i j normrnd
rand gbest j rand pbest j

g( , ) ((
( ) * ( , ) * ( , )

),|=
− +1 1 1

2
bbest j pbest i j( , ) ( , ) |)1 −

4: else 
5: pop i j pbest i j( , ) ( , )=
6: if unifrnd P t

d
( , , , ) ( )0 1 1 1 <

7: pop i j rand pbest i j normrnd( , ) ( ) * ( , ) ( , )= + +1
1 1
µ σ

8: else 
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9: pop i j normrnd pop i j( , ) ( , ) * ( , )= µ σ
2 2

10: end
Through the above algorithmic mutation operation, the particles can be more quickly converge to 

the real Perato frontier, and the local optimum is better. Especially for such “multi-peak” functions, 
there are many pseudo-precursions, and the speed and position update of the standard particle swarm 
optimization algorithm often suffer from local optimum. After introducing the above variation at the 
location update, the drawbacks of “premature” convergence are well overcome, the convergence is 
accelerated, and the true frontier of Perato is well covered.

2.5. External File Update Method
The FAMSHMPSO algorithm sets an archive set outside the population to preserve the non-dominated 
solutions obtained by the algorithm during the search process. In this paper, the external file is updated 
using the progressive method, and algorithm 2 gives the update strategy for the external file.
Algorithm 2 Updation of external archive in HMOPSO
Input. N (Population size), M (Target dimension),C (The maximum 
capacity of the external file), x (The resulting non-inferior 
solution), T

max
(Maximum number of iterations).

Output. All non-inferior solutions in the external file.
1: if The external file size does not reach maximum capacity C
2: Add individual x  to the external file
3: Use the Pareto dominance relationship to update the file and 
remove the dominated individuals in the file 
4: else 
5: if Individual x  dominates some individuals in the external 
file 
6: Exclude all individuals in the file that are dominated by x , 
add the new solution x to the external file 
7: else if Individual x  is non-dominated in relation to all 
members of the external file 
8: Perform individual density estimates with individual x  and 
archival members, and eliminate the worst-diverse individuals 
9: else 
10: Individual x is dominated by archival members, discarding 
individuals x
11: end if 
12: end if 
13: end if 
14: Output updated external file members

The eighth step of Algorithm 2 performs the individual density estimation using the three-point 
shortest path strategy. The specific method is as follows: the point i

1
 in the target space is the solution 

point to be evaluated, wherein the point closest to the i
1

 point is set to i
2
, the distance between the 

two is recorded asD
i i1 2,

, and the point closest to the i
2
 point is i

3
. The distance between them is 

denoted asD
i i2 3,

, and if i i i
1 2 3
≠ ≠  is satisfied, the three-point shortest path value of i

1
 point can 

be defined as:

D D D D D
i i i i i i i i i1 1 2 2 3 1 2 2 3
= + − −

, , , ,
| | #(8) 	
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Using equation (8) to evaluate the solution, the greater the distance value obtained by the 
individual, the more sparse the individual distribution. Moreover, the third term on the right side of 
(8) makes the distance values obtained by the uniformly distributed solution points larger than the 
distance values of the solution points whose distribution is not uniform. In addition, the three-point 
shortest path method emphasizes that the solution points involved in the distribution evaluation are 
three different points in the target space, which can eliminate the problem that the distances in the 
space are close to each other because they are regarded as the nearest neighbors, and the distribution 
cannot be accurately evaluated.

Figure 2 takes the 2-target space as an example to illustrate the effectiveness of the three-point 
shortest path method to evaluate the degree of solution. In Figure 2, b andc  are close together and 
belong to a denser solution point. The path value of point c  is calculated according to the three-point 
shortest path method as D D D D D

c bc ab ab bc
= + − −| | . However, if the position of point b  is moved 

to the point ′b , the distribution of the three points a , ′b and c  is better, and the path value of point 
c  s hou ld  be  ′ = + − −′ ′ ′ ′D D D D D

c b c b a b a b c
| | .  Because | | | |D D D D

b a b c ab bc′ ′− < − ,  and
( ) ( )D D D D
bc ab b c b a
+ = +′ ′  , so ′ >D D

c c
. It is shown that the three-point shortest path value obtained 

by the uniformly distributed solution point is larger than the path value of those distributed uneven 
solution points.

Since the shortest path reflects the distance relationship between the individual and its surrounding 
individuals, it is reasonable to use the three-point shortest path value of the solution to represent the 
density of the solution point distribution in the target space. It is worth mentioning that using the 
three-point shortest path method to evaluate the distribution of the solution group does not need to 
introduce additional parameters, which saves the inconvenience of repeated adjustments.

2.6. FAMSHMPSO Algorithm Flow
Algorithm 3 is the flow of the FAMSHMPSO algorithm based on the descriptions in Sections 2.1~2.5 
above.
Algorithm 3 many-objective Particle Swarm Algorithm Based on New 
Fitness Allocation and Multiply Cooperative Strategies 
Input. pop (Initial population), N (Population size), M (Target 
dimension),C (The maximum capacity of the external file), 
η (Variation distribution index), µ (Mean value), σ (Standard 
deviation), P t

d
( )(Variation factor), c

1 2,
(Mutation probability), 

P (Mutation probability), ω (Inertia weight), T
max

(Maximum number 

Figure 2. Schematic diagram of three-point shortest path method
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of iterations) 
Output. Approximate Pareto solution set PS x x x x

N
: { , , , , }

1 2 3
� , 

approximate Pareto frontier PF F x F x F x F x
N

: { ( ), ( ), ( ), , ( )}
1 2 3

�
1: Initialization:
1)The PSO algorithm is used as the single objective optimization 
algorithm to find the optimal solution of each target, and the 
ideal solution is formed. The ideal solutionF

B
is transformed into 

the membership fuzzy set FS
FB
 by using formula (2)

2)When calculating the membership degree, the PSO algorithm is 
used as the single-objective optimization algorithm to optimize 
the f

k
-subfunction 30 times. The minimum value is f

k
min , and the 

average value is f B
k
( ). The maximum value of all the first 

generations is f
k
max

3)Randomly generate the initial population of N particlesX
i
t , 

randomly select a group of particles to establish an external 
elite file 
4)Initialization iteration counter t = 0
2: Update:
for i N do= 1 2 3, , , ,�

1)Demap Pareto to membership degree fuzzy set: For the current 
particle of the t th generation, the sub-objective function value 
of each particle is calculated by the many-objective particle 
algorithm, and the Pareto solutionF

B
is obtained. TheF

i
 is mapped 

to the membership fuzzy set FS
Fi
 by using the formula (2)

2)Solving fitness values: Calculate the fuzzy correlation 
coefficient C F F

i B
( : )ofF

i
with respect toF

B
using equations (3) to 

(6) as the fitness value. For all particles, compare their 
individual historical optimal fitness values and population global 
optimal fitness values, and select the global optimal particles 
and the best position of the particles 
3)Update current population particle position: Algorithm 1 is used 
to dynamically update the current group particle position 
4)Update current population particle speed: The current population 
particle velocity is updated using the formula 
V V c r pbest X c r gbest X
i
t

i
t

i
t

i
t t

i
t+ = + − + −1

1 1 2 2
ω ( ) ( )

5)Maintenance and dynamic update of external elite files: The non-
inferior solution generated by FAMSHMPSO is compared with the 
particles in the external file. If the external file size is less 
than the current external file size less than C , the generated 
non-inferior solution is added to the external file, otherwise the 
external file is updated by algorithm 2 
3: Judging:
Judging the iteration termination condition: When the number of 
contemporary iterations reaches, the algorithm ends, and the final 
external elite archives { , , , , }x x x x

N1 2 3
� and { ( ), ( ), ( ), , ( )}F x F x F x F x

N1 2 3
�  

are output, otherwise the iteration counter is set. Go to step 2 
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to continue the update operation. 
4: end

The flow chart of FAMSHMPSO algorithm is shown in Figure 3.

3. EXPERIMENTAL RESULTS AND ANALYSIS

3.1. Experiment Setup
3.1.1 Peer Comparison Algorithm
In order to test the performance of FAMSHMPSO algorithm, five algorithms such as PSO classical 
algorithm OMOPSO, PSO improved algorithm SMPSO, decomposition based D2MOPSO, improved 
non-inferior classification genetic algorithm NSGA-III and file-based hybrid decentralized search 
algorithm AbYSS are selected as peer-to-peer comparison algorithms. In this way, on the one hand, 
the performance of the algorithm and other algorithm examples of the same framework can be 
detected. On the other hand, the performance between the FAMSHMPSO algorithm and the well-
known algorithms outside the framework can be examined.

Figure 3. Flow chart of FAMSHMPSO algorithm
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3.1.2. High-Dimensional Multi-Target Test Function Set
In order to test the effectiveness of the proposed algorithm, the FAMSHMPSO algorithm is compared 
with the above five comparison algorithms on the DTLZ test function set of the 4, 10, and 30 targets. 
Use the generic test function DTLZ{1,2,4,5} that can be extended to any target dimension and 
independent dimension. All experiments were run on a hardware configuration Intel I7-9700 CPU, 
3.0GHz clocked, 8.0G RAM, Windows 10 64-bit operating system in Lenovo Tianyi Pro. 1) When 
the number of targets is 4, the parameters of the DTLZ function set are set as follows: the number of 
targets is 4, the dimension of the decision space is 10, and the number of iterations of the algorithm 
is 2000; 2) When the number of targets is 10, the parameters of the DTLZ function set are set as: 
the number of targets is 10, the dimension of the decision space is 20, and the number of algorithm 
iterations is 5000; 3) When the number of targets is 30, the DTLZ function set parameters are set 
to: the target number is 30, the decision space dimension is 50, and the number of iterations of the 
algorithm is 10000.

3.1.3. Performance
In the study of many-objective optimization, Hypervolume (HV) is often used to evaluate the 
performance of the algorithm because the HV indicator is a known one-dimensional evaluation 
indicator compatible with the Pareto relationship. However, the disadvantage is that the calculation 
of the HV value will consume a large amount of computing resources as the number of optimization 
targets increases (for example, the number of targets exceeds 10) and the number of non-dominated 
solutions is large (for example, the number of solutions exceeds 1000). The Inverted Generational 
Distance (IGD) evaluates the performance of the algorithm by measuring the distance between the 
real Pareto frontier and the approximate Pareto frontier obtained by the algorithm. The IGD indicator 
is more computationally efficient than the HV indicator because the IGD indicator is obtained by 
calculating the distance between two points, and the distance calculation is generally more efficient, 
even in high-dimensional multi-target spaces. However, it must be pointed out that the biggest drawback 
of the IGD indicator compared to the HV indicator is that it does not have Pareto compatibility. In order 
to use the IGD index to calculate high efficiency while overcoming its incompatibility with Pareto 
optimality, the literature(Liguo & Weidong, 2017) uses the improved IGD index, the IGD+ indicator, 
to evaluate the performance of the algorithm. IGD+ not only calculates the distance between two 
points, but also considers the Pareto relationship between them. Therefore, the IGD+ index has weak 
Pareto compatibility, which improves the accuracy of the performance of the measurement algorithm.

For a minimized multi-objective optimization problem that satisfies equation (1), let m be the 
number of optimization targets, Z is the set of reference points obtained from the uniform sampling 
of the known real Pareto front, and A is the approximate Pareto obtained by the algorithm.
z z z z z Z j Z
j m
= ∈ =( , , , , ) , , , , ,| |

1 2 3
1 2 3� � , a a a a a A i A

i m
= ∈ =( , , , , ) , , , , ,| |

1 2 3
1 2 3� �  For the 

solution set, the IGD+ indicator can be calculated by the formula (9).

IGD A d a z
IGD i j
a Ai

+

∈=

( ) = +∑1

|Z|
# (9)

j 1

|Z|

min ( , ) 	

Whered a z
a z

f fIGD i j
k k

k kk

m

+ =
−

−=
∑( , ) (max{ , })

max min
0 2

1

is the normalized Euclidean distance, f
m
max and

f
m
min and respectively represent the maximum and minimum values obtained by the set Z on the mth 

target. In general, the smaller the IGD+ index value, the better the convergence and diversity of the 
approximate Pareto frontier. The experiment calculates IGD+ values by sampling 10,000 evenly 
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distributed Pareto optimal solution points for each test function as an approximation of the real Pareto 
front.

Experimental parameters. The main parameters of the five comparison algorithms are based 
on the suggested values in the corresponding references, as shown in Table 2.

3.2. Experiment And Analysis
Tables 3 to 6 respectively calculate the IGD+ mean and standard deviation (std) obtained when the 
function DTLZ{1, 2, 4, 5} has 4, 10, and 30 targets. The“+”, “-”and “≈ ” in the table indicate that 
the results obtained by the algorithm are significantly better than, inferior to, and similar to the results 
obtained by the FAMSHMPSO algorithm for the Wilcoxon rank sum test(Saha et al., 2016).

It can be seen from Table 3 that the FAMSHMPSO algorithm obtains the optimal IGD+ mean on 
the DTLZ1 problem of 4-target, 10-target and 30-target, respectively. None of the other comparison 
algorithms OMOPSO, SMPSO, D2MOPSO, NSGA-III and AbYSS can get the best IGD+ mean. 
Therefore, the FAMSHMPSO algorithm is superior to the five comparison algorithms in general. 
Then, by ranking the IGD+ values obtained by each algorithm in the three test cases of DTLZ1(4, 
10, 30), it is found that the best performing is the FAMSHMPSO algorithm, followed by NSGA-III, 
OMOPSO, D2MOPSO, SMPSO and AbYSS. From the results of “better/worst/similar” in Table 3, 
the results of the comparison algorithms on the three test functions of DTLZ(4, 10, 30) are“0/3/0”. 
This indicates that the proposed algorithm has significant IGD+ performance advantages over the 
other comparison algorithms on the DTLZ1 problem of the three high-dimensional multi-targets. In 
addition, because the Pareto front of the DTLZ1 problem has linear and multi-modal features, the 
FAMSHMPSO algorithm is more advantageous than other algorithms in solving the MaOP problem 
of such problem features.

It can be seen from Table 4 that the FAMSHMPSO algorithm obtains the optimal IGD+ mean 
value for the 10-target and 30-target DTLZ2 problems, respectively. The NSGA-III algorithm obtains 
the optimal IGD+ mean on the 4-target DTLZ2 problem, so the FAMSHMPSO algorithm is superior 
to the three comparison algorithms in general. Then, the IGD+ values are ranked in the three test 
cases of DTLZ2(4, 10, 30) by statistical algorithms. The first is FAMSHMPSO algorithm, followed 
by NSGA-III, D2MOPSO, OMOPSO, SMPSO and AbYSS. Finally, from the “better/worst/similar” 
results in Table 4, only the result of NSGA-III is “1/1/1”, and the results of the other four comparison 
algorithms are all “0/3/0”. This indicates that the proposed algorithm has significant IGD+ performance 

Table 2. Parameter settings of Six peer algorithms

Algorithm Parameter settings

OMOPSO N M C C p n
m m

= ∈ ∈ ∈ = =100 1 5 2 5 1 5 2 5 1 20
1 2

, , , [ . , . ], [ . , . ], / ,{4 10 30}, η

SMPSO N M C C p n
m m

= ∈ ∈ ∈ = =100 1 5 2 5 1 5 2 5 1 20
1 2

, , , [ . , . ], [ . , . ], / ,{4 10 30}, η

D2MOPSO N M C C p n
m m

= ∈ ∈ ∈ = =100 1 5 2 5 1 5 2 5 1 20
1 2

, , , [ . , . ], [ . , . ], / ,{4 10 30}, η

NSGA-III N M p p n
c m m

= ∈ = = =100 4 10 30 0 9 1 20, { , , }, . , / ,η

AbYSS N M N p p n
fSet c m c m

= ∈ = = = = =100 4 10 30 10 1 20 20
2

, { , , }, , , / , ,
Re ,1

0.9 η η

FAMSHMPSO N M C C P t p n
d m

= ∈ ∈ ∈ =100 1 5 2 5 1 5 2 5 1
1 2

, , , [ . , . ], [ . , . ], ( ), / ,{4 10 30}, η == = = ∈20 0 1 0 8 1 2, , , [ . , . ]µ σ ω
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advantages over the other high-dimensional multi-target DTLZ2 problems compared with other 
comparison algorithms. In addition, since the DTLZ2 problem has a concave Pareto front, this also 
shows that the FAMSHMPSO algorithm can better solve the MaOP problem of such problem features.

It can be seen from Table 5 that the FAMSHMPSO algorithm obtains the best IGD+ mean on 
the 10-

target DTLZ4 problem, and the NSGA-III algorithm obtains the optimal IGD+ mean on the 
4-target and 30-target DTLZ4 functions. So overall, although the IGD+ mean of the FAMSHMPSO 
algorithm is worse than the NSGA-III algorithm, it is better than the other four comparison algorithms. 

Table 3. Comparison of IGD+ on DTLZ1 instance for six algorithms

Target number / 
Algorithm OMOPSO SMPSO D2MOPSO NSGA-III AbYSS FAMSHMPSO

4-target

mean 1.7157e-03 3.5836e-03 2.9147e-03 8.3356e-04 4.3211e-03 4.3336e-04

std 1.3176e-03 4.6666e-03 5.5514e-03 3.2300e-03 3.2121e-03 1.7768e-04

rank 3- 5- 4- 2- 6- 1

10-target

mean 7.8741e-03 1.0410e-02 1.1016e-02 5.9321e-03 2.7916e-02 1.1935e-03

std. 5.1616e-03 3.5171e-03 4.6144e-03 3.0403e-03 3.6488e-03 2.5443e-03

rank 3- 4- 5- 2- 6- 1

30-target

mean 3.9021e-02 5.9768e-02 4.8112e-02 3.4005e-02 9.5716e-02 1.1171e-02

std 7.4942e-03 4.5141e-03 7.9218e-03 6.4342e-03 3.2343e-03 1.5141e-02

rank 3- 5- 4- 2- 6- 1

rank suam 9 14 13 6 18 3

final rank 3 5 4 2 6 1

better/worst/similar 0/3/0 0/3/0 0/3/0 0/3/0 0/3/0 /

Table 4. Comparison of IGD+ on DTLZ2 instance for six algorithms

Target number / 
Algorithm OMOPSO SMPSO D2MOPSO NSGA-III AbYSS FAMSHMPSO

4-target

mean 6.1241e-02 6.9877e-02 5.1514e-02 5.9836e-03 8.9126e-02 8.7818e-03

std 4.7318e-03 2.1453e-02 3.7435e-03 1.1951e-03 6.5144e-03 7.1352e-03

rank 4- 5- 3- 1+ 6- 2

10-target

mean 7.9101e-02 8.6387e-02 7.1005e-02 5.2553e-02 1.2019e-01 3.0265e-02

std. 6.1212e-03 4.3237e-02 5.1505e-03 4.3036e-04 6.6401e-02 3.1223e-03

rank 4- 5- 3- 2- 6- 1

30-target

mean 3.1112e-01 5.6624e-01 3.6076e-01 1.6683e-01 6.5447e-01 1.4127e-01

std 5.5123e-02 3.2631e-02 6.6014e-02 7.4441e-02 9.1387e-02 2.1544e-02

rank 3- 5- 4- 2≈ 6- 1

rank suam 11 15 10 5 18 4

final rank 4 5 3 2 6 1

better/worst/similar 0/3/0 0/3/0 0/3/0 1/1/1 0/3/0 /
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Then, by counting the ranking of IGD+ values obtained by each algorithm on DTLZ4(4,10,30), 
NSGA-III algorithm ranks first, followed by FAMSHMPSO algorithm, followed by D2MOPSO, 
AbYSS, SMPSO, and OMOPSO. Finally, from the “better/worst/similar” results in Table 5, except 
for the result of NSGA-III is“2/1/0”, the results of other comparison algorithms are not as good as the 
FAMSHMPSO algorithm. This indicates that the proposed algorithm is only worse than NSGA-III 
in the three test problems of DTLZ4(4, 10, 30), but it is better than other comparison algorithms. In 
addition, because the Pareto front of the DTLZ4 problem is concave and irregular, it also shows that 
the FAMSHMPSO algorithm has certain advantages in solving the MaOP problem of this problem.

Table 5. Comparison of IGD+ on DTLZ4 instance for six algorithms

Target number / 
Algorithm OMOPSO SMPSO D2MOPSO NSGA-III AbYSS FAMSHMPSO

4-target

mean 1.1026e-02 9.8532e-03 5.2025e-03 2.1401e-03 7.7504e-03 4.2549e-03

std 3.7543e-03 4.1915e-03 1.8091e-02 2.0702e-03 1.8342e-03 7.1978e-04

rank 6- 5- 3≈ 1+ 4- 2

10-target

mean 5.9273e-02 4.6712e-02 1.3102e-02 8.2166e-03 2.3381e-02 5.3742e-03

std. 3.6101e-03 4.5291e-03 4.2633e-03 2.1165e-03 4.1736e-03 4.1525e-03

rank 6- 5- 3- 2- 4- 1

30-target

mean 4.1155e-01 2.6824e-01 8.8388e-02 5.1026e-02 9.5523e-02 7.1031e-02

std 5.0329e-02 8.3274e-02 6.5771e-02 2.1512e-02 8.6212e-03 5.9161e-02

rank 6- 5- 3≈ 1+ 4- 2

rank suam 18 15 9 4 12 5

final rank 6 5 3 1 4 2

better/worst/similar 0/3/0 0/3/0 0/1/2 2/1/0 0/3/0 /

Table 6. Comparison of IGD+ on DTLZ5 instance for six algorithms

Target number / 
Algorithm OMOPSO SMPSO D2MOPSO NSGA-III AbYSS FAMSHMPSO

4-target

mean 7.3013e-03 8.1382e-03 5.6332e-03 4.1688e-03 6.9742e-03 3.4491e-03

std 9.5611e-04 7.1461e-04 8.2194e-04 8.4131e-03 7.8432e-03 5.8178e-04

rank 5- 6- 3- 2≈ 4- 1

10-target

mean 4.9896e-02 4.7126e-02 3.0211e-02 1.0228e-02 2.2117e-02 8.6621e-03

std. 6.1816e-03 3.3478e-03 6.1755e-03 4.4174e-03 5.8814e-03 2.4125e-03

rank 5- 6- 4- 2- 3- 1

30-target

mean 3.0236e-01 2.9641e-01 9.3868e-02 6.9677e-02 1.3267e-01 3.372e-02

std 3.4495e-02 4.2524e-02 5.1150e-02 5.2323e-02 2.7875e-02 9.8781e-03

rank 6- 5- 3- 2- 4- 1

rank suam 16 17 10 6 9 3

final rank 5 6 3 2 4 1

better/worst/similar 0/3/0 0/3/0 0/3/0 0/2/1 0/3/0 /
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It can be seen from Table 6 that the FAMSHMPSO algorithm in this paper obtains the best IGD+ 
mean on the three test questions of DTLZ5(4, 10, 30). Therefore, the FAMSHMPSO algorithm is 
superior to the three comparison algorithms in general. Then, by statistically calculating the final 
order of the IGD+ values obtained by the three algorithms in DTLZ5(4, 10, 30), the best performance 
is the FAMSHMPSO algorithm, followed by NSGA-III, D2MOPSO, AbYSS, OMOPSO and SMPSO. 
Finally, from the results of “better/worst/similar” in Table 6, only the result of NSGA-III is“0/2/1”, and 
the results of the other two comparison algorithms are“0/3/0”. This indicates that the FAMSHMPSO 
algorithm has significant IGD+ performance advantages on these three high-dimensional multi-
target DTLZ5 problems. In addition, since the DTLZ5 problem has a concave and degenerate Pareto 
frontier, this also shows that the FAMSHMPSO algorithm can better solve the MaOP problem of 
such problem features.

From Tables 3 to 6, it can be clearly seen that the FAMSHMPSO algorithm has a good IGD + 
value and ranking in the DTLZ{1,2,4,5} test set, whether it is a 4-target, 10-target test function, or a 
30-target test function. In addition, since the Pareto front of the DTLZ{1,2,4,5} test set has different 
shapes, for example, the DTLZ1 test problem has a convex Pareto front, and the DTLZ2 test problem 
has a concave Pareto front. Therefore, the FAMSHMPSO algorithm has good robustness when solving 
MaOP problems with different problem characteristics.

Based on the experimental results in Tables 3 to 6, the FAMSHMPSO algorithm has significant 
convergence and diversity advantages over the other five representative algorithms. In order to further 
investigate the stability of each algorithm’s problem solving, Table 7 shows the statistics results of 
the IGD+ values obtained by independently running 30 times on each of the 4, 10, and 30 target 
problems on the DTLZ{1, 2, 4, 5} series functions in the form of a box plot. For the convenience 
of illustration, OMOPSO, SMPSO, D2MOPSO, NSGA-III, AbYSS and FAMSHMPSO are simply 
abbreviated as A1, A2, A3, A4, A5 and A6.

It can be seen from Table 7 that the FAMSHMPSO algorithm has the best stability of the IGD+ 
values obtained on the DTLZ1, DTLZ4 and DTLZ5 test cases for the 4-target DTLZ{1, 2, 4, 5} 
problem. The NSGA-III algorithm achieves the best stability on the DTLZ2 problem. The stability 
of the proposed algorithm on the DTLZ2 problem is second only to the NSGA-III algorithm, but 
better than several other comparison algorithms. For the 10-target DTLZ{1, 2, 4, 5} problem, the 
algorithm has the best stability of IGD+ values on the three test problems of DTLZ1, DTLZ2 and 
DTLZ5. On the DTLZ4 problem, the stability of the IGD+ value of the FAMSHMPSO algorithm 
is slightly inferior to the NSGA-III algorithm, and is equivalent to the D2MOPSO algorithm. For 
the 30-target DTLZ{1, 2, 4, 5} problem, the FAMSHMPSO algorithm has the best stability for the 
IGD+ values obtained on the three functions DTLZ1, DTLZ2 and DTLZ5. The IGD+ value of the 
AbYSS algorithm on DTLZ4 has the best stability, and the stability of the IGD+ value obtained by 
the algorithm on the DTLZ4 problem is slightly inferior to that of the AbYSS, and is equivalent to 
the D2MOPSO algorithm. It is not difficult to see from Table 7 that the FAMSHMPSO algorithm 
achieves the best IGD+ value stability on most MaOP problems.

4. CONCLUSION

In order to solve MaOPs with satisfactory convergence, diversity, and efficiency at the same time, 
we proposed a new Multi-objective evolutionary algorithm--FAMSHMPSO. Through extensive 
comparative experiments on the DTLZ problems with varied numbers of objectives, FAMSHMPSO 
is shown to be good at coping with MaOPs in all aspects. The main novelties of this paper include 
the following.

● A new fitness allocation method: The core idea of this method is to use the membership function 
of the fuzzy set to map the ideal solution in the many-objective optimization problem and the 
Pareto solution obtained by the many-objective optimization algorithm into a membership 
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fuzzy set containing all the information. Then the fuzzy association entropy coefficient of the 
membership fuzzy sets is used as the fitness value of the Pareto solution to dominate the selection. 
It is considered that the Pareto solution with a large fuzzy association entropy coefficient is closer 
to the ideal solution, thereby guiding the algorithm evolution.

● A new multi-criteria mutation strategy: The number of iterations is introduced into the mutation 
factor, so that the mutation factor works in a dynamic form. According to the change of the number 
of iterations, the particles are dynamically mutated according to different criteria., effectively 
avoiding the premature phenomenon of the algorithm.

● Three-point shortest path method: The 3-point shortest path method is used to maintain the 
external file. Since the shortest path reflects the distance relationship between the individual 
and its surrounding individuals, it is reasonable to use the three-point shortest path value of the 
solution to represent the density of the solution point distribution in the target space. It is worth 
mentioning that using the three-point shortest path method to evaluate the distribution of the 

Table 7. Box plots of IGD+ derived from 30 independent runs for six algorithms
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solution group does not need to introduce additional parameters, which saves the inconvenience 
of repeated adjustments.

Although FAMSHMPSO performs very well on MaOPs, it has several disadvantages that needs 
further improvement in the future. The performance of FAMSHMPSO on several DTLZ problems 
is not quite satisfactory, because of less-well extents on PFs. In the future, we will mainly study the 
following aspects: 1) Improve the new fitness allocation method of the article under constraints or 
dynamic environment; 2) Study the new dominance relationship method under high-dimensional 
goals; 3) Apply FAMSHMPSO to solve practical problems in a certain field; 4)FAMSHMPSO did 
not keep extreme points, in contrast to NSGA-III. We can borrow the extreme point maintenance 
scheme in NSGA-III to improve our FAMSHMPSO further.
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