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ABSTRACT

Balancing exploration and exploitation is a crucial issue in evolutionary global optimization. This 
paper proposes a decomposition-based dynamic multi-objective evolutionary algorithm for addressing 
global optimization problems. In the proposed method, the niche count function is regarded as a 
helper objective to maintain the population diversity, which converts a global optimization problem 
to a multi-objective optimization problem (MOP). The niche-count value is controlled by the niche 
radius. In the early stage of evolution, a large niche radius promotes the population diversity for better 
exploration; in the later stage of evolution, a niche radius close to 0 focuses on convergence for better 
exploitation. Through the whole evolution process, the niche radius is dynamically decreased from 
a large value to zero, which can provide a sound balance between the exploration and exploitation. 
Experimental results on CEC 2014 benchmark problems reveal that the proposed algorithm is capable 
of offering high-quality solutions in comparison with four state-of-the-art algorithms.

Keywords
Evolutionary Algorithm, Exploration and Exploitation, Global Optimization, MOEA/D, Multi-Objective 
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1. INTRODUCTION

In most science, business, and engineering fields, global optimization problems often arise with the 
purpose of locating the global optimum. Many approaches have been proposed to deal with global 
optimization problems. Nevertheless, when the objective of global optimization problems is nonlinear, 
non-convex or non-differentiable, traditional mathematical approaches may become inefficient, 
or even fail to work. Evolutionary algorithm (EA) is a kind of population based iterative heuristic 
optimization paradigm. Over the last two decades, EAs have been widely studied and applied for 
many scientific and real-world optimization problems with promising results (Del, Osaba, & Molina, 
2019). However, the basic EAs are easy to fall into some local optima when tackling complicated 
global optimization problems with a large number of local optima. Apparently, the key to solving 
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global optimization problems using EAs is how to handle the relationship between the exploration 
and exploitation.

The exploration refers to the capability of an EA to investigate undiscovered regions in the 
decision space to find more potential solutions, while the exploitation means the ability of an EA 
to apply the knowledge of discovered promising solutions to further improve their fitness. A loss of 
exploration might result in stagnation in suboptimal areas, producing the effect known as premature 
convergence. By contrast, a low exploitation rate cannot make the population convergence to the 
global optimum. In practice, exploration and exploitation are conflicting with each other. Thus, in 
order to achieve good performances on global optimization problems, the exploration and exploitation 
abilities should be well balanced (Singh & Deep, 2019). It is extensively recognized that an EA 
should put more emphasis on exploration at the early stage of the evolution and high exploitation at 
the later stage of the evolution.

To balance the exploration and exploitation in EAs, this paper makes an attempt to adopt 
decomposition-based dynamic MOEA to solve complicated global optimization problems. Firstly, a 
global optimization problem is converted to a dynamic bi-objective optimization problem by taking the 
niche count function as a helper objective. Subsequently, a decomposition-based MOEA: MOEA/D-
M2M (Liu, Gu, & Zhang, 2014), with DE operator (Storn & Price, 1997) is employed to solve the 
transformed dynamic bi-objective optimization problem. The dynamic version of MOEA/D-M2M 
is named DMOEA/D-M2M. DMOEA/D-M2M decomposes the converted bi-objective optimization 
problem into a number of bi-objective optimization subproblems which are easier to solve. In 
DMOEA/D-M2M, optimization of the original objective is beneficial to the population convergence 
while minimization of the niche-count objective is helpful to the population diversity. Throughout 
the entire evolution stage, the gradually-decreasing-to-zero niche radius is capable of achieving a 
tradeoff between exploration and exploitation.

The remainder of the paper is organized as follows. Section 2 briefly reviewed related works. 
Section 3 depicts some preliminary. Section 4 presents the dynamic multi-objective technique, which 
a global optimization problem is converted to a dynamic bi-objective optimization problem. Section 
5 shows the detailed of proposed DMOEA/D-M2M algorithm. Section 6 conducts the experiments 
and makes a comparison of DMOEA/D-M2M with four competitors. Section 7 makes some further 
discussions. At last, Section 8 draws conclusions.

2. RELATED WORKS

Multi-objective optimization is one of the most active research areas in the field of EAs (Zhou, 
Qu, & Li, 2011). An enormous amount of efforts has been devoted to handling multi-objective 
optimization problems (MOPs), which results in a large number of multi-objective EAs (MOEAs). 
After nearly three decades of development, a number of MOEAs can work very well on bi-objective 
problems (Ishibuchi, Tsukamoto, & Nojima, 2008). The canonical MOEAs could roughly divide into 
three classes: methods based on Pareto domination (Deb, Pratap, & Agarwal, 2002), methods based 
on indicator (Bader & Zitzler, 2011), and methods based on decomposition (Zhang & Li, 2007). 
Decomposition-based methods are well-known ones in traditional multi-objective optimization design. 
Decomposition-based MOEAs decompose a MOP into a number of scalar optimization subproblems 
and optimize them in a collaborative manner using an EA (Zhang & Li, 2007) (Zhou & Zhang, 
2015) (Gee, & Arokiasami, 2016) (Trivedi, Srinivasan, & Sanyal, 2017) (Zhang & Zhen, 2017) (Li 
& Zhang, 2019). In 2006, Zhang and Li proposed MOEA/D (Zhang & Li, 2007), which decomposes 
an MOP into several scalar optimization subproblems, and these scalar optimization subproblems are 
formulated by decomposition method using uniformly distributed weight vectors. In MOEA/D, all 
subproblems are solved simultaneously by employing an EA and evolving a population of individuals. 
MOEA/D-M2M (Liu, Gu, & Zhang, 2014) is an improved version of MOEA/D. Different from most 
decomposition-based MOEAs which decompose a MOP into certain single-objective subproblems, 
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MOEA/D-M2M decomposes a MOP into a number of simple multi-objective subproblems, and then 
solving these multi-objective subproblems in a cooperative way. Decomposition-based MOEAs have 
also extended to address many-objective optimization problems (Yuan, Xu, & Wang, 2015) (Chen, 
& Zhou, 2018)(Chen, Liu, & Tan, 2019) (Zhang, Gong, & Gu, 2019) (Li, Deb, & Zhang, 2019)(Liu, 
Wang, & Huang, 2020).

MOEAs have been successfully applied to solve single-objective optimization problems, which 
can be grouped into three types (Segura, Coello, & Miranda, 2016):

• Methods that transform a constrained single-objective optimization problem into an unconstrained 
multi-objective optimization problem;

• Methods that called multiobjectivization who try to convert a single-objective global optimization 
problem to a MOP by transforming its fitness landscape;

• Methods that consider diversity as a helper objective.

Dynamic multi-objective technique (Jiao, Zeng, & Alkasassbeh, 2017) is a very recent work 
which belongs to the third scheme. It transforms a single-objective optimization problem into an 
equivalent dynamic multi-objective optimization problem (DMOP) which regards the niche count 
function as a helper objective. The niche count function is controlled by the niche radius. At the 
early evolution stage, a large niche radius enables the search pay more attention to the exploration to 
investigate promising regions. At the later evolution stage, the niche radius gradually decreased to 
zero as the environmental changes, which allows a MOEA concentrates on exploitation to guarantee 
the convergence.

3. BASIC DEFINITIONS

3.1. Global Optimization Problem
Without loss of generality, a minimization global optimization problem can be formulated as:

min ,
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where x  represents the solution vector, X  indicates the decision space. ll  and uu  denote the 
lower bound and upper bound of the decision space. The main purpose of the global optimization 
problem is to search the global optima solution while satisfy the bound constraints ( ll xx uu≤ ≤ ).

3.2. Multi-Objective Optimization Problem
Similarly, a minimization MOP can be expressed as:
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where x  is the solution vector, X  denotes the decision space, ll  and uu  are the lower and 
upper bounds of the decision space. The objective vector f xx( )  involves m objective functions.
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called Pareto optimal if there is no other individual x  satisfying xx xx≺ * . The Pareto set (PS) is 
the set of all the Pareto optimal solutions, the Pareto front (PF) is the set of images of solutions in 
the PS. Different from global optimization problem, the purpose of the MOP is to find a set of non-
dominated solutions which are evenly distributed on the PF. It is worth to note that when m=1, 
problem (2) is equivalent to problem (1).

4. TRANSFORMATION OF A GLOBAL OPTIMIZATION PROBLEM 
INTO A DYNAMIC BI-OBJECTIVE OPTIMIZATION PROBLEM

The idea of employing dynamic multi-objective techniques for handling unconstrained and constrained 
single-objective optimization problems borrows from (Jiao, Zeng, & Alkasassbeh, 2017) (Zeng, Jiao, 
& Li, 2017) (Zeng, Jiao, & Li, 2019) (Jiao, Zeng, & Li, 2019). In (Jiao, Zeng, & Alkasassbeh, 2017), 
a helper objective, niche count function, is introduced to balance the exploration and exploitation 
and, hence, avoid an EA from being trapped in some local optima.

Definition 1: Niche-count Assume that the combination of parent population and offspring 
population has 2NP individuals Q = xx xx xx

NP1 2 2
, , ,� , the niche-count function for xx ∈Q :
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2
, σ  is the niche radius.

Figure 1 illustrates the relationship between two solutions’ niche-count value. As shown in Figure 
1, under the fixed niche radius σ , the niche-count value of solution x

1
 is smaller than solution x

2
, 

which means solution x
1
 has the better diversity than solution x

2
.

A dynamic multi-objective optimization problem (DMOP) is a sequence of MOPs 
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where σ σ σ0 1
0( ) ( ) ( )> > > =� S . S is the maximum environmental state which is also equivalent 

to the maximum generation. σ s( )  denotes the niche radius value at state s. An environment change 
can be seen as the reduction of the niche radius σ  from state s to s + 1.

The initial niche radius σ 0( )  is calculated by σ
π

0 11

2
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average space occupied by each solution in the initial population. The final niche radius σ S( ) = 0 , 
which guarantees the population to converge to the optimum. The reduction of the niche radius σ  
over time s adopts the following formula:

σ εs
s

DCe( ) −
= −

( )2

	 (6)

where ε  is a given positive close-to-zero number ( ε  =1e-8). C and D can be obtained in line 
with the initial niche radius σ 0( )  and the last state niche radius σ S( ) = 0 .

As the niche radius σ  decreases from the initial radius σ 0( )  to the final radius σ S( ) = 0 , the 
DMOPs change gradually from the initial MOP 0( )  to the final MOP S( ) :

MOP yy f xx
S( ) = ( )( ): , .min 0 	 (7)

It is obvious that the Pareto optimal solutions of MOP S( )  in Eq. (7) is an one-solution set due 
to the second objective is equal to 0, which equivalents to the original optimum of the global 
optimization problem in Eq. (1). So we can say the global optimization problem is transformed into 
the DMOP is an equal conversion.

Figure 1. The niche-count of x
1

 is smaller than x
2
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5. THE PROPOSED DMOEA/D-M2M

5.1. Algorithm Framework
This section presents the structure of the proposed algorithm, named DMOEA/D-M2M, which relies 
on a state-of-the-art decomposition-based MOEA: MOEA/D-M2M. The pseudo code of the proposed 
DMOEA/D-M2M algorithm is presented in Algorithm 1. DMOEA/D-M2M starts with a randomly 
generated population with K*NS individuals, where K is the subpopulation number and NS is the 
subpopulation size. In terms of the D-dimensional hypersphere volume formula, the mean space 
occupied by each individual in the decision space is regarded as the initial niche radius σ 0( ) . By 
regarding the niche count function as a helper objective, the initial population can be divided into K 
subpopulations according to objective values.

	

5.2. Generation of Subpopulation
At each generation, the niche radius is dynamically decreased over time in terms of Eq. (6). DMOEA/
D-M2M maintains K subpopulations: P P

K1
, ,� . Each subpopulation corresponds to a subproblem, 

and involves NS individuals. In this paper, DE/rand/1/bin operator (Storn & Price, 1997) is employed 
to generate NS offspring individuals for each subpopulation. The details of offspring reproduction 
are shown in Algorithm 2.
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5.3. Allocation of Solutions to Each Subpopulation
After generating K offspring subpopulations, we need to select elite individuals from the union of 
the parent and offspring populations as the parent subpopulations of next generation. To this end, 
first, we combine all parent subpopulations and offspring subpopulations to a solution set Q. 
Apparently, the solution set Q has 2NP individuals. For kth subpopulation, we identify solutions 
whose objective values are in the kth subspace based on the bi-objective ( f xx nc xx s( ) ( ), ( | , )Q σ ).

Algorithm 3 guarantees that each subpopulation Pk  has NS individuals at each generation and, 
hence, enhances the population diversity during the search (Liu, Gu, & Zhang, 2014),. To be specially, 
if the number of individuals of the kth subpopulation is less than the subpopulation size NS, then, we 
randomly choose NS Pk−  solutions from the entire solution set Q; otherwise, we choose NS elite 
solutions from subspace k using nondominated sorting (Deb, Pratap, & Agarwal, 2002) and add them 
to subpopulation Pk .
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In line with the search of DMOEA/D-M2M, optimizing the original objective f xx� �  is helpful 
to the population convergence, while minimizing the helper objective, the niche-count nc xx( | , )Q σ , 
is beneficial to the population diversity from the decision space. Through the entire evolution process, 
the proposed DMOEA/D-M2M is capable of providing a sound tradeoff between the exploration and 
exploitation by dynamically decreasing the niche radius from a large value to zero, from the diverse 
population to the global optimum.

5.4. Computational Complexity
The computational complexity of DMOEA/D-M2M is mainly governed by calculating the niche-count 
objective. The computational cost for niche-count is O(D*NP2), where D denotes the dimension of 
the solution vector and NP represents the population size.

6. EXPERIMENTAL RESULTS

6.1. Benchmark Problems and Compared Algorithms
The performance of DMOEA/D-M2M is tested by the IEEE CEC2014 test suite (Liang, Qu, & 
Suganthan, 2013). IEEE CEC2014 test suite consists of thirty test problems. Among them, three of 
them are unimodal functions (F01-F03), thirteen of them are simple multimodal functions (F04-F16), 
and the remaining test problems are hybrid or composition functions (F17-F30). It exhibits various 
complex characteristics, such as strong nonlinearity, rotated landscape. Therefore, it can provide a 
systematic assessment on the performance of the proposed DMOEA/D-M2M.

Four state-of-the-art global optimization EAs are used to as competitors: MOMPSO (Singh & 
Deep, 2017), LX-BBO (Garg & Deep, 2016), MERDE (Qu, Liang, & Xiao, 2014), and M-PSO-MA 
(Singh, Deep, & Nagar). Among these four compared algorithms, MOMPSO and M-PSO-MA are 
based on particle swarm optimization (PSO), MERDE is based on DE, and LX-BBO is based on 
biogeography algorithm.

To detect the differences of different algorithms for statistical significance, the Wilcoxon rank sum 
test with a 0.05 significance level is performed between DMOEA/D-M2M and each competitor. The 
symbols +, -, and ≈ suggest that the performance of the proposed DMOEA/D-M2M is significantly 
better than, significant worse than, and no significant difference to the corresponding algorithm, 
respectively. In addition, the Friedman test is chosen to sort all algorithms on all test functions.

6.2. Parameter Settings

• The dimension of the test problems: D = 10 and D = 30, respectively;
• The population size: NP = 100;
• The subpopulation size and the subpopulation number: NS=10, K=10 (Liu, Gu, & Zhang, 2014);
• DE parameters: CR = 0.9, F is randomly chosen in [0.0,1.0];
• The number of independent runs: 31;
• The number of function evolutions: FEs=D*10,000.

6.3. Comparisons with State-of-the-Art Algorithms on 
CEC 2014 Test Suite with D=10 and D=30
Tables 1 and 2 summarize the average objective function error values and standard deviations obtained 
from five compared algorithms over 31 independent runs on solving IEEE CEC 2014 test suite with 
10D and 30D, respectively. The objective function error value is calculated by the absolute difference 
between obtained objective value at the termination of each algorithm and the known optimal value. 
In these tables, the best results of each test problem were highlighted in the gray background.
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In the case of D=10, the experimental results are collected in Table 1. From Table 1, for the 
number of test problems with obtained best results, DMOEA/D-M2M performed best on 12 test 
problems, while the compared algorithms MOMPSO, LX-BBO, MERDE, and M-PSO-MA obtains 
1, 4, 8, and 7 best results, respectively. As far as the multiple-problem Wilcoxon’s signed rank test in 
Table 3, DMOEA/D-M2M provides higher R+ values than R- values in all cases. According to the 
Friedman’s test in Figure 2, DMOEA/D-M2M has the best ranking among five compared algorithms.

Table 1. The average and standard deviation error value obtained by five algorithms for 10-dimentional IEEE CEC2014 
benchmark problems. The best results in each test function are highlighted.

Pro MOMPSO LX-BBO MERDE M-PSO-MA DMOEA/D-M2M

F1 1.41e+04±1.77e+04 1.61e+03±1.14e+03 1.58e+00±7.61e+00 4.01e+01±3.17e+01 3.47e+02±7.14e+02

F2 8.43e+03±3.80e+03 5.80e+03±2.27e+03 6.31e-05±1.12e-04 3.17e-02±4.63e-02 6.06e+02±1.27e+03

F3 1.21e+04±1.18e-04 4.47e+03±5.52e+03 1.35e-03±1.22e-03 0.00e+00±0.00e+00 2.25e-07±6.31e-07

F4 6.18e+00±1.07e+01 1.72e+00±4.19e-03 0.00e+00±0.00e+00 6.18e+00±1.07e+01 1.74e+01±1.98e+01

F5 2.00e+01±3.81e-02 1.01e+00±2.81e-01 1.90e+01±2.71e+00 2.00e+01±5.56e-03 1.57e+01±7.80e+00

F6 3.53e+00±1.77e+00 3.45e+00±1.52e+00 8.93e-01±2.81e-01 1.22e+00±1.32e+00 6.90e-02±1.21e-01

F7 1.17e-01±6.19e-02 2.56e-01±1.40e-01 1.83e-02±1.51e-02 5.37e-02±2.81e-02 6.09e-02±2.62e-02

F8 1.05e+01±5.36e+00 0.00e+00±0.00e+00 0.00e+00±0.00e+00 3.12e-01±1.08e+00 0.00e+00±0.00e+00

F9 1.28e+01±8.22e+00 1.10e+01±4.27e+00 5.58e+00±1.74e+00 5.08e+00±2.02e+00 5.71e+00±2.33e+00

F10 3.14e+02±2.03e+02 9.01e+02±5.45e+02 3.67e-02±3.98e-02 9.68e+01±9.89e+01 2.57e-01±7.24e-02

F11 4.70e+02±2.54e+02 1.12e+03±5.93e+02 7.55e+01±7.63e+01 2.52e+00±1.76e+02 5.40e+01±8.40e+01

F12 1.90e-01±1.23e-01 1.00e-01±4.20e-17 1.17e-01±6.93e-02 5.29e-02±3.61e-02 1.07e-01±9.01e-02

F13 7.31e-02±4.04e-02 3.12e-01±1.50e-01 1.17e-01±4.43e-02 1.02e-01±4.80e-02 7.99e-02±1.97e-02

F14 2.20e-02±8.27e-03 2.39e-01±2.22e-01 9.37e-02±2.73e-02 2.09e-02±7.87e-03 7.13e-02±2.41e-02

F15 6.85e-01±1.93e-01 1.51e+00±7.88e-01 6.72e-01±2.18e-01 6.46e-01±1.58e-01 7.61e-01±2.28e-01

F16 2.69e+00±4.30e-01 2.37e+00±4.16e-01 1.53e+00±4.63e-01 1.47e+00±5.68e-01 7.72e-01±2.83e-01

F17 1.08e+03±4.01e+02 5.66e+03±6.81e+03 7.93e+00±9.59e+00 2.38e+02±1.37e+02 4.54e+01±1.08e+02

F18 7.82e+02±1.20e+03 7.02e+03±7.18e+03 2.72e+00±1.29e+00 4.63e+02±5.90e+02 1.68e+00±9.29e-01

F19 2.75e+00±1.43e+00 3.69e+00±7.27e+00 5.10e-01±1.76e-01 9.29e-01±6.98e-01 1.42e-01±9.44e-02

F20 3.95e+01±3.89e+01 1.61e+04±2.06e+04 1.70e+00±7.50e-01 2.50e+00±1.71e+00 2.34e-01±4.46e-01

F21 3.64e+02±2.63e+02 6.26e+03±7.23e+03 8.54e+00±2.66e+01 6.11e+01±7.63e+01 3.13e-01±2.48e-01

F22 5.35e+01±6.99e+01 7.59e+01±7.45e+01 3.24e+00±3.96e+00 1.50e+01±9.03e+00 1.13e+00±3.24e+00

F23 3.29e+02±1.38e-12 2.44e+02±5.65e+01 3.29e+02±2.68e-11 3.29e+02±1.38e-12 2.18e+02±4.10e+01

F24 1.20e+02±6.74e+00 1.01e+03±8.64e+02 1.15e+02±2.45e+00 1.14e+02±4.30e+00 1.17e+02±3.61e+00

F25 1.98e+02±1.60e+01 1.78e+02±1.50e+01 1.36e+02±8.34e+00 1.54e+02±4.17e+01 1.63e+02±1.79e+00

F26 1.00e+02±3.34e-02 3.71e-03±6.58e-03 1.00e+02±4.18e-02 1.00e+02±3.30e-02 1.05e+02±6.17e-05

F27 3.16e+02±1.71e+02 1.05e+01±7.68e+00 2.87e+01±7.60e+01 2.90e+02±1.57e+02 1.88e+02±4.33e+01

F28 4.73e+02±1.07e+02 5.29e+02±1.14e+02 3.66e+02±7.37e+00 4.52e+02±7.24e+01 3.19e+02±3.70e-01

F29 3.63e+02±9.23e+01 3.53e+05±7.54e+05 3.17e+02±5.48e+01 2.93e+02±4.57e+01 2.05e+02±1.67e+00

F30 7.02e+02±2.63e+02 6.31e+04±6.97e+04 5.34e+02±6.06e+01 6.09e+02±1.78e+02 2.31e+02±4.93e+00
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In the case of D=30, the experimental results are shown in Table 2. We can see that DMOEA/D-
M2M has the best performance on 11 test instances, while its competitors MOMPSO, LX-BBO, 
MERDE, and M-PSO-MA can achieve the best results among five algorithms on 0, 3, 10, and 5 test 
problems, which all less than the number of test problems with best results obtained by DMOEA/D-
M2M. In terms of the multiple-problem Wilcoxon’s signed rank test, DMOEA/D-M2M provides 
higher R+ values than R- values in all cases, and performs significantly better than MOMPSO and 

Table 2. The average and standard deviation error value obtained by five algorithms for 30-dimentional IEEE CEC2014 
benchmark problems. The best results in each test function are highlighted.

Pro MOMPSO LX-BBO MERDE M-PSO-MA DMOEA/D-M2M

F1 1.98e+06±1.25e+06 1.01e+07±3.81e+06 5.41e+02±6.40e+02 3.09e+03±3.19e+03 5.62e+05±4.34e+05

F2 3.79e+02±1.88e+02 5.34e+04±2.14e+04 2.39e-03±3.24e-03 0.00e+00±0.00e+00 1.13e+07±1.03e+07

F3 1.20e+04±1.18e+04 1.64e+04±1.71e+04 1.13e-03±7.36e-04 0.00e+00±0.00e+00 1.03e+02±1.02e+02

F4 2.35e+02±1.11e+03 9.99e+01±2.85e+01 6.25e-01±1.46e+00 5.29e+00±1.77e+01 2.95e+01±4.78e+01

F5 2.06e+01±2.64e-01 3.06e+00±7.87e-01 2.00e+01±7.17e-05 2.00e+01±4.45e-02 2.01e+01±6.26e-02

F6 2.76e+01±5.99e+00 1.69e+01±3.12e+00 1.82e+01±1.72e+00 1.05e+01±2.36e+00 7.39e+00±1.44e+00

F7 1.28e-02±1.41e-02 1.76e-01±8.56e-02 0.00e+00±0.00e+00 1.22e-02±1.25e-02 5.94e-01±2.83e-01

F8 1.35e+02±3.15e+01 5.53e+01±3.78e+02 0.00e+00±0.00e+00 1.03e+00±1.23e+00 3.30e-04±1.49e-03

F9 1.64e+02±2.35e+01 7.66e+01±1.61e+01 5.50e+01±1.04e+01 7.63e+01±1.36e+01 3.14e+01±8.83e+00

F10 3.86e+03±5.74e+02 1.26e+04±1.16e+02 1.29e+00±1.61e+00 4.54e+02±2.58e+02 3.19e-01±2.47e-01

F11 3.81e+03±4.80e+02 1.23e+04±3.42e+02 2.72e+03±4.69e+02 2.59e+03±4.78e+02 1.55e+03±5.06e+02

F12 1.35e+00±6.69e-01 1.11e-02±1.75e-18 5.64e-01±1.74e-01 8.06e-02±2.86e-02 1.12e-01±4.40e-02

F13 4.34e-01±1.01e-01 6.55e-01±1.56e-01 2.84e-01±4.41e-02 3.29e-01±7.47e-02 3.23e-01±6.47e-02

F14 6.97e-01±2.19e-01 6.20e-01±2.96e-01 2.14e-01±2.69e-02 2.16e-01±7.88e-02 1.77e-01±3.83e-02

F15 1.03e+01±3.24e+00 1.55e+01±5.50e+00 4.14e+00±7.77e-01 9.90e+00±3.27e+00 4.95e+00±1.53e+00

F16 1.18e+01±5.90e-01 1.08e+01±5.84e-01 1.12e+01±4.58e-01 1.03e+01±4.90e-01 7.70e+00±9.70e-01

F17 1.13e+05±3.34e+04 1.46e+06±9.34e+05 1.16e+03±3.73e+02 1.75e+03±5.32e+02 1.55e+04±2.66e+04

F18 2.06e+04±7.01e+03 2.90e+03±4.27e+03 2.24e+01±6.47e+00 2.14e+03±1.83e+03 1.90e+03±3.32e+03

F19 3.15e+01±3.22e+01 5.19e+03±5.67e+03 7.74e+00±7.32e-01 7.35e+00±1.46e+00 9.21e+00±2.83e+00

F20 5.45e+02±4.38e+02 2.61e+04±1.56e+04 2.80e+01±1.06e+01 5.56e+01±2.79e+01 1.82e+02±1.27e+02

F21 5.16e+04±2.89e+04 1.11e+06±7.95e+05 5.99e+02±2.15e+02 1.89e+03±1.57e+03 6.70e+03±8.80e+03

F22 5.39e+02±1.75e+02 1.88e+03±2.04e+02 1.15e+02±7.29e+01 2.80e+02±1.23e+02 5.45e+01±6.35e+01

F23 3.39e+02±4.31e+01 4.11e+02±6.43e+01 3.14e+02±3.74e-09 3.15e+02±1.39e-12 2.89e+02±1.08e+01

F24 2.26e+02±1.41e+01 1.48e+04±8.37e+03 2.25e+02±5.57e-01 2.24e+02±5.34e+00 2.25e+02±1.60e+00

F25 2.06e+02±1.87e+00 5.29e+02±4.37e+01 2.00e+02±2.83e-02 2.04e+02±1.56e+00 2.03e+02±3.82e+00

F26 1.05e+02±4.67e+00 2.13e+00±3.46e+00 1.00e+02±7.61e-02 1.00e+00±6.42e-02 1.01e+02±7.14e-02

F27 1.10e+03±2.41e+02 1.96e+02±1.04e+02 3.84e+02±2.32e+01 6.70e+02±1.56e+02 7.16e+02±3.44e+01

F28 1.50e+03±2.03e+02 1.94e+03±5.49e+02 8.05e+02±2.49e+01 1.13e+03±1.67e+02 3.88e+02±9.82e+00

F29 3.61e+03±1.34e+03 1.98e+07±3.96e+06 1.19e+03±1.06e+02 1.73e+03±4.62e+02 9.25e+01±7.12e+01

F30 2.42e+04±2.46e+04 6.96e+06±1.03e+07 1.07e+03±2.90e+02 2.52e+03±1.24e+03 3.80e+02±1.24e+02
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LX-BBO as the p-value are less than 0.05. According to the Friedman’s test in Figure 3, DMOEA/D-
M2M ranks the second among five compared algorithms.

For unimodal test functions, DMOEA/D-M2M has poor performance than its competitors, this 
can be attributed to the fact that DMOEA/D-M2M puts more emphasis on investigating more regions 
in the search space to discover more potential solutions in the early stage, which results in the slower 
convergence speed than its competitors on unimodal test problems. Nevertheless, on complicated 
hybrid or composition problems, DMOEA/D-M2M outperforms the compared algorithms. These 
test instances involve multi-modality and strong nonlinearity, so an algorithm is easy to fall into 
some local optima. For DMOEA/D-M2M, a larger niche radius at the early stage of the evolution 
could maintain the proper population diversity and makes DMOEA/D-M2M more powerful in global 
exploration, that is why it has better performance on these problems.

Overall, the above comparison results suggest that DMOEA/D-M2M is better than or highly 
competitive to the compared four algorithms on solving IEEE CEC 2014 test suite with D=10 and 
D=30.

Figure 2. Ranking of 5 algorithms for CEC2014 (D=10) by Friedman’s test

Table 3. Statistical test results of DMOEA/D-M2M and four peer algorithms by the Multiple-Problem Wilcoxon’s test for IEEE 
CEC2014.

DMOEA/D-M2M vs D=10 D=30

R+ R- ?=0.05 R+ R- ?=0.05

MOMPSO 433.0 32.0 + 431.0 34.0 +

LX-BBO 381.0 54.0 + 397.0 68.0 +

MERDE 233.0 202.0 ≈ 184.0 251.0 ≈

M-PSO-MA 302.0 163.0 ≈ 241.5 223.5 ≈
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7. FURTHER DISCUSSION: EXPLORATION AND 
EXPLOITATION INVESTIGATION

Intuitively, the more objectives a problem has, the more complicated is. To answer why the proposed bi-
objective method can be superior to the single objective method, in this section, an another experiment 
was performed to investigate the exploration and exploitation ability of the proposed DMOEA/D-M2M 
and DE algorithm, since DMOEA/D-M2M also employs DE to generate offspring subpopulations. 
The major difference between DE and DMOEA/D-M2M is: the proposed DMOEA/D-M2M takes 
the niche count function as a helper objective, and uses the decomposition-based MOEA to solve 
the transformed bi-objective optimization problem. We use two highly multi-modal functions as test 
problems. The first one is Schwefel function:

min

where

f x D x sin x

x j
j

D

j j

j

�( ) = − ( )
− ≤ ≤ =

=
∑418 9829

500 500 1
1
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The second test problem is Rastrigin function:

min

where

f x D x cos x
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i i
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Schwefel function and Rastrigin function are two typical examples of non-linear multimodal 
function. Searching the optimum of these two problems are fairly tough due to its large search space 
and its large number of local optima. When solving Schwefel and Rastrigin problems by DMOEA/D-

Figure 3. Ranking of 5 algorithms for CEC2014 (D=30) by Friedman’s test
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M2M and DE, the maximum number of function evaluations and the population size were set to 
20000 and 100, respectively.

First, we plot the population distribution of DE and DMOEA/D-M2M in different generations on 
these two problems. Figure 4 plots the distribution of individuals in the decision space on Schwefel 
problem. The green points and red points represent individuals obtained by DE and DMOEA/D-M2M, 
respectively. From Figure 4, we can see in the 30th generation, the population of DE has converged 
to a small area, while the proposed DMOEA/D-M2M can cover five peaks, which suggests its good 
exploration ability. In the 60th generation, due to the niche radius has decreased, the population 
coverage range of DMOEA/D-M2M has shrunk, which covers two promising peaks. In the 100th 
generation, as expected, the population of DMOEA/D-M2M converged to one area where the global 
optimum located.

Figure 5 plots the population distribution of DE and DMOEA/D-M2M on Rastrigin function. 
The same as Figure 4 on Schwefel function, similar phenomenon can be observed from Figure 5. In 
the 30th generation, individuals of DMOEA/D-M2M distributed in ten different peaks, while DE can 
only locate three peaks. In the 60th generation, the population of DE has approached to a small area, 
which means it has lost its diversity. By contrast, our proposed DMOEA/D-M2M is still capable of 
covering seven peaks. This can be attributed to the helper objective niche count function can give 
some solutions with better diversity to survive during the environment selection procedure.

Figure 4a. Population distribution on Schwefel function. The green points and red points represent the obtained population by 
DE and DMOEA/D-M2M, respectively. (Left: generation=30; Center: generation=60; Right: generation=100)
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Then, we employ the changes of the population diversity to investigate the exploration and 
exploitation ability, which is measured by the standard deviation of the population distribution (Yang, 
Chen, & Da, 2018):

D XX
NP

x x x XX
i

NP

j

D

i
j j

i( ) = − ∈
= =
∑ ∑

1

1 1

2( ) , 	 (10)

where xx  represents the mean position of the population:

x
NP

xj

i

NP

i
j=

=
∑

1

1

. 	 (11)

It is the fact that a large value of population diversity D XX( )  means individuals of the population 
distribute relatively sparse, while a small value of population diversity D XX( )  indicates individuals 
of the population distribute more crowded. Apparently, a good global optimization algorithm should 
keep a larger value of D XX( )  at the early stage of evolution, with the purpose of investigating 

Figure 4b. Population distribution on Schwefel function. The green points and red points represent the obtained population by 
DE and DMOEA/D-M2M, respectively. (Left: generation=30; Center: generation=60; Right: generation=100)
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undiscovered regions in the search space to find more potential solutions, while hold a smaller value 
of D XX( )  at the later stage of evolution to improve the convergence.

Figure 6 illustrates the changes of the population diversity of DE and DMOEA/D-M2M on these 
two functions over time. We can see that the left and right Figure 6 have a similar variation tendency. 
For DE, the population diversity keeps unchanged since 60th generation, this can be explained by 
the middle subfigures of Figure 4 and Figure 5 that all individuals of DE have converged to a small 
area both on Schwefel and Rastrigin functions. By contrast, the proposed DMOEA/D-M2M has the 
capability of investigating more areas than DE in the early stage evolution, while it also can provide 
better exploitation in the later stage of evolution.

To sum up, the above experimental results validate that the proposed DMOEA/D-M2M could 
provide a sound balance between exploration and exploitation during the evolution.

Figure 4c. Population distribution on Schwefel function. The green points and red points represent the obtained population by 
DE and DMOEA/D-M2M, respectively. (Left: generation=30; Center: generation=60; Right: generation=100)
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Figure 5a. Population distribution on Rastrigin function. The green points and red points represent the obtained population by 
DE and DMOEA/D-M2M, respectively. (Left: generation=30; Center: generation=60; Right: generation=100)
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Figure 5b. Population distribution on Rastrigin function. The green points and red points represent the obtained population by 
DE and DMOEA/D-M2M, respectively. (Left: generation=30; Center: generation=60; Right: generation=100)
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Figure 5c. Population distribution on Rastrigin function. The green points and red points represent the obtained population by 
DE and DMOEA/D-M2M, respectively. (Left: generation=30; Center: generation=60; Right: generation=100)
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Figure 6a. The changes of the population diversity over time. (Left: Schwefel function; Right: Rastrigin function)

Figure 6b. The changes of the population diversity over time. (Left: Schwefel function; Right: Rastrigin function)
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8. CONCLUSION AND FUTURE WORK

In this paper, a decomposition-based dynamic bi-objective evolutionary algorithm integrated into the 
framework of MOEA/D-M2M, called DMOEA/D-M2M, is proposed to deal with complex global 
optimization problems. DMOEA/D-M2M transforms a global optimization problem into an equivalent 
dynamic bi-objective optimization problem, one is the original objective and the another is the helper 
objective: niche count function. At each generation, the proposed DMOEA/D-M2M decomposes 
the transformed bi-objective optimization problem into a number of bi-objective optimization 
subproblems which are easy to solve, and these simple bi-objective subproblems are handled in a 
collaborative way. The added helper objective niche-count is controlled by the niche radius. In this 
paper, the niche radius is dynamically decreased over time, which can provide a tradeoff between 
exploration and exploitation.

To demonstrate the strong competitiveness, experimental comparison has conducted on solving 
IEEE CEC 2014 and compared DMOEA/D-M2M with four state-of-the-art algorithms. The results 
reveal that the proposed DMOEA/D-M2M is highly competitive for solving global optimization 
problems, particularly on multimodal problems.

In the future, we will give a deeper insight into the search behavior of DMOEA/D-M2M, so that 
the strength and weakness of DMOEA/D-M2M can be better understood. In addition, the proposed 
method can be extended to solve complicated multi-objective optimization problems. Furthermore, 
some state-of-the-art MOEAs can be regarded as base algorithms to replace MOEA/D-M2M that 
adopted in this paper. At last, it is interesting to adopt the proposed DMOEA/D-M2M to deal with 
real-world antenna design optimization problems (Jiao, Sun, & Sun, 2018).
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