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ABSTRACT

A substantial body of research has been devoted to the analysis of motion trajectories. Usually, a 
motion trajectory consists of a set of coordinates, which is called a raw trajectory. In this paper, the 
authors first use vectors for some artificially constructed global features, such as the mean discrete 
curvature and standard deviation of acceleration, to represent the raw trajectory data, and then apply a 
multiset canonical correlation analysis method to extract latent features from the artificially constructed 
features. The performance of the latent features is then measured by evaluating the accuracy and F1 
score of a gradient boosting decision tree model for different datasets, which include paired sample 
datasets and unpaired sample datasets. The experimental results show that the classifier performance 
for MCCA features is much better than that obtained for the artificially constructed features, such as 
that for the motion distance or mean velocity.
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1. INTRODUCTION 

At present, it is important to analyze motion trajectories. By analyzing motion trajectories, different 
types of trajectories can be identified from a large number of trajectory data, such as distinguishing 
the choice of transportation - car or bus, classifying the traffic level-congested or smooth.

Trajectory data are generally a sequence of spatial location information data recorded alongside 
time that can be collected by an algorithm (K Li, Wang, & S Li (2019)). As given by Definition 1 in 
(Silva, Petry, & Bogorny (2019)), the raw trajectory data are the latitude and longitude information 
or the location of pixels in the image recorded alongside the time.

Trajectory classification is a very important part of trajectory analysis. Unlike other fields such 
as image recognition, trajectory classification focuses on how to extract effective features from the 
spatial position information sequence instead of constructing novel and efficient classifiers. Then, 
these features are used to train common classifiers such as Logistic Regression (LG), Gradient 
Boosting Decision Tree (GBDT), etc.

In this paper, we first extract the global features of a spatial position information sequence: the 
mean, standard deviation and entropy of the discrete curvature, the mean and standard deviation of the 
velocity and acceleration, as well as the length of the trajectory and motion duration. Second, we use 
multiset canonical correlation analysis (MCCA) to re-extract features from the artificially constructed 
features. Finally, we use the MCCA features to train a Gradient Boosting Decision Tree model, and 
conduct experiments using 7 different datasets to analyze the performance of the MCCA features.
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The remainder of the paper is organized as follows: section 2 introduces the related research work 
for trajectory classification, the Gradient Boosting Decision Tree and canonical correlation analysis; 
section 3 introduces 9 features constructed in this work; section 4 introduces MCCA and how we 
can carry out MCCA for datasets with unpaired samples; section 5 includes experiments and results; 
section 6 includes the conclusion and future directions.

2. RELATED WORK

Recently, many studies have been carried out for trajectory classification. (Silva, Petry, & Bogorny 
(2019)) summarized three types of trajectory features: global features, local features, as well as global 
and local features, and presented an experimental comparison for several datasets with methods 
proposed by others. (Zheng, Li, Chen, Xie, & Ma (2008)) and (Sharma, Vyas, Schieder, & Akasapu 
(2010)) used global features to classify trajectories. The difference being that (Zheng, Li, Chen, 
Xie, & Ma (2008)) focuses on the transportation mode classification, so global features extracted by 
(Zheng, Li, Chen, Xie, & Ma (2008)) and (Sharma, Vyas, Schieder, & Akasapu (2010)) are different. 
Different studies show different choices for the classifiers. (Mlıch & Chmelar (2008)) and (Bashir, 
Khokhar, & Schonfeld (2007)) used Hidden Markov Models(HMM) to complete the classification 
task, while (Wang, Chu, Jiang & Li (2019)) used a Naive Bayesian Model (NBM) and (Liu & Lee 
(2017)) used BiLSTM. (Xiao, Wang, Fu, & Wu (2017)) used a Multilayer-Perceptron (MLP) and 
achieved a state-of-the-art accuracy of 75.56% and an F1 score of 73.83% for raw trajectories dataset 
“Geolife1” and achieved a state-of-the-art accuracy of 93.58% and an F1 score of 93.58% for the raw 
trajectories dataset “Animals2”, while (Ferrero, Alvares, Zalewski, & Bogorny (2018)) proposed a 
new method called MOVELETS to achieve the goal of robust trajectory classification. With a Support 
Vector Machine, the MOVELETS method achieved a state-of-the-art accuracy of 92.30% and an 
F1 score of 90.82% for the multiple-aspect trajectories dataset “Animals2”. The Gradient Boosting 
Decision Tree algorithm, which is widely used in many fields, and, in this paper, was proposed by 
(Friedman, (2001)). (Son, Jung, Park, & Han (2015)) applied the GBDT algorithm to object tracking 
tasks, and (Rao et al. (2019)) applied it to feature selection problems. At the same time, there are 
many optimizations for GBDT, such as the LightGBM algorithm proposed by (Ke et al. (2017)). 
Other optimization algorithms such as (Wang et al. (2018)) and (Wang et al. (2019)) can also be 
used. Canonical correlation analysis (CCA) was proposed by Hotelling, H., which is fully described 
in (Hotelling (1935)) and (Hotelling (1992)). There exists an expansion of CCA for a multiset called 
multiset canonical correlation analysis (MCCA). (Lisanti, Karaman, & Masi(2017)) used MCCA for 
person reidentification tasks, while (Kanatsoulis, Fu, Sidiropoulos, & Hong (2018)) used MCCA 
for largescale data, and (Nielsen, (2002)) used MCCA for the GIS system, with discussion of the 
different restrictions on the MCCA optimization problem.

3. FEATURES OF A TRAJECTORY

Assume that a raw trajectory is represented by a set of points T x y ti i i i

n
� � �� �

�
, ,

0
, where the set of 

times ti i

n� � �0
 occur in ascending order. Although we can use the method in (K Li, Chen, W Li, He, 

& Xue (2018)) to model trajectory data that is ordered in time, similar to (Zheng, Li, Chen, Xie, & 
Ma (2008)) and (Sharma, Vyas, Schieder, & Akasapu (2010)), we will construct several global features 
in this section. Then, a vector of these features, which is called original features, is used in the 
experimental section to represent trajectories.
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3.1. Curvature
In curve theory, curvature is one of the invariants of a parametric curve. Although (Ujiie, Kato, Sato, 
& Matsuoka (2012)) use discrete curvature for curved profile generation, we use it as a feature 
describing the degree of bending of a curve on a point. Then, we calculate the mean, standard deviation 
and entropy for the discrete curvatures as the global features for a whole curve. Since a raw trajectory 
is represented by a set of discrete points, we first apply the interpolation method: (1) Use linear 
interpolation when the set contains 2 points; (2) Using quadratic spline interpolation when the set 
contains 3 points; (3) Use cubic spline interpolation when the set contains ≤ 3 points, before calculating 
the discrete curvature on the point x y ti i i, ,� � . For the set that contains only 1 point, we just simply 

set the discrete curvature to 0 . Now, we can calculate the discrete curvature on the point x y ti i i, ,� �  
through the formula (1):

� i
x y x y

x y
t t

s t s t s t s t

s t s t
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Then, we calculate the mean and standard deviation f discrete curvatures through formulas (2) 
and (3):
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Because calculation of the entropy of the discrete curvatures requires probability distribution 
information, we first divide the interval 0,��� �  into n  parts (4):
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where we use k =1  and n =101  in the experimenal section. Then, we count the number of discrete 
curvatures falling into interval Ai , and obtain the frequency information (5):
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With the frequency information, the entropy can be calculated through formula (6):

Ent p p
i p

n

i i

i
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2
,

log # 	 (6)

3.2. Velocity and Acceleration
Velocity and acceleration are important characteristics of moving targets, especially vehicles and 
pedestrians. Additionally, due to the type of datasets we use to conduct experiments, extraction of 
global features from velocity and acceleration may become necessary.

Ignoring the number of points in the set of a trajectory, the velocity between 2  adjacent points 
can be calculated through formula (7):

v v v i n wherev
k k

t ti
k x y

i x i y i k i
i i

i

= + = … − =
−

−
∈+

+
, , ,

, , , , , ,2 2 1

1

0 1 1 {{ }# 	 (7)

According to the sequence of velocity, we can calculate the acceleration a i n
i
, , , ,= … −0 1 2 , 

and, by using the same formulas (2) and (3), we obtain E v( ) , S v( ) , E a( )  and S a( ) .
3.3. Length and Motion Duration
The final global features we use are the trajectory length and motion duration. Instead of integrating 
the interpolation function to approximate the local arc length, we just calculate the Euclidean distance 
2  adjacent points and sum them to obtain the trajectory length, see formula (8). The motion duration 
is easy to calculate from difference between the end time and start time T t tn� � 0 :

s x x y y i n and s si i i i i
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Finally, vector (9), which consists of these artificially constructed features or original features, 
is used to represent the trajectory:
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4. CANONICAL CORRELATION ANALYSIS

Canonical correlation analysis aims to find the linear combinations U a XT= ( )1  and V b XT= ( )2  
with unit variances of two random vectors X 1( )  and X 2( )  that maximize the correlation 

Corr U V
a b

a a b b

T

T T
,( ) = Σ

Σ Σ
12
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. This is equivalent to the optimization problem (10):
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To solve the optimization problem (10), we obtain the i -th canonical variable pair having unit 
variances that maximize Corr U V

i i
,( )  among all choices uncorrelated with the previous i −( )1 -th 

canonical variable pair, where i p= …1 2, , , . Finally, we use the random vectors U U U U
p

= …
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
1 2

, , ,  

and V V V V
p
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1 2

, , ,  to represent X 1( )  and X 2( ) .

4.1. Multi-Set Canonical Correlation Analysis
Multiset canonical correlation analysis is a natural expansion from double sets to multiple sets. 
Similar to the optimization problem (10). The optimization problem for MCCA is shown as follows:
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where S
ij

 represents the sample covariance matrix between X i( )  and X j( ) .
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Using a Lagrange multiplier method, the optimization problem (11) changes into the Lagrange 
function (12)
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with an optimal solution satisfying the KKT conditions (13):
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Finally, we obtain the generalized eigenvalue problem (14):
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4.2. Analysis for MCCA

We assume that there are m  random samples for each of variable X i� � ; so, X i� �  can be assembled 

into a data matrix D x x xi i i
m
i� � � � � � � �� ��
�
�1 2

, , . By solving problem (14), the eigenvectors matrix 
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Therefore, there will be a data matrix Dmcca
i� �  for the canonical correlation variables (15):
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Then, the errors between the covariance matrix and approximate covariance matrix are calculated 
through formula (16):
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where

S Cov D Dij mcca

i
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j
�
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Finally, the canonical correlation variables can be explained by calculating the covariance matrix 
between D i( )  and D

mcca

i( ) .
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4.3. MCCA with Unpaired Samples

However, not every time does one find exactly m  samples of each variable X i( ) . This means that 
there are m

i
 random samples of X i( ) , where ∃i j,  such that m m

i j
≠ . To apply multiset canonical 

correlation analysis for unpaired sample datasets, we simply use randomly sampled M m
i

−  samples, 

which allow duplicates from D i( )  for each variable X i( )  where M m
i i

= { }max  and add these 
samples to the data matrices so that there are exactly M  samples in each data matrix. Multiset 
canonical correlation analysis is applied on all data matrices with M  paired samples, and we obtain 
A
i
i n, , , ,= …1 2 . Finally, we calculate D

mcca

i
i n( ) = …, , , ,1 2  for the original data matrix 

D i
i n( ) = …, , , ,1 2  without additional samples through formula (15).

5. EXPERIMENTS AND RESULTS

We conduct 4 main experiments for MCCA features and 4 additional experiments for the original 
features in the datasets of (Morris & Trivedi (2009)) or (Cruz, Macedo, & Guimaraes (2015)). In section 
5.1, we conduct experiments for the errors and correlations between the original data and MCCA data 
through formula (16) and (17). In section 5.2, we train GBDT classifiers on the MCCA data. Like 
(Li et al. (2019)) who selected different metrics to discuss the differential evolution algorithm, we 
measure the classifier performance by calculating different indices: accuracy and F1 score. In section 
5.3, we analyze the stability of the method in 4.3 applied to unpaired sample datasets. In section 5.4, 
we analyze the influence of curvature features on classifier performance. In section 5.5, we analyze 
the rationality of artificially constructed features.

There are 6 datasets included in (Morris & Trivedi (2009)) with the names: “cross”, “i5”, “i5sim”, 
“i5sim2”, “i5sim3” and “labomni”, where dataset “i5” and dataset “labomni” are unpaired sample 
datasets while the remaining datasets are paired sample datasets. There is only one unpaired sample 
dataset, which is called “UCI GPS Trajectories”, as included in (Cruz, Macedo, & Guimaraes (2015)) 
but with 4 evaluation indices: bus crowdedness level (BCL), traffic jam level (TJL), transportation 
choice (TL) and weather condition (WC). The redraws for the trajectories in each datasets are shown 
in Figure 7 in Appendix A and the sample distributions are shown in Table 2 and Table 3 in Appendix 
A. Moreover, the detailed description for each dataset is shown in Table 4 and Table 5 in Appendix A.

Moreover, we only use 8 artificially constructed features for the datasets in (Morris & Trivedi 
(2009)) except for T , because the time is unclear in the datasets of (Morris & Trivedi (2009)). We 
extract 1 to 8 dimensional MCCA features for each dataset.

5.1. Error and Correlation
In this section, we conduct experiments on the paired sample datasets “cross”, “i5sim”, “i5sim2” and 
“i5sim3”. We first extract the MCCA features, and then calculate the error matrices between the 
original data and MCCA data with 8  dimensional MCCA features through formula (16). We count 
the mean, median and mode for each error matrix and draw histograms for each error matrix. The 
results are shown in Figure 1 and Table 1.

From Figure 1, we see that most of the errors in each error matrix except for “i5sim2” are 
concentrated in the interval 0 1,� � . Although the error distribution for “i5sim2” is more scattered 
than others, the number continues to decrease as the error value becomes larger. In Table 1, the mean 
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of the errors for each error matrix is very large, while the median and mode are close to zero, because, 
although there are large errors at some points, most of the errors are small. Consequently, we still 

think that S


ij  shows a good performance for reappearing Sij  in four datasets.
There may be different explanations of the same MCCA features facing different classes in one 

dataset; therefore, in order to make a statistical explanation for each MCCA feature of each dataset 
through heatmaps, we calculate the correlation matrix using the whole dataset with origin features 
and MCCA features and draw the heatmaps. The results are shown in Figure 2. Taking dataset “i5sim2” 
as an example, when the fifth MCCA variable shows the largest negative correlation with Ent �� � , 

Figure 1. Error distributions for the datasets: “cross”, “i5sim”, “i5sim2” and “i5sim3”

Table 1. Three indices for each error matrix

dataset mean median mode

i5sim 10.955 0.130 0.001

i5sim2 3310.074 13.845 0.034

i5sim3 857.056 0.322 0.000

cross 202.023 0.122 0.000
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the first MCCA variable shows the largest positive correlation with S v� �  and S a� � . Therefore, 

we interpret the fifth MCCA variable as a negative synthesis of the original feature Ent �� �  and 

the first MCCA variable as a positive synthesis of the original features S v� �  and S a� � .

5.2. Classifier Performance
In this section, we conduct experiments on all datasets in (Morris & Trivedi (2009)). For the unpaired 
sample datasets “i5” and “labomni”, we apply the method discussed in 4.3 to these datasets. We also 
first extract MCCA features, and then divide the dataset into a training set and test set in a 6 4:  ratio. 
We train a GBDT classifier on the training set and test on the test set. The results are shown in Figure 
3. To enable comparison with the performance of the MCCA features, we also apply principal 
components analysis (PCA) to the original features to extract 3 dimensional PCA features.

From Figure 3, we see that as the dimension of the MCCA features increases, the accuracy also 
continues to increase. In contrast, with a 3-dimensional PCA feature, the accuracy and F1 score drop 
by at most 9% compared with the original feature. Moreover, compared with the 3-dimensional PCA 
features, the 3-dimensional MCCA features show an average improvement in the accuracy of 39%, 

Figure 2. Heatmaps for the correlations between the origin Features and MCCA features for the datasets: “cross”, “i5sim”, 
“i5sim2” and “i5sim3”
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and an average improvement in the F1 score of 41%. When the MCCA features reach 8 dimensions, 
the accuracy is almost 100%. Although the F1 score may drop a little in the “labomni” dataset on 
the way as the dimension of the MCCA features increases, there is still a big improvement in the F1 
score. Compared with the performance of the PCA features, 3-dimensional MCCA features have a 
huge advantage.

5.3. Stability
MCCA features extracted from the whole dataset show very good well performance in only one 
experiment. We can then ask the question can the MCCA features extracted from the training set 
show a similar performance. Moreover, we also question if the simple method in section 4.3 can be 
used to solve an unpaired sample problem that actually works. In this section, we conduct experiments 
using the datasets “labomni” and “UCI GPS Trajectories”. Both of these datasets are unpaired sample 
datasets. Instead of extracting MCCA features at first, we first divide the dataset into a training set 
and test set in a 6 4:  ratio. Then, we apply the method in 4.3 only on the training set and solve the 
generalized eigenvalue problem (14) using the data in the training set. Here, we extract MCCA features 
from both the training data and test data. We then train a GBDT classifier on the training set and test 
on the test set. Finally, we repeat the experiment 100 times. The results are shown in Figure 4.

From Figure 4, we see that for the case of 100 repeated experiments, there is no serious turbulence 
observed in the accuracy and F1 score as the dimension of the MCCA features increases, so the method 
in section 4.3 shows a certain stability. We believe that MCCA is stable for extracting effective latent 
features and that the method in section 4.3 can work stably with high probability.

Figure 3. Classifier performance based on accuracy and F1 score for the datasets in (Morris & Trivedi (2009))

Figure 4. Classifier performance based on accuracy and F1 score in stability experiments



International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 2 • April-June 2021

11

5.4. Influence of Curvature Features
Calculation of the discrete curvature requires interpolation and differentiation, which may cost 
substantial computer resources and time. Since we cannot figure out the influence of curvature features 
just through Figure 2, in this section, we conduct experiments for determining the influence of 
curvature features (CFs) on the dataset “UCI GPS Trajectories”. Compared with the experimental 
results in 5.3, we apply the original features without CFs, which include E �� � , S �� �  and Ent �� � . 
Then, we repeat the experiments 100 times, so that we can determine the influence of the curvature 
features. The results are shown in Figure 5.

Unfortunately, from Figure 5, we see that although the classifier performance with CFs is a 
little better than that without CFs, CFs do not, in fact, make any difference, because the classifier 
performance is good enough whether there are CFs or not.

5.5. Rationality of Artificially Constructed Features
Finally, in this section, we conduct an additional experiment for the datasets “i5sim” and “i5sim2” 
to determine whether or not artificially constructed features lead to good classifier performance for 
MCCA features. Compared with the artificially constructed features, we randomly generate values 
using a standard normal distribution as features, which we call random features. The random features 
contain 8  dimensions. We also apply MCCA to the random features. The results are shown in Figure 
6.

From Figure 6, we see that artificially constructed features lead to good classifier performance 
for the MCCA features, while random features only lead to bad classifier performance for MCCA 
features. Because we extract MCCA features from the whole dataset, an upward trend for classifier 
performance on the random features is observed when the dimensions of their MCCA features increase. 
Consequently, it is necessary to use artificially constructed features to represent trajectories before 
extracting MCCA features.

6. CONCLUSION

This paper mainly considers the role of multiset canonical correlation analysis in extracting latent 
features of trajectories. First, we find that multiset canonical correlation analysis can be used to 
extract more effective latent features, which greatly improves the classifier performance compared 
to principal components analysis. Second, we can see that the method of random sampling used in 
the original datasets to prepare the samples for each dataset paired is simple and practical for dealing 
with the unpaired sample problem. Third, according to the experimental results, we can see that 

Figure 5. Classifier performance based on the accuracy and F1 score obtained for experiments with or without curvature features
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curvature features may slightly improve the classifier performance. Finally, we find that compared 
with the features generated from a random normal distribution, it is very necessary to first construct 
artificial features to represent trajectory, so that we can extract effective latent features by multiset 
canonical correlation analysis.

There remains much work for us to do in the future. First, in this paper, we only use seemingly 
reasonable artificially constructed features to represent raw trajectories without in-depth research 
of the original data. Actually, we can do some research into the original data for the raw trajectories 
to find more suitable features to represent the trajectories, which may lead to better performance 
for low-dimensional MCCA features. Second, we can apply kernel multiset canonical correlation or 
multiset canonical correlation based on neural networks to extract features more efficiently. Finally, 
we need to find a more reasonable and robust method to solve the unpaired sample problem instead 
of simply randomly generating samples.
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APPENDIX A. FIGURE 7 AND TABLES 2-5

Figure 7. Redraws for the trajectories

Table 2. Sample distributions for the datasets in (Morris & Trivedi (2009))

dataset sample distributions

cross 19 classes and 100 samples in each class

i5 01:137, 02:95, 03:107, 04:75, 05:114, 06:87, 07:93, 08:98

i5sim 8 classes and 100 samples in each class

i5sim2 8 classes and 200 samples in each class

i5sim3 8 classes and 100 samples in each class

labomni 01:8, 02:25, 03:8, 04:3, 05:30, 06:36, 07:28, 08:3 09:11, 10:4, 11:20, 12:3, 13:4, 14:22, 
15:4
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Table 3. Sample distribution for the dataset in (Cruz, Macedo, & Guimaraes (2015))

dataset indices sample distributions

UCI GPS Trajectories

bus crowdedness level 01:116, 02:34, 03:10, 04:3

traffic jam level 01:17, 02:45, 03:101

transportation choice 01:87, 02:76

weather condition 01:116, 02:10, 03:37

Table 4. Detailed description of the datasets in (Morris & Trivedi (2009))

dataset detailed description

cross “Simulated four way traffic intersection with various through and turn patterns present. 
Units are pixels.”

i5 “Highway trajectories in both direction of I5 outside of UCSD. Trajectories are 
obtained by a simple visual tracker. Units are pixels.”

i5sim “Simulated free flow highway scene. Noisy trajectory positions as might come from a 
GPS receiver. Units are meters.”

i5sim2
“Simulated highway scene with bimodal speed distribution (slow and fast). Noisy 
trajectory positions as might come from a GPS receiver. Units are meters. The true 
cluster labeling only considers the lane of travel.”

i5sim3

“Simulated highway scene with bimodal speed distribution (slow and fast). Noisy 
trajectory positions as might come from a GPS receiver. Units are meters. The true 
cluster labeling considers both the lane and speed. Therefore, the slow and fast 
trajectories in a single lane are considered as different clusters.”

labomni “Trajectories of humans walking through a lab captured using an omni-directional 
camera. Units are pixels.”

Table 5. Detailed description of the datasets in (Cruz, Macedo, & Guimaraes (2015))

dataset indices detailed description

UCI GPS Trajectories

bus crowdedness level

An evaluation parameter that evaluates the amount of 
people inside the bus. (1-The amount of people inside 
the bus is little, 2-The bus is not crowded, 3-The bus is 
crowded.

traffic jam level

An evaluation parameter that verify the volunteers 
perception about the traffic during the travel, in other 
words, if volunteers move to some place and face traffic 
jam, maybe they will evaluate ‘bad’. (1-bad, 2-normal, 
3-good).

transportation choice An evaluation parameter that evaluates people’s choice of 
transportation. (1-car, 2-bus).

weather condition An evaluation parameter that evaluates the weather. 
(1-raining, 2-sunny).
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