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ABSTRACT
With the advent of Web 2.0, the public is becoming increasingly interested in spatial data exploration. The 
potential for Volunteered Geographic Information (VGI) to be adopted for passive disease surveillance and 
mediated through an enhanced relationship between researchers and non-scientists is of special interest to 
the authors. In particular, mobile devices and wireless communication permit the public to be more involved 
in research to a greater degree. Furthermore, the accuracy of these devices is rapidly improving, allowing the 
authors to address questions of uncertainty and error in data collections. Cooperation between researchers 
and the public integrates themes common to VGI and PGIS (Participatory Geographic Information), to bring 
about a new paradigm in GIScience. This paper outlines the prototype for a VGI system that incorporates 
the traditional role of researchers in spatial data analysis and exploration and the willingness of the public, 
through traditional PGIS, to be engaged in data collection for the purpose of surveillance of tsetse flies, the 
primary vector of African Trypanosomiasis. This system allows for two-way communication between research-
ers and the public for data collection, analysis, and the ultimate dissemination of results. Enhancing the role 
of the public to participate in these types of projects can improve both the efficacy of disease surveillance as 
well as stimulating greater interest in science.
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INTRODUCTION

Recent publications surrounding Volunteered 
Geographic Information (VGI) broadly rep-
resent the belief among some in the academic 

community that non-scientists can be engaged 
in and benefit from spatial data analysis (Con-
nors et al., 2011; Flanagin & Metzger, 2008; 
Goodchild, 2007a, 2010), a field previously 
reserved exclusively for academics. Focus on 
VGI represents a paradigm shift from viewing 
science as having a single authority (the scien-
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tist) to a model where authority is relative and 
expressed contextually. Abundance, repetition, 
and the collective assessment of data (as well 
as the ability to correct) convey credibility to 
information that would not necessarily exist 
otherwise (Connors et al., 2011). In this sense, 
a non-scientist plays a role in validating data 
collected by others, and collectively assessing 
data quality (Craglia, 2007).

The concept of Web 2.0 incorporates bi-
directional collaborations in which users col-
lectively collate spatial data, stored in a central 
cloud repository and accessible by anyone for 
whatever purpose deemed worthy. The Web 2.0 
paradigm is represented widely through web 
projects such as Wikimapia, OpenStreetMap, 
and even Google Earth. Within the context of 
these volunteered GISystems (VGIS), users 
contribute information to develop a collective 
knowledge base. Recent advances in mobile 
technology have furthered the applicability of 
Web 2.0 projects, enabling easier access to the 
information, and even allowing for novel uses of 
crowd-sourced information (Rosenberg, 2011). 
Sui (2008) extends the paradigm to include “the 
wikification of GIS”, a notion which he defines 
as being the shift in perception that only people 
who are specifically trained to “do GIS” should 
interact with spatial data and perform analysis. 
It is upon this notion, specifically, that VGIS 
endeavors to enhance the role of the user in the 
collection and analysis of spatial data.

The use of volunteered information for 
disease surveillance draws upon themes in 
the participatory GIS (PGIS) literature in sug-
gesting that GIS technologies can operate in 
concert with volunteered information and local 
knowledge (Boroushaki & Malczewski, 2010b; 
Connors et al., 2011; Elwood, 2010; Flanagin 
& Metzger, 2008). The key distinction between 
classical PGIS methods and VGIS involves the 
role of the scientist. We refer here to McCall’s 
(2005) discussion of good governance through 
improving dialogue, legitimizing and using lo-
cal knowledge, the redistribution of resources 
access and rights, and new skills training in 
geospatial methods. These concepts support 

the idea that a PGIS or VGIS approach can 
contribute to the adoption of new technologies 
for disease surveillance.

BACKGROUND

Traditional Paradigm

The traditional paradigm in GIScience partitions 
individuals into experts versus non-experts. In 
an academic context, this treats scientists as the 
experts and citizens as non-experts. Under this 
traditional paradigm, public participation in the 
research process is hindered by a number of 
factors. Most importantly, the traditional roles 
of experts (scientists) versus the public leaves 
little room to consider alternative knowledge 
bases (i.e., local knowledge). Furthermore, there 
is limited opportunity for citizens to become 
informed, equal participants; thereby limiting 
the potential applicability of any results/un-
derstanding gleaned from the research process 
(Boroushaki & Malczewski, 2010a).

Under the traditional GIS model, technol-
ogy and software are not readily accessible, 
requiring either a specific skill set or simply 
being priced beyond the consumer market. 
Therefore, citizens are relegated to operating 
as consumers of information exclusively, or 
as indirect producers, mediated by communi-
cation to researchers in small group projects. 
Their interaction with the data in this regard 
is strictly as a provider of information, not as 
producers of spatial data products. Finally, the 
traditional GIS model treats data validation as 
achieved largely through reputation (Flanagin 
& Metzger, 2008). Scientists and researchers 
are perceived as producers of reliable data due 
to past training in data collection and analysis. 
Furthermore, the peer review process adds 
credibility by requiring outside researchers to 
assess quality. Broadly though, data collected by 
researchers are assumed to be reputable because 
it is collected within the context of academic 
endeavors, and done by trained individuals. 
Information of this sort is generally accepted 
to be true until shown to be otherwise. With 
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few exceptions, the vast majority of GIS data 
products are produced under the traditional GIS 
model. Citizens are largely excluded from the 
process of data collection and analysis (Connors 
et al., 2011). We do not, however, suggest that 
the traditional model must be replaced. Instead, 
we propose the standard model be extended to 
facilitate collaboration between citizens and 
researchers.

VGIS Paradigm

Volunteered GIS represents a paradigm shift 
from viewing science as having a single author-
ity (the scientist) to a model where authority 
is relative and can be expressed contextually. 
Information abundance, repetition, and the col-
lective assessment of data convey plausibility 
to data that would not otherwise necessarily 
exist. In this sense, a non-scientist plays a 
role in validating data collected by others; 
collectively assessing data quality (Oreskes et 
al., 1994). This concept is explored further by 
Craglia (2007) in his assessment of individuals 
as geosensors; empowering them to validate 
global models using their own perceptions 
or impressions of the data. Volunteered GIS 
therefore represents the broad interest by non-
scientists to be engaged in and to benefit from 
spatial data analysis.

Although Goodchild coined the term “vol-
unteered GIS”, the movement towards a new 
paradigm really began a decade earlier with the 
desire, on the part of scientists, to engage citizens 
directly in the research process. Sara Elwood, 
through her work with PGIS, exemplifies this 
desire and her work has been instrumental in 
the evolution of the VGIS paradigm (Elwood, 
2006). Other contributions have included 
work by Elmes (2005) with his description of 
a “community integrated GIS” Turner’s (2006) 
“Neogeography” Balram and Dragicevic’s “col-
laborative GIS” (2006), and Sieber’s “public-
participation GIS” (2006). Collectively the work 
of these individuals demonstrates the broader 
goal of direct community engagement in the 
research process.

However, researchers have also made sig-
nificant strides towards integrating components 
of a VGIS into their own projects, including 
studies in environmental sensing, decision-
making, resource management, and community 
risk assessment. Project GLOBE, OakMapper, 
and Audubon’s Christmas Bird Count (Con-
nors et al., 2011; Goodchild, 2007a; House 
et al., 2001; Yaukey, 2010) are long running 
projects for the purpose of monitoring spatial 
and temporal distributions of resources and 
phenomena. By employing citizens to collect 
data, researchers are able to more effectually 
analyze spatial processes by generating much 
larger quantities of data. While data quality 
remains a concern, the large quantity of data 
collected diminishes the influence of inaccurate 
data (Flanagin & Metzger, 2008).

The use of VGIS to answer questions of 
decision making draw upon the PGIS literature 
in suggesting that GIS technologies and imple-
mentations can assist in conflict resolution and 
multiple-criteria decision making (Boroushaki 
& Malczewski, 2010b). Flanagin and Metzger 
(2008) make reference to these types of ques-
tions in using GIS for collective community 
efforts. The key distinction between classical 
PGIS methods and VGIS involves the role of 
the scientist. PGIS seeks to improve dialogue 
between actors for the purpose of legitimizing 
and using local knowledge, the redistribution 
of resources access and rights, and new skills 
training in geospatial methods (McCall & 
Minang, 2005). However, the researcher plays 
a limited role as teacher. VGIS builds on this 
by leveling the authority between actors; sci-
entists and non-scientists are viewed as having 
[almost] equal authority, allowing both actors to 
communicate more freely with each other and 
to share expertise. Our prototype supports the 
idea that a PGIS or VGIS can contribute to ad-
dressing questions of decision-making, and later 
resource management and conflict resolution.

Volunteered GIS alters the standard GIS 
paradigm by substituting a producer-user model 
instead of the traditional expert-user archetype. 
Under this framework, researchers and citizens 
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can act as either producers or consumers of 
spatial data, depending on the context within 
which they are interacting with the data. Produc-
ers in this case need not necessarily be experts 
in all areas of GIS or the broader research 
context. Rather the producer’s role is given to 
any individual with information to contribute 
to the aggregate knowledge base (Boroushaki 
& Malczewski, 2010a; Flanagin & Metzger, 
2008). User roles are given to individuals who 
consume a spatial data product for any purpose. 
Under the new paradigm, roles are not fixed 
and not exclusive.

Finally, under the traditional GIS model, 
data were perceived to be trustworthy because 
of the perceived authority of the scientist. 
However, with changing roles, we need a new 
model for data error assessment (Flanagin & 
Metzger, 2008; Goodchild, 2007a, 2007b). Pos-
sibly the single largest barrier to the utilization 
of volunteered information is the uncertainty 
surrounding its credibility (Connors et al., 2011; 
Flanagin & Metzger, 2008; McKnight et al., 
2011). Under the VGIS model, the credibility 
of volunteered information is achieved through 
volume. Intuitively, we understand that if mul-
tiple individuals report similar information, the 
reports are likely credible representations of 
the truth. The larger volume of data collected 
through a VGIS, albeit repetitive, can achieve 
the same threshold for credibility as data col-
lected under the traditional model (Flanagin & 
Metzger, 2008).

Related, there’s a significant degree of 
uncertainty as to the nature of volunteered 
information with respect to the types of error. 
McKnight (2011) explore the relation of volun-
teered information to assess spatial distribution 
of West Nile virus in Michigan. In their analysis, 
he raised the issue of uncertainty with regards 
to types of error that influence the data. For 
example, users may reliably report positive 
observations (i.e. in this case, observations 
made of dead birds), but reports are likely to 
indicate the absence of data. Therefore, volun-
teered information is heavily biased towards the 
observation of an outcome, and should not be 

interpreted as a metric of prevalence. Utilization 
of volunteer information must be cognizant of 
the nature of uncertainty.

The prevalence of mobile devices that 
have GPS capabilities, including cell phones, 
tablets and laptop computers, has increased the 
accessibility of spatial data. Hardware is no 
longer priced outside the realm of ownership 
for many people in the world, meaning that 
users can now directly engage with spatial data 
in ways that they simply could not do before. 
The interaction of the public with spatial data 
is now so prevalent that most users have devel-
oped sufficient technological skills and spatial 
cognition (through interaction with online 
mapping tools) to enable them to interact with 
spatial data in an intelligent manner, preclud-
ing the need for training prior to participation 
in GIScience research. Paradoxically, it would 
appear that spatial cognition is unrelated to 
global geographic awareness. Although people 
are able to position themselves abstractly on 
the landscape, they remain illiterate as to the 
broader geographic context in which they live.

Software interfaces fall into two broad 
classes: traditional desktop products and web-
based applications. For the purposes of inter-
acting with a VGIS, citizens are most likely 
to use a web application since this does not 
require a specific platform or license to run. 
Desktop applications, on the other hand, can 
be distributed to certain groups, allowing for a 
more targeted interaction with the spatial data. 
The open-source software movement is most 
directly credited with making GIS software ac-
cessible to the public, removing financial and 
hardware restrictions for many GIS products. 
Most notable among these are GRASS and 
QuantumGIS, free GIS packages modestly 
equivalent to ESRI’s ArcGIS®. Interfaces for 
spatial data analysis have been developed with 
R and Python, interacting directly with Grass 
and QuantumGIS. Increasing familiarity on 
behalf of the public in spatial tools, geospatial 
technologies, and mapping increases the likeli-
hood that they will be able to act as producers of 
high quality information. While the increasing 
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availability of mobile technologies has spurred 
public interested in GIS, the cost of adopting 
new technologies remains a principle challenge, 
particularly in developing countries.

Disease Surveillance

Disease surveillance systems are established 
for the purpose of collation, analysis, and dis-
semination of information so as to facilitate 
the allocation of resources in handling disease 
outbreaks (Thacker et al., 1983). Broadly, sur-
veillance programs are categorized as either 
passive or active. Passive disease surveillance 
programs rely on reporting by healthcare provid-
ers to public health authorities when specific 
signs and symptoms are observed, a diagnosis 
is made and/or a diagnostic test is confirmed. 
Public health authorities collate these reports 
and assess the need for a coordinated response. 
Upon making a determination, the authorities 
communicate back to the local health care 
providers, and the necessary recommendations 
are set forth to address the disease outbreak. An 
example of passive surveillance in the United 
States involves the reporting of certain com-
municable diseases by health care workers after 
a diagnosis is made. These reports are received 
by public health officials who are tasked with 
ensuring the disease does not pose a threat to 
the welfare of the public.

Passive disease surveillance systems are 
hierarchical in nature with space and time 
important factors. Knowledge of highly infec-
tious diseases may be reported up and infor-
mation on the control of those diseases may 
be reported down the hierarchy very rapidly; 
whereas more common diseases may be reported 
and intervened on slower schedules such as 
monthly or semiannually. The management 
and coordination of communication within a 
passive surveillance system therefore, needs to 
be agreed upon by all parties (i.e., levels within 
the hierarchy in order to ensure the protec-
tion of population health). However, passive 
surveillance systems are widely criticized for 
underreporting diseases (Thacker et al., 1983). 

When passive surveillance systems break down 
and mandated reportable disease(s) are not 
communicated from the local to central levels, 
there is a need to respond by implementing an 
active surveillance program.

Active surveillance programs directly ad-
dress the underreporting of disease by utilizing 
teams to assess local conditions. Such programs 
begin with the recognition at the central level 
that the expected communication in space and/
or time has not been received and in response 
actively reach out to that location for the infor-
mation. During these visits, retrospective data 
are collected and the management of the passive 
surveillance system is revived (e.g., manpower, 
technology). The operations of disease surveil-
lance systems are therefore highly dependent 
upon the cooperation of all participants at level 
of the hierarchy. One well-cited example of ac-
tive surveillance is Snyder and Merson’s (1982) 
meta-analysis of diarrheal disease prevalence 
and mortality throughout the developing world. 
Here they review 24 studies where data was 
actively collected (either through home visits 
or other means) by trained personal. In contrast 
to a passive surveillance program, workers were 
employed for the sole purpose of collecting 
disease prevalence data.

CASE STUDY

Purpose

African Trypanosomiasis (AT) is a zoonotic dis-
ease transmitted by the tsetse fly. In Kenya, the 
two most common forms of AT are Trypanosoma 
brucei (Nagana), the form of the disease that 
affects cattle, and Trypanosoma rhodesiense 
(Sleeping Sickness) that affects humans. While 
sleeping sickness is relatively rare in Kenya, 
Nagana is widespread and represents a major 
threat to the livelihood of pastoralists (Baird et 
al., 2009; Tarimo-Nesbitt et al., 1999; Waller, 
1990). The prevalence of Nagana has increased 
in recent decades due to a decline in control 
regimes, climate change, and anthropogenic 
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factors (Batchelor et al., 2009; Bauer et al., 
1992; WHO, 2005). Our case study describes 
the prototyping of a VGIS for the purpose of 
surveillance of an infectious disease vector.

Site Description

Nguruman (Figure 1) is located at the base of the 
Rift Valley in southern Kenya, just east of the 
Nguruman Escarpment. Formally, Nguruman is 
the local Maasai name for the settlement, which 
occupies the area west of the Ewuaso-Nyiro 
River and the Kongo Forest to the Oloibortoto 
water intake; it is bounded to the south by the 
Ol’Kirmatian Conservation Area and to the 
north by the Oloibortoto River. Nguruman is 
also referred to locally as Oloibortoto. North of 
the Oloibortoto River, and broadly included in 
our study area, is Entasopia, the largest settle-
ment in the area. The political “capital” of the 
Nguruman area is Ol’Kirmatian, a settlement 6.5 

km west of the Ewuaso-Nyiro River, and home 
to the District office for the Kenya government 
as well as the office of the local governor for 
the Ol’Kirmatian group ranch, the political arm 
of the Maasai in this area.

From the base of the Rift to Oloibortoto, 
the predominant land use is smallholder agri-
culture. Streams dissect the region and are 
maintained by the community as means to ir-
rigate their farms. Dominant agricultural crops 
throughout the region include tomatoes, veg-
etables destined for South Asian markets, and 
fruit trees (e.g., bananas, mangos) (Langley, 
2010). Southeast along the road from Oloibor-
toto to the Kongo forest, vegetation density 
rapidly increases. The area is extremely rocky 
and dominated by herbaceous and woody shrub 
vegetation, most abundant of which are Acacia 
tortillis, Salvandora persca (toothbrush tree), 
Grewia tembensis, and Cordia sinensis (Mai-
tima, 2012; Morris et al., 2009). Dominant 

Figure 1. Study area
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grasses throughout the region include Spo-
robolus spp., Setaria spp., and Cynodon dac-
tylon (Morris et al., 2009). The Kongo forest 
is the area of densely vegetated land between 
Oloibortoto and the Ewuaso-nyiro River. It is 
within this zone that we find abundant tsetse; 
unfortunately this zone is often the only option 
available to the community for grazing their 
animals during the dry season. Moving east 
from the Ewuaso-Nyiro River, the landscape 
dries quickly, resulting in a rapid decrease in 
vegetation density. During the dry season, the 
area is devoid of most vegetation; however 
after a short period of rains, the grasses in the 
area of Ol’Kirmatian re-emerge with vigor. 
Across the entire region, these eco-zones are 
highly dynamic and respond rapidly to local 
climatic shifts and the occurrence of precipita-
tion.

Global climate change is dramatically 
influencing the local environment within our 
study area (Moore et al., 2012). In past decades, 
annual precipitation in southern Kenya has 
remained relatively constant despite significant 
increases in annual mean temperatures, however 
the variance of the magnitude of precipitation 
events have increased and the seasonality of 
total precipitation has become less predictable 
(Altmann et al., 2002; Moore et al., 2012; Moore 
& Messina, 2010). The observed climate change 
and uncertainty in precipitation will undoubt-
edly threaten the livelihood of farmers and 
pastoralists (Fischer et al., 2005). Indeed, these 
concerns were conveyed to us in the course of 
our work; many farmers have already found it 
difficult to determine the right time for planting 
due to changes in local weather and precipitation 
events (Langley, 2010).

Trypanosomiasis (Nagana) in cattle is a 
major threat to the livelihood of Maasai pas-
toralists in Nguruman. The risk of infection is 
chief among their concerns to the health and 
well being of their cattle herds. An important 
consideration for the community is the man-
agement of grazing for cattle herds among the 
members of the group ranch. A committee of 

elders, whose chief aim is to maximize utiliza-
tion of the limited resources (while advocating 
sustainability) for the benefit of the community, 
manages the patchwork of grazing areas. Of 
particular interest to the grazing committee (as 
expressed through interviews1) is the ability 
to work with our research lab to incorporate 
predictions of the spatial and temporal trends in 
tsetse populations and models of risk aversion.

DeVisser et al. (2010) developed a species 
distribution model for tsetse (TED) that predicts 
tsetse presence/absence every 16 days based on 
the habitat requirements and movement rates of 
the fly. The precision of the model predictions is 
limited spatially by the resolution of the inputs 
(250m), and temporally by the availability of 
MODIS LST and NDVI data products (8 and 
16 days respectively). It is well established that 
tsetse are highly responsive to microclimatic 
conditions supported by local variations in 
vegetation (Terblanche et al., 2008). The spatial 
resolution of the TED model predictions limits 
consideration of such local configurations, 
thereby increasing the likelihood of errors of 
omission. The TED model was designed to 
identify endemic tsetse and does not model 
transient tsetse populations. By incorporating 
volunteered information from citizen reporters, 
TED could better illustrate the distribution of 
the flies over space and time by reducing errors 
of omission and reporting transient populations. 
Volunteered information may also be used (to 
an extent) to confirm (Oreskes et al., 1994) the 
TED model predictions by giving us a means 
to estimate model uncertainty.

Conceptual Model

Here we elaborate on the previously published 
framework for a VGIS (Langley & Messina, 
2011) by illustrating the construction and de-
ployment of a working prototype. Furthermore, 
we discuss potential challenges and limitations 
of our implementation and propose strategies 
to address these issues. Figure 2 outlines the 
basic implementation of the proposed VGI 
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and the methods by which users will be able 
to interact with the spatial database (sDBMS), 
specifically through mobile devices. The core 
of the proposed implementation is a Postgres 
database server that stores both the spatial data 
as well as scripts to compute predictions of 
tsetse distributions, process volunteered data 
(submitted first to a reliability assessment), and 
automatically retrieve and process remotely 
sensed imagery as it becomes available. Users 
interact with the database through an Apache 
server and an HTML interface. A MapServer2 
implementation provides functionality for vi-
sualization of spatial data. All components are 
open-source and platform independent so as to 
convey maximum portability.

Our implementation of a VGIS seeks to 
achieve three goals: 1) facilitate user interaction 
with the VGIS and model results so as to allow 
for the reporting of information that may correct 
otherwise inaccurate data (defined as those 
predictions that contradict ground-level re-
ports); 2) assess the reliability of volunteered 
information; and 3) incorporate volunteered 
information to calibrate a model of tsetse dis-
tribution and reduce errors of omission. To 
assess the functionality of the VGIS to achieve 
these goals, we have developed a working 
prototype of the system to illustrate our ap-
proach.

We incorporate a variety of software pack-
ages, including GRASS and QGIS (for visual 

Figure 2. This deployment diagram illustrates the interaction of the separate components of the 
VGIS and the flow of information between each component
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GIS support), Python and R (for statistical and 
modeling tasks), each of which provides the 
user with statistical, visual, and geoprocess-
ing capabilities; the user can interact with 
these packages through a GUI or through a 
command line interface. Our selected DBMS 
is PostgreSQL 9.1 (Postgres), an advanced, 
readily available, open-source, object-relational 
database management system. Using standard 
SQL syntax, Postgres allows for complex query 
capabilities, including spatial queries, and facili-
tates strict rule and primary key enforcement. 
Postgres is also extensible, allowing for the 
addition of new functionality (Stonebraker & 
Kemnitz, 1991; Stonebraker & Rowe, 1986). 
In contrast to previous implementations of 
MySQL, Postgres, and other common spatial 
databases, modern DMBS models facilitate 
the combined storage of spatially explicit data 
and corresponding metadata together in the 
database (Elmasri & Navathe, 2008; Watson 
et al., 2004). The proposed spatial computing 
environment uses open source, community-
supported software and standards, providing a 
solution to the data-management problem that 
is temporally extensible. Of critical importance 
to us is the improved functionality available in 
PostGIS 2.0, which adds support for raster data 
types. PostGIS is an extension to the Postgres 
language that adds functionality for the storage 
and retrieval of spatial data. PostGIS is, at its 
core, a suite of tools that serves as the back end 
for spatial functionality in Postgres.

Data Collection and Interface

Users and producers alike are able to interact 
with the VGIS in many ways, each according 
to their own skills, interests, and available 
hardware. In our case study, we outline the 
mechanisms whereby participants (either re-
searchers or community members) can interact 
with the VGIS.

Figure 3 illustrates the broad deployment 
strategy for mobile device interaction. Related 

to the deployment of a mobile interface, the 
web interface sports a comprehensive suite of 
tools available to all participants from any web 
browser, with functionality dependent upon the 
credentials supplied to the system.

Most participants will find themselves 
interacting with the VGIS primarily through 
their mobile devices. For this purpose, we 
propose an iOS application that, for the most 
part, simply employs an HTML wrapper allow-
ing the user to interact with a MapServer ap-
plication. Users are able to query the database 
for specific, albeit limited, types of data, even 
define a specific range of times over which to 
aggregate the data; the application is geo-
graphically aware, so it is able to return infor-
mation for a user’s specific coordinates by 
passing the current longitude and latitude to the 
server. Most importantly, a user is able to vol-
unteer information, with regards to the distribu-
tion of tsetse, through the application. Simply, 
a user can use this function to report that tsetse 
flies are present at their current location. A 
user’s unique device ID is logged with the report 
and serves as a surrogate measure to distinguish 
between users.

Users are able to interact with the system 
in different environments, including a web 
browser, a desktop application, and on a mobile 
device (Figure 3). Users ultimately will be able 
to conduct a range of operations, such as obtain-
ing spatially contextual information and model 
predictions, defining new model runs, exporting 
data, and submitting volunteered information 
or reporting map/model errors; however for 
the purpose of our prototype, functionality is 
limited to the data querying, visualization, and 
reporting of tsetse occurrences.

Information Reliability

The traditional model of data reliability em-
phasizes the authority of the researcher and our 
belief that trained individuals will generate reli-
able, trustworthy data (Craglia, 2007). Within 
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the context of a VGIS, we relax this assump-
tion; instead qualifying reliability through data 
volume; the idea being that credible information 
will tend to be generated independently by more 
than one user (Flanagin & Metzger, 2008).

There are two fundamental approaches 
to assessing the reliability of crowd-sourced 
information. In the simplest case, information 
is assumed either credible or not until confirmed 
or rejected by a subsequent report. Under this 
model, all participants are treated equally with 
respect to their prior knowledge/skills; reliabil-
ity is assessed by their peers through the creation 
of informal social networks [of trust] (Bishr & 
Kuhn, 2007; Bishr & Mantelas, 2008; Flanagin 
& Metzger, 2008; Metcalf & Paich, 2005).

The second model takes a more nuanced 
perspective of the user, taking into account 
the skill set of the person filing a report and 

their prior credibility. This approach is best ap-
proximated as a Bayesian model of data quality 
where the reliability of a report is dependent on 
the prior assessment of the user and previous 
reports made to the system (Crosetto, 2001). If 
a number of prior reports are rejected, the indi-
vidual is given a low reliability score that may 
lead to automatically rejecting any subsequent 
reports made (unless of course those reports are 
later confirmed independently). However, if the 
user has a history of high quality submissions 
that are routinely confirmed, they may be given 
a high credibility score, leading to automatic 
accepting of the report into the database. Prior 
experience with the user is the crux of this 
model approach to data quality. Conati (2004) 
demonstrated this approach in evaluation of 
models of user affect; their study required that 

Figure 3. We propose an iOS application (for iPhone or iPad) that allows users to interact with 
the VGIS, explore the model predictions, volunteered data, or to contribute their own observations
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they be able to assess the reliability of self-
reporting of emotional states.

In our case study, we employ a simple 
decision model (Figure 4), that integrates social 
trust networks (e.g. Bishr & Mantelas, 2008; 
Metcalf & Paich, 2005) and Bayesian methods 
(e.g. Conati, 2004; Crosetto, 2001), to assess 
the accuracy of data and the reputability of 
volunteers who report on the presence of tsetse 
flies. To demonstrate our approach, we evaluate 
the reliability of volunteered information under 
two scenarios. In the first, a single reporter vol-
unteers on multiple occasions. In this scenario, 
the reliability of the information is determined 
and the rating (Equation 1) can be associated 
with the reporter’s ID. Subsequent reports are 
evaluated on the merits of the information as 
well as the reliability score of the reporter. In 
short, a reliable reporter is likely to submit 
reliable information. A record can also be ap-
proved if a user is deemed trustworthy under 
the model. This value is calculated over time 
as a measure of the number of reports that are 
confirmed versus contradicted.

UserRating = +α ∆ 	 (1)
α = prior score	
Δ = change in score output from Figure 4	

In the second scenario, several reporters 
each volunteer information only once. In this 
case, a reliability score cannot be computed or 
used to evaluate the reliability of the informa-
tion; a report made under this scenario must be 
evaluated solely on the merits of the content. 
There are two components in the report (in 
addition to the information itself) that are used 
to assess reliability, context and authorship. In 
this scenario, authorship is of limited value 
since each reporter submits only once; we can-
not conceptualize an author profile. However, 
we can evaluate the content of the information 
in the context of current predictions (of tsetse 
distribution) as well as prior years’ predictions 
for the same period. A reliability score (equation 
2) is computed as a cumulative product of a 
user’s rating, the number of times a cell is oc-
cupied in the previous time step in the current 
year, the number of times the cell is occupied 

Figure 4. To assess the reliability of volunteered information, a report is evaluated in the context 
of a set of conditions. This figure presents a logical thought diagram for the application of the 
computation of reliability (Equation 2).
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on the same date in previous years, and the 
number of neighbors occupied in the previous 
time step. A report is deemed credible if the 
score exceeds a certain threshold. This thresh-
old is initially set to 5, but should be re-evalu-
ated periodically to ensure data quality is 
maintained.

Reliability = + + +θ ρ
κ
γ

4
�	 (2)

Θ = user score	
ρ = the number of times the cell was occu	
pied previously, including the previous time	  
step in the same year and the same time step	  
 in the previous year (max = 2)	
κ = number of neighboring cells that are oc	
cupied (max = 8)	
γ = number of supporting reports	

Volunteered information under both sce-
narios can also be evaluated in the context of 
TED model predictions. Model predictions 
that take into account volunteered reports are 
compared to predictions made 16 days prior as 
well as to the distribution of tsetse at the same 
time in the previous year. We can reasonably 
assume that pockets of tsetse should maintain 
connectivity. If a report is made of tsetse oc-
currence in an isolated area (as measured by 
number of neighbors, κ) where no tsetse are 
predicted to occur, the probability of this report 
being accurate is low. If we were to incorporate 
these data into the model, the resulting predic-
tions might dramatically impact the local reli-
ability of the model outputs. By incorporating 
volunteered information into our prediction of 
tsetse distribution, we can better represent fine 
scale variability, particularly with regards to 
our ability to represent real-time distributions.

Utilizing Volunteered 
Information to Reduce Model 
Error and Uncertainty

Previously, we detailed our approach to assess-
ing the reliability of volunteered information 
in the context of our case study. To illustrate 

the performance of the VGIS in making this 
determination, we simulate the reporting of 
tsetse occurrences across the study area. The 
simulated reports are generated for each itera-
tion of TED model prediction. Additionally, 
we can illustrate reliability assessment under 
each of the two scenarios we detailed earlier; 
multiple reports from a single user or single 
reports made from multiple users.

The TED model outputs a binary raster at 
250 m pixels which represents the minimum 
mapping unit for the predicted distribution of 
tsetse on the date the latest MODIS data product 
was captured; the predictions are not real-time 
estimates (always 30-45 days past) of tsetse 
distribution and are designed to underestimate 
the maximum distribution. Incorporating volun-
teered data allows us to fill in the gap, providing 
more up-to-date predictions (Figure 5). If the 
data reports are deemed reliable and differ from 
TED predictions, the cell represented in the bi-
nary raster for the previous time step is updated 
to reflect tsetse presence. The next iteration of 
TED will build on the ‘corrected’ raster.

Tsetse distributions expand and contract 
with seasonal climate. They achieve a minimum 
distribution at the peak of the dry season; these 
regions of minimum tsetse distribution are 
termed ‘reservoirs’ (DeVisser et al., 2010). Of 
relevance to our case study, we can use these 
minimum distributions as opportunities to 
‘reset’ the model predictions so as to reduce 
any errors of omission that may have resulted 
over the previous season from incorporating 
volunteered information. In doing so, we can 
ensure that TED model predictions are reliable 
estimates of the minimum distribution of tsetse.

To test the functionality of the VGIS, we 
will simulate the implementation of the system 
to test the evaluation of volunteered informa-
tion and the integration of this information with 
the DeVisser’s tsetse distribution model. These 
simulations will primarily explore the assess-
ment of volunteered reports of tsetse presence, 
under three scenarios. The first illustrates the 
case a report fills in a gap in the predicted 
distribution of tsetse (Figure 5a). Presumably, 
this is a product of error in the estimation of 



66   International Journal of Applied Geospatial Research, 4(2), 54-70, April-June 2013

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

safety distribution. As stated previously, the 
TED model is designed to minimize errors of 
commission at the expense of added errors of 
omission. The assumption here is that the gap 
observed in the distribution is a product of this 
process. When a report is made, occurring within 
the bounds of this, the probability of that report 

being accurate is reasonably high. Therefore, 
our model should assign a high reliability score 
to that report.

The second case involves a report that 
connects two clusters of tsetse. In this case, we 
assume that patches of tsetse distribution should, 
for the most part, maintain connectivity in some 

Figure 5. Users may volunteer reports of tsetse presence under a range of scenarios. (A) Illus-
trates the case where a report fills in a gap in a patch of tsetse, likely correcting an error in TED 
model predictions. (B) Illustrates the case where a report establishes connectivity between two 
isolated patches of tsetse. (C) Illustrates the case where a report of tsetse presence is spatially 
isolated from the predicted distribution of tsetse. In each case, a user is presented with a predic-
tion of tsetse distribution from the TED model (Column 1). Users identify an error in the model, 
observing tsetse in an area where they are not predicted to occur, and submit a report (Column 
2 - black box). The report is submitted for reliability assessment; if deemed reliable, TED model 
predictions are updated to reflect the new information (Column 3 – black box).
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way. If a report is made that establishes con-
nectivity between patches (Figure 5b), there’s 
a high likelihood that this report is reliable. 
Therefore, our model should assign a score that 
reflects this likelihood.

Finally, we simulate the case in which a 
report is made which places tsetse in a region 
that is isolated from predicted patches of tsetse 
distribution (Figure 5c). Since we have no prior 
reason to believe tsetse occur in this region, 
based on model projections, there is a low 
likelihood that this report is true. Therefore, 
our model should assign a reliability score that 
emphasizes the extreme nature of this report. 
Through these simulations, we can identify the 
effective threshold for reliability.

CONCLUSION AND 
LIMITATIONS

Communications barriers present one of the 
most prominent barriers to disease surveil-
lance programs. When communications 
between health care providers and regional 
health authorities break down under passive 
surveillance systems, there is a need to make 
attempts to directly collect disease incidence 
data directly. Yet, there are significant hurdles 
to implementing active surveillance programs 
(e.g., costs and logistics). By adopting concepts 
of crowdsourcing, public participation, and 
volunteered GIS, we can open the door for an 
intermediate solution for disease surveillance. 
Such an intermediate solution employs citizens 
to collect surveillance information, increasing 
the manpower available to collate the informa-
tion. It may not then be necessary to dispatch 
health professionals to procure the data directly. 
Targeted campaigns can also be utilized to solicit 
participation on behalf of the public to assist 
in collecting surveillance data. Finally, our ap-
proach to assessing the credibility of volunteered 
information increases the utility and reliability 
of data obtained from these campaigns.

However, there are significant limitations 
to a full implementation of the VGI in our case 
study. The region in Kenya in which we are 

working is remote; there are significant chal-
lenges in terms of communications connectivity, 
reliable electricity, and necessary hardware; 
AMREF (American Medical and Research 
Foundation) and the African Conservation 
Centre (AAC) have made significant improve-
ments to local infrastructure, but much more 
is required. Cost remains the most substantial 
hurdle for regional implementation. Our utiliza-
tion of open source solutions mitigates, but does 
not eliminate this challenge. Absent assistance 
from international partners, the likelihood of 
full implementation of the disease surveillance 
system will certainly remain in the domain of 
our scientific and development collaborators.

Connors et al. (2011) draw attention to 
the potential value of incorporating additional 
sources of information (e.g., Twitter, Flickr), 
aside from direct volunteering through a VGIS, 
to allow for increased participation; however, in 
doing so we would be introducing new types of 
uncertainty to the models. Our current design 
attempts to limit error exclusively to those of 
omission (i.e., we have tried to ensure that 
TED model predictions are estimations of 
the minimum area tsetse are distributed). In 
this way, we have greater confidence over the 
areas TED predicts tsetse to occur. When users 
volunteer reports of tsetse occurrence, they do 
so by providing GPS coordinates of their loca-
tion (this is done in the background through the 
iOS application). Incorporating Twitter feeds, 
geo-tagged Flickr photos, among others would 
on the one hand provide us with more informa-
tion; however the cone of location uncertainty 
of that information is much greater and far less 
tractable. These sources of volunteered infor-
mation represent important avenues for future 
development, particularly in the broader field 
of VGI; but at this time are beyond the scope 
of what we believe to be possible to include 
in our project.

Critical to the success of VGIS for disease 
surveillance is adequate public participation. 
Too few reporters can make it difficult to assess 
credibility and limits the conclusions that can 
be drawn from the information collected; how-
ever if incentives for participation are carefully 
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considered, there can be a drive for individuals 
to accurately and reliably contribute to the sys-
tem. Integration of volunteered information for 
disease surveillance, especially in low-income 
countries, can be used as an alternative to the 
high costs of active surveillance programs, 
which are often implemented in rural areas 
to learn more about disease prevalence. The 
prototype for a VGIS outlined in this study 
demonstrates how technology and participatory 
science can advance passive disease programs 
to improve public health in needed parts of 
the world.
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