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ABSTRACT

Restoring the trajectory of a bat from a table tennis match video is critical in analyzing a table 
tennis technique and conducting statistical analysis. However, directly bat location detection in each 
frame is challenging due to changing shapes caused by varying movement directions and speeds, 
leading to ambiguity. This paper develops a novel two-stage method. The first stage utilizes YOLO 
for bat detection in each frame, followed by filtering out erroneous candidate boxes. In the second 
stage, the authors use a temporal prediction model that integrating human keypoint information and 
interpolation to reconstruct a complete bat trajectory with minimal errors. The method’s effectiveness 
and performance are evaluated on our video datasets. The evaluation results demonstrate that the 
proposed method outperforms traditional methods on precision performance metrics. The error 
screening algorithm improves precision score to nearly 1. In addition, the method has the recall score 
22.3% higher than YOLO ‘s and also 1.4% higher than that of YOLO with cubic spline interpolation.

KeyWoRdS
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Table tennis attracts many people worldwide owing to its competition and entertainment features 
(Voeikov et al., 2020). With the development of computer vision technologies, several researchers 
have investigated the motion of table tennis bats during the stroke execution (G. Chen et al., 2013). 
Table tennis bat trajectories reconstruction is a pivotal analysis component in this field, as it can reveal 
the technical intricacies and movement patterns of table tennis players. Based on the bat trajectories, 
various metrics can be measured, such as hitting quality, speed, and impact point accuracy, which 
can provide valuable feedback to the players. Furthermore, when these metrics are combined with 
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other information, multiple follow-up high-value analyses are possible, such as hit point analysis, 
action normative analysis, and serve action guidance.

Getting a complete and accurate bat trajectory is challenging for three reasons. First, training the 
bat detection model requires a large-scale dataset containing table tennis bats with different shapes 
and angles. Creating such a dataset requires annotating many images. Unfortunately, such a dataset 
does not currently exist. Second, object detection models cannot fully detect the racket in each frame, 
as there are missed and misdirected detection cases. Therefore, reconstructing the bat trajectories is 
necessary. Third, due to the fluctuating speed of the bat during the swing, it is difficult to accurately 
fill in or predict missing values based on interpolation methods or temporal prediction models. Besides, 
current works have investigated well-defined objects with a clear movement pattern and in limited 
conditions (Rozumnyi et al., 2020a; Rozumnyi et al., 2021a; Tao et al., 2016).

The literature offers several studies on sports analysis using AI technology. For instance, Llanos 
et al. (2022) used Openpose for table tennis pose detection and four machine learning models for pose 
analysis. Unlike the authors’ work, they categorized different key points of the human body to assess 
an athlete’s posture. AlShami et al. (2023) applied a Transformer to predict a tennis player’s future 
trajectory as a sequence derived from their body joints’ data and ball position. Although the trajectory 
tracking task is similar, the figure subject in the picture occupies a large proportion, and the detection 
is relatively easy. However, the figure’s running distance in the tennis court is large, so the human 
body’s keypoint and the ball’s information can be well captured. J. Wu et al. (2021) and G. L. Cai 
et al. (2022) [ball trajectories2] predicted the flight trajectory of a table tennis ball based on LSTM. 
However, the problems of miss detection, motion blurring, and shape changes racket trajectories face 
during restoration significantly affect the performance of their method. Unlike current methods, the 
authors’ is much more novel, especially for table tennis bats.

The authors’ method is to detect or predict the position of the bat from the table tennis video 
frame and reconstruct the complete bat trajectory. However, due to the fast moving bat in swing 
actions, there are many frames in which the bat cannot be detected. The authors’ method predicts and 
complements these missing bat positions. Recall score is the top priority. It measures the accuracy 
of bat trajectory reconstruction.

This paper proposes a generalized and robust method to produce and estimate the whole bat 
trajectories from sports videos. The concept is to use human body keypoints and confidence scores 
as extra information to decompose the problem into two stages: bat object detection from videos and 
prediction and complementary of the missing bats from the results of bat detection. A player’s arm 
information is crucial for most swinging actions as it drives the bat’s motion, making arm keypoints 
excellent features for bat trajectories reconstruction. More importantly, the authors’ method applies 
to other scenarios involving trajectory reconstruction of handheld objects. Specifically, based on 
a pre-trained object detection model specified for bat class, the proposed method first detects bat 
locations in all frames from the input video. Besides, the authors feed the video into a preset human 
pose recognition model (Bazarevsky et al., 2020) to obtain human body keypoint information and 
eliminate erroneous bat candidate boxes. Second, the authors classify the video frames into forward 
swing frames and others. Then, the authors generate the full bat trajectory based on a temporal 
prediction model that leverages human body keypoint information and an interpolation method. 
Finally, to train and evaluate this method, the authors build a video dataset with location information 
of labeled bats, which is also useful for future work on bat analysis. This paper’s main contributions 
are summarized as follows:

1.  The authors propose a temporal prediction model utilizing human body keypoints about bat 
movement trends. This facilitates the prediction of bat positions under varying velocities.

2.  The authors develop a novel bat trajectory reconstruction system that simultaneously addresses 
trajectory prediction and missing target imputation to obtain an accurate bat trajectory.
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3.  The authors build a large-scale table tennis video dataset with labeled bat locations and human 
keypoint information. Experiments on this dataset reveal that this method outperforms traditional 
methods by a large margin.

ReLATed WoRK

optical Flow Method
The optical flow method exploits the temporal variations of pixels in an image sequence and the 
correlation between consecutive frames to calculate the motion information of objects between 
adjacent frames, which is based on the correspondence between the previous frame and the current 
frame. Optical flow can be used to estimate and analyze the motion of objects in a sequence, with the 
existing methods divided into traditional and deep learning algorithms. Lucas et al. (1981) proposed 
the Lucas-Kanade sparse optical flow algorithm (Bruhn et al., 2005), which exploits brightness 
constancy, temporal persistence, and spatial consistency. Bouguet introduced an improved Lucas-
Kanade algorithm (Bouguet et al., 2001) based on pyramid hierarchies, overcoming the issues of 
tracking fast-moving objects and affine transformations. Another traditional approach is the dense 

Figure 1. Sketch of racket trajectory reconstruction method
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optical flow, such as Farnebäck’s method (Farnebäck, 2003), which approximates the neighborhood 
information of each pixel using polynomials and calculates the displacement for all points in the 
image. However, the trade-off between the accuracy and speed of this method limits its practical 
application. Deep learning (Behera et al., 2023; Li et al., 2022; Tembhurne et al., 2022; Zhou, 2022) 
has yielded promising results in optical flow estimation in recent years. For instance, FlowNets and 
RAFT (Boyer et al., 2009; Dosovitskiy et al., 2015; Ilg et al., 2017) utilized convolutional neural 
networks to predict optical flow for each pixel in the image and achieved significant advancements in 
real-time estimation algorithms. However, for the bats in table tennis training or competition videos, 
their positions constantly change during the motion, causing rapid transformations and resulting in 
much motion blur. Therefore, extracting features from such scenarios is too challenging.

Instance Segmentation
Instance segmentation (Hafiz & Bhat, 2020) has witnessed significant research interest in recent 
years, owing to the rapid progress in deep learning methodologies (Alsmirat et al., 2019; Hu et al., 
2022; D. Li et al., 2019; Ling & Hao, 2022; H. Wang et al., 2020; Yu et al., 2018). Generally, instance 
segmentation combines pixel-level semantic segmentation (L. C. Chen et al., 2017; Ronneberger et 
al., 2015) and object detection. Instance segmentation methods can be divided into single-stage and 
two-stage approaches (Gu et al., 2022). Influenced by the single-stage object detection research (C. Li 
et al., 2022; Lin et al., 2017a; Redmon et al., 2016; Tian et al., 2019), single shot instance segmentation 
algorithms are categorized into anchor-based methods (Bolya et al., 2019; H. Chen et al., 2020; C. 
Y. Wang et al., 2023; X. Wang et al., 2020) and anchor-free methods (Dai et al., 2016; X. Chen et 
al., 2019; Kirillov et al., 2020; Y. Li et al., 2017; Xie et al., 2020). Specifically, YOLCAT (Bolya et 
al., 2019) employed ResNet101 with FPN, the same as RetinaNet (Lin et al., 2017a), and designed 
two branch networks to generate data of each candidate frame and prototype mask for each picture. 
YOLCAT can predict the mask coefficients to generate the instance mask through linear combination. 
Besides, SOLO (X. Wang et al., 2020) classified each pixel into the corresponding instance category 
and returned the center of the object pixel by pixel. Regarding size processing, SOLO utilized FPN 
to assign objects of different sizes to feature maps at different levels used as the size categories of 
the objects. BlendMask (H. Chen et al., 2020) added a Bottom module to extract low-level detailed 
features based on FCOS (Tian et al., 2019) and proposed a Blender module to integrate these two 
features drawing on the fusion methods of (Bolya et al., 2019; Tian et al., 2019). Other anchor-free 
methods generate the position and shape information of the target directly at each pixel position in 
the image. PolarMask (Xie et al., 2020) conducted instance segmentation and object detection using 
the same modeling method. This network is as easy as FCOS (Tian et al., 2019), especially involving 
Polar CenterNess instead of bounding box centerdness. PointRend (Kirillov et al., 2020) treated 
image segmentation as a rendering problem. The two-stage methods (Z. Cai & Vasconcelos, 2018; 
He et al., 2017; Kirillov et al., 2019; K. Wang et al., 2019) first identify objects in the image and then 
perform pixel-level segmentation inside each box. Mask-RCNN (He et al., 2017) and Panoptic FPN 
(Kirillov et al., 2019) introduced additional segmentation branches based on (Ren et al., 2015). Z. 
Cai and Vasconcelos (2018) enhanced Mask r-cnn (He et al., 2017) by cascading multiple stages of 
the network, gradually improving target detection and instance segmentation performance. However, 
instance segmentation algorithms require extensive additional annotated data and pre-training. In 
the bat tracking task, pixel-level segmentation accuracy is not so crucial, opposing the position and 
motion of the bat. Therefore, this paper employs object detection algorithms.

Small Target detection
How to detect and localize small-sized targets in complex scenes has been extensively studied in 
computer vision (Benmoussa et al., 2022; Dwivedi, 2022; Pan et al., 2022). Deep learning-based target 
detection algorithms can be classified into two categories: two-stage and one-stage. The former first 
extracts features, generates region proposals, and classifies the samples using a convolutional neural 
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network. R-CNN (R. Girshick et al., 2014), Fast-RCNN (R. B. Girshick, 2015), and Faster-RCNN 
(Ren et al., 2015), which rely on VGG as the backbone. These methods have achieved remarkable 
results in this task. In one-stage detection, features are extracted directly in the network to predict 
object classification and location without region proposal. YOLO (Redmon et al., 2016) is a typical 
and representative algorithm based on region extraction. Some methods design various network 
architectures and feature pyramid structures (J. Cao et al., 2020; Lin et al., 2016a) to capture feature 
information at different scales and levels. Several recent research works utilized attention mechanism 
(W. Li et al., 2020), null convolution (Kim et al., 2021), and multi-scale feature fusion (Guo et al., 
2020) to capture small objects’ details and contextual information, thus improving the accuracy and 
robustness of target detection. This paper adopts YOLOv5 for bat target detection to efficiently and 
accurately detect fast-moving bats.

Missing Value Imputation
Currently, several approaches address missing values in sequences. Interpolation methods, including 
linear interpolation, polynomial interpolation, and spline interpolation (Hagan & West, 2006), are 
commonly employed. In recent years, recurrent neural network models, such as LSTM (Hochreiter 
& Schmidhuber, 1997), have been developed to generate sequences by leveraging historical data 
features. For example, Alahi et al. (2016) utilized information about the interactions among nearby 
pedestrians to predict pedestrian trajectories. This work introduces a novel method by leveraging an 
LSTM model fused with human keypoints information to generate the whole bat trajectory in a video.

Bat Trajectory Prediction and Reconstruction
There are few research studies on bat trajectory prediction and reconstruction. During the authors’ 
investigation, they did not see other bat trajectory reconstruction methods under similar conditions and 
scenarios. There are some studies on baseball (Shibata et al., 2023) and tennis bat trajectory estimation 
(Furuya et al., 2021) or some table tennis robot (Ji et al., 2021). There are also some studies on the 
ball trajectory reconstruction like badminton ball (Liu & Wang, 2022) and table tennis (H. Li et al., 
2022). Among these similar methods, most of them apply physical sensors, and also their bats are 
easier to identify in images than table tennis bats. Compared with them, the authors’ method does not 
need complicated equipment. It has strong versatility, and its application scenarios are relatively novel.

MeTHod

Figure 2 illustrates the overall framework of the proposed method. The key concept is to leverage 
human body keypoints and confidence scores. Specifically, first, detect the bats and obtain the human 
keypoint information from the video, and then predict the missed bat locations by fusing human body 
keypoints and confidence scores. By extensively studying the process of table tennis strokes, the 
authors found a strong correlation between the movement patterns of certain points of the arm and 
the movement of the bat. Inspired by Social-LSTM (Alahi et al., 2016), the authors incorporate this 
information as surrounding contextual points of the bat location sequence into the temporal prediction 
model. In addition, they combine an interpolation method to fill the missed bats in other conditions. 
Next, they describe the proposed method in detail.

It first takes frames of a sports video as input and detects the bat location using YOLOv5. The 
human body keypoint information is extracted and combined with bat information. The sequences 
are then fed to a block that separates them into two types and utilizes two models to reconstruct the 
bat trajectory.
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Notations 

Let a full bat trajectory be X
T D∈ ×  and table tennis images captured from a phone or other cameras 

as F
T h w∈ × × × 3 , where T is the frame sequence length, D is the dimension of the bat position, 

including coordinate x y,( )  and confidence score c, and h*w  is the image size. The authors introduce 
human body keypoints P

T J D∈ × ×  as additional information to produce the bat trajectory from the 
input table tennis video, where J is the number of human joints employed. All of the notations are 
shown in Table 1.

Bat object detection
In order to reconstruct the trajectory of a moving object, the authors first perform object detection 
on each frame and then use the detected bounding boxes to predict and fill missed bats. Therefore, 
choosing an object detection model that offers both high speed and accuracy is important. However, 
the fast motions of bats lead to variable shapes in frames and introduce motion blur, making it 
challenging to detect bats accurately.

Based on these observations, the authors build a bat dataset with multiple poses (refer to 
Section 4.1 for further details) and use it to train a bat object detection model using the classic 
YOLOv5 model. The YOLO model performs very well in terms of speed and accuracy. In order 
to achieve better detection, the authors keep labeling and adding bat images for training. In order 
to optimize the detection effect of YOLO, they preprocess each frame to make the bat account 
for a larger proportion of the image. However, the detection results of YOLO are not perfect. The 
authors design an error screening algorithm for the bat bounding boxes to retain the real part of 
the frames with bat.

During image preprocessing, the authors employ the yolov5s.pt pre-trained model to detect 
the left side player in the first video frame and determine the center position of the player 
C c c

x y1 1 1, ,
,( )  and size of the bounding box h *w

0 0
 around the player. Note that the authors focus 

on the player who hits the ball with their right hand and sits on the left side of the screen. Then, 
the authors crop the original image into smaller images containing only the players according to 
a certain proportion to standardize the size of the images. The scale ratio is defined as 

s max
h

h

w

w
=











0 0, . Then, the authors take

Figure 2. Proposed architecture
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as top left and bottom right vertices to crop the image. According to the actual situation, they 
need to extend the range of cropped image up and left more than down and right. Where 0.55 and 
0.45 represent the scale of expansion from the center towards the upper left and lower right sides of 
the frame, respectively. This ensures a large proportion of the figure and the bat in the image, which 
allows for capturing complete information on the human body keypoints and bat movements. After 
the initial processing of the images, the authors used the trained YOLO model for bat detection.

The authors convert the bat detection results into pixel values and use the absolute coordinates 
of bat center X to denote a sequence of raw bat trajectory X X X

T1 2
, , ,¼ . Among all of the frames 

from the input video, suppose that the bats are detected in M frames and there are also N frames that 

Table 1. Summary for the notation

Notation Description

X a full bat trajectory

F table tennis images

T frame sequence length

D dimension of the bat position

h height of an image

w width of an image

P human body keypoints

J number of human joints employed

C
1 the center position of the player

h w
0 0
, size of the bounding box around the player

s scale ratio of original image

v vertices to crop the image

l the line connecting the keypoints of the right elbow and the right wrist of the human body

C
t

relative origin of the t
th  frame

(x,y) position of the bat

c confidence score

t frame ID of all frames
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contain falsely detected bats. During the experiments, the authors observed that there are generally 
two types of false detections: one is where the detection result is located far from the arm, and another 
is where a part of the human body is detected as a bat. Based on experience, the authors believe the 
racket’s location should be near the elbow-to-wrist line extension. Therefore, they formulate a screening 
rule accordingly. Specifically, they first extract the relevant human wrist and elbow keypoints and 
compute the two-point connecting line l

t
. Considering the majority of right-handed hits, they calculate 

the distance d
t
 between the center point of each frame of the bat x y

t t
,( )  and the line l

t
 connecting 

the keypoints of the right elbow P
t

e  and the right wrist P
t

w  of the human body, where t indicates the 
serial number in T frames. The distance is formulated using line representation parameters as:

d
ax by c

a b
t

t t=
+ +

+2 2
,  (2)

where a, b, and c are the parameters of line l
t
. The points that exceed the threshold are considered 

false candidate bounding boxes. The authors also calculate the angle between the elbow-wrist direction 
vector and the wrist-bat direction vector. If the angle is larger than the threshold, the position of the 
bat detection frame is not in the direction of the elbow-wrist extension line, posing a false detection. 
For the left-handed hits, the authors replace all of the key points on the right side with the left side 
and perform the same calculation. Here, they experimentally set the threshold value to 60. Besides, 
they adopt the Mediapipe Pose Model (Bazarevsky et al., 2020) to extract keypoints information from 
the human body. They choose keypoints 13-16 in this stage and 11, 12, 23, and 34 in the next stage. 
The human body figure with the human keypoints considered is illustrated in Figure 3. There are T 
– M + N frames F

fault
 where the bat was undetected or falsely detected, and the authors set the bat 

data in these frames to null values. The output of the bat detection process is denoted as:

′ ∈ =
∈







X
F F

X

T* t fault�

t

 2
� ,� � �

, � �

null if
otherwise





 (3)

Temporal Prediction Model With the Fusion of Human Body Information
During trials, the authors observed a continuous variation in bat speed throughout the forward swing, 
transitioning from a slow pace to a rapid one and then returning to a slower pace. This dynamic 
behavior presents a significant challenge for conventional interpolation methods to accurately fill 
in the missing data points for the bat’s motion during this specific phase. Certain keypoints of the 
human body, such as the shoulders, elbows, and wrists, exhibit movement patterns similar to the 
bat. Therefore, the authors leverage these keypoints to predict the bat trajectories. Inspired by the 
remarkable success of LSTM (Hochreiter & Schmidhuber, 1997) in temporal forecasting tasks, 
the authors consider the bat trajectories as time series data. Thus, they employ LSTM to generate 
a complete bat trajectory by fusing human body keypoints. Next, the authors introduce how their 
approach represents the data and then explain how they employ LSTM to achieve this information 
fusion and generate the complete bat trajectory.

The authors adopt the widely recognized MediaPipe Pose landmarks comprising 33 key points 
outlining the human body’s skeleton. Mediapipe is a multimedia machine learning application 
framework developed and open-sourced by Google Research. One of its productions, MediaPipe 
Pose, is a machine-learning scheme designed for high-fidelity human pose tracking. It leverages 
research findings from BlazePose (Bazarevsky et al., 2020) and obtains the entire 33 2D landmarks 
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of RGB video frames from the ML Kit Pose Detection API. Compared to Openpose (Z. Cao et al., 
2017), MediaPipe is more lightweight and thus is well suited for mobile and embedded applications. 
It can handle multiple data types and easily integrates into different platforms. Hence, the authors 
employ Mediapipe Pose to output an image’s 2D human body keypoints (pose landmarks) rather than 
the 3D keypoints (pose world landmarks) since depth information is not required. The output 
coordinates are absolute values in (0,1) and are correct. Depending on whether a player is a left-hander 
or right-hander, the authors utilize three additional points whose numbers are 11, 13, 15, or 12; 14; 

Figure 3. Human body keypoints figure with the considered points in green

Figure 4. Model architecture of the temporal prediction network involving human body information fusion
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and 16, which are particularly relevant to the movements of a table tennis bat. The authors integrate 
them into the bat location sequence generated by YOLOv5. Specifically, they utilize each point’s 
information, including its coordinate and confidence score, which ranges from 0 to 1. Owning to 
possible drifting and discontinuous changes in the positions of human keypoints, they incorporate 
confidence scores for each keypoint to balance the model’s learning of the bat’s movement trends 
without excessively relying on position variations from keypoints with lower confidence. All 
confidence scores are produced by BlazePose and described as visibility. The human keypoints 
information is represented as P

t

J*Î  3 .
After removing the erroneous bats, the authors set the confidence scores of all true bats to 1 and 

then concatenate the human keypoint information P into X′. In order to normalize the coordinates 
of various points, the authors use the midpoint of the human body as the relative origin to calculate 
the coordinates of each point, which is formulated as:

C P t T
t

j S

t

j= ∈
∈
∑
1

4
, ,  (4)

where C
t
 represents the relative origin of the t

th  frame, and S represents the set {11, 12, 23, 
24} of J human body keypoints. The coordinates of each point are calculated as X C

t

'

t
-  and P C

t t
-  

in both x-axis and y-axis, respectively. Then, the authors further scale the coordinates by dividing 
them by 100 to obtain smaller numerical values.

The authors use LSTM to predict and fill missing values in a continuous series of swing 
motions. Specifically, they consider a time step of four and leverage the bat information from the 
previous four frames to predict the missed bat in the current frame. Furthermore, they incorporate 
the keypoint information of the human body from the subsequent frame of each bat frame as 
additional input. Figure 4 depicts the model architecture of the temporal prediction network that 
fuses human body information. This method suggests a new composition of input data (i.e., the 
authors utilize the bat information from i − 4 to i − 1 frames and the keypoint information from i 
−3 to i frames to predict the bat’s position in the i

th� frame, as illustrated in Figure 5). The human 
body information of the current frame is added as an aid to the bat position sequence of the previous 
frames to help predict the missing bat position of the current frame. Since the human keypoints 
on the arm are moving in the same trend as the bat, the authors treat their trajectories as time series. 
These points share the same motion pattern as the bat in a LSTM model. When the authors have 
more relevant information than just the previous bat sequence, they can better predict and complete 
the bat for the current frame. The confidence of human keypoints provides complementary 
information that tells the model which points are important to consider in this frame and which 
points are less valuable. The authors fill the missing values with the predicted results and perform 
the same procedure for the whole sequence.

The input dimension of this LSTM model is 12, which has four pairs of coordinates and confidence 
scores. The output comprises only the coordinates of the bat center, which are obtained through a 
fully-connected layer. The authors use the Mean Squared Error (MSE) loss as the loss function, 
defined as follows:


cor

i

N

out out
N

x y x y= + − +( )
=
∑
1

1

2 2 2 2
2

ˆ ˆ ,  (5)
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where x and y
out out

 are the output of this temporal prediction model, and ˆ ˆx and y  are the ground 
truth of the bat location. Considering different speed of bat movements, the video frame rate of this 
training set for the LSTM model is 60 fps, while the video frame rate of normal use of mobile phones 
is generally 30 fps and 60 fps, so this model meets the requirement of analysis in daily training.

Trajectory Completion and Reconstruction
After comprehensive experiments, the authors compare the effectiveness of traditional interpolation 
methods (Hagan & West, 2006) with their proposed temporal prediction model. The authors find 
that the interpolation methods have satisfactory completion results overall. Still, they perform poorly 
in capturing certain forward swing frames because of the fast-moving speed of bats in these frames. 
Therefore, they introduce a novel method that combines the cubic spline interpolation with their 
temporal prediction model to reconstruct complete bat trajectories.

The authors smooth and filter the wrist point horizontal coordinate curve for all sequence 
frames with a Butterworth filter in lowpass mode. The normalized cut-off frequency 

ùn
 is set to 

0.3. This step allows the authors to find multiple wrist poles in the hitting phase. Subsequently, 
they define the forward swing sequences as consecutive and monotonically increasing series between 
each pair of neighboring local minima and maxima points. Multiple forward swing frames supply 
sequences of human body keypoints and bat positions, which are input into the time series prediction 
model and used as training data. The information from sequential frames of the forward swing is 
entered into the authors’ trained missing frame prediction model for the bats. The input data consists 
of three components: the coordinates of the key points on the human body, the coordinates of the 
bats detected by YOLOv5, and the confidence scores of every point. The authors use the model to 
estimate the bat’s position in the frame of the missing section and reconstruct its trajectory in the 
forward swing frame. 

Cubic spline interpolation is a mathematical technique that estimates the values of a function 
between known data points. It is particularly useful when there is a set of discrete data points for 
creating a smooth curve that passes through those points. This method is widely used in various 
fields, including computer graphics, engineering, and numerical analysis. Regarding the remaining 
frames, the authors directly apply this cubic spline interpolation. Figure 6 depicts two different 
sequences. The whole trajectory of the table tennis bat is represented as X

T∈ × 2 .
Occlusion is present but rare in a whole swing motion. When the bat is occluded, YOLO 

detection is impossible. But the keypoints of the human body can still be extracted. At this time, the 
time series prediction model or interpolation method is required to predict the bat position based on 
the previous frames.

Figure 5. Input and output data composition of the LSTM model
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“Swing forward” represents the frames that comprise a complete forward swing action, and 
“Other” represents the remaining frames.

The developed method reduces the processing time and saves computational resources but also 
accurately reconstructs and fills the missing values in bat trajectories. The proposed method simplifies 
the computational workload and guarantees that the produced bat trajectories accurately reflect the 
original data, closely matching real-world observations.

eXPeRIMeNTAL eVALUATIoNS

datasets
The authors construct three table tennis video datasets with different types of bat postures and 
movements to evaluate the developed scheme. The following experiments utilize these datasets.

Table Tennis Sports Video Dataset
The authors collect daily training videos from table tennis teams, courses, and representative staff 
teams at the Beijing University of Posts and Telecommunications. They construct a collection of table 
tennis sports videos with various frame rates and camera views. This dataset contains 1,009 short 
videos that are approximately two seconds long, and 26 long videos are from 22 male and 9 female 
players. The videos are captured at different frame rates using mobile phones (30fps, 60fps, 240fps) 
and a stereo camera (120fps). The camera is set on one side of the table to capture motion videos 
of the players on their bat-holding side. The camera angle is either perpendicular to the table’s long 
side, capturing both sides of the players’ movements, or set at a predetermined angle relative to the 
table’s long side, capturing the motion of one single player.

Bat Target Detection Dataset
The authors aim to build a table tennis bat object detection dataset involving multiple views and poses. 
Therefore, they selected segments from their table tennis video dataset and annotated a substantial 
number of bats using the RoboFlow Annotate tool. The dataset includes 3,754 images of bats with 
different shapes and sizes. This dataset provides ample and effective raw data for model training and 
optimization. Figure 7 depicts some examples from the bat dataset.

Swing Sequences Dataset
This dataset contains 1,596 frame sequences of forward swing actions with labeled bat locations 
and human body keypoint information in each frame. In all generated sequences, the coordinates 
and confidence scores are normalized. Specifically, the authors extract multiple consecutive frames 

Figure 6. Two different sequences from a 30fps video clip
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of forward swing from the above table tennis sports video dataset, annotate the bat by RoboFlow, 
and extract human keypoints using Mediapipe (Bazarevsky et al., 2020). This dataset is created for 
training and optimizing the LSTM-based bat trajectory temporal prediction model. As mentioned in 
Section 3.3, the authors’ approach involves using the temporal prediction model within the swing-
forward frames and employing an interpolation algorithm in other frames. Consequently, this dataset 
is solely utilized for the training phase. The authors apply their method to the entire swing sequence 
during the testing stage.

The yellow bounding boxes target bats from various angles and sights.

Baselines
Current literature does not study bat trajectory recognition and tracking in sports videos. The few 
existing methods focus on table tennis robots filmed from the front, which differs from this application 
scenario. For the bat identification problem addressed in this paper, the authors compare three classic 
approaches as baselines, namely the Lucas-Kanade sparse optical flow algorithm as the traditional 
optical flow method, YOLOv8-seg as the instance segmentation method, and the object detection 
method YOLOv5. These models are fast to execute and possess a certain object-tracking capability. 
Next, the authors briefly introduce these baseline methods.

Figure 7. Bat target detection dataset annotated in Roboflow
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Gunnar Farneback Optical Flow Algorithm
The Gunnar Farneback optical flow algorithm (Farnebäck, 2003) is a classic two-frame differential 
optical flow estimation algorithm that calculates an object’s trajectory through optical flow. It uses 
polynomial expansion to estimate the optical flow field by fitting a local quadratic polynomial to 
the image brightness. In sports video scenes with people as the main subjects, the movement of the 
bat is more obvious. Thus, the intensity information of the bat’s optical flow is relatively strong. 
Specifically, the authors filter out 10 points with the highest brightness in each frame and take the 
point closest to the wrist as the center of the bat’s surface.

YOLOv8-seg
The YOLOv8-seg model is an instance segmentation model based on YOLACT (Bolya et al., 2019). 
It is simple to deploy and easy to train using self-defined data and attains excellent performance. The 
authors use the Labelme tool to label more than 1,100 segmented images of the bat manually. Then, 
the authors train the segmentation model on the pre-trained YOLOv8m-seg.pt weights using their 
labeled images. They calculate the midpoint of the coordinates of the segmentation results in each 
frame as the complete bat trajectory.

YOLOv5
YOLOv5 is a single-stage object detection algorithm with a certain tracking and recognition ability. 
Using the bat target detection dataset, the authors train their bat object detection model on the pre-
trained YOLOv5s.pt weights. The authors set the batch size to 16 and trained the model for 500 epochs.

Comparison Methods
Spurred by the evaluation results shown in Table 1, the authors choose YOLOv5 as the baseline of 
their approach. They build several methods on it, each optimized based on the previous one. Next, 
they briefly introduce each method.

YOLOv5S + Interpolation
Based on the YOLOv5 results, the authors design a filtering algorithm to find the wrong detection 
using the two rules presented in Section 3.1 and elevate the detection precision to nearly one. The 
authors name this combined method as YOLOv5S. They apply only cubic spline interpolation for bat 
trajectory reconstruction, but this method yields unsatisfactory results for certain frames in swing-
forward sequences.

YOLOv5S + Social-LSTM
Social-LSTM (Alahi et al., 2016) is a trajectory prediction model that leverages surrounding 
pedestrians’ information to share movement patterns and predict all pedestrian trajectories. The authors 
simplify the model architecture and train it on their dataset with human keypoint information in each 
frame for 300 epochs. They attempt to use this model alone to predict all the missing trajectories 
without the interpolation method.

YOLOv5S + LSTM
Considering the complexity of Social-LSTM (Alahi et al., 2016) and the limitations of its application 
scenarios, the authors design an extension based on it to leverage the key idea of using surrounding 
related information on classic LSTM (Hochreiter & Schmidhuber, 1997). They introduce human body 
keypoints coordinates from the shoulder, elbow, and wrist (12, 14, 16 points) and the bat location as 
input and train on a table tennis sports video dataset for 300 epochs.
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Performance Metrics and evaluation Results
Performance Metrics

• Precision (P) represents the proportion of true positive bats in YOLO detection results, calculated 

as P TP

TP FP
=

+
, where TP is the number of true bat frames and TP + FP is the number of frames 

in segmentation and detection results. This metric is used only on the baselines. After error filtering, 
the authors successfully elevated it to 1.

• Recall (R) represents the proportion of correct bat positions predicted in a trajectory, which is calculated 

as R
TP

TP FN
=

+
, where TP + FN is the number of frames in a video clip because each frame 

exactly has a bat in it.
• Intersection Over Union (IoU) represents the overlap ratio between the predicted and the real 

bounding box. This better represents the degree of overlap between the two boxes. The size of both 
boxes is 100*100, centered on the prediction and ground truth coordinates. Given the occurrences 
of undetected bats in YOLOv8-seg and YOLOv5 results, frames with undetected objects are 
treated as having zero IoU. Finally, the authors compute the average of the IOU of all frames.

• Distance From the Center Point (D) represents the Euclidean distance between the prediction and 
ground truth centers. The authors only consider the frames where bats are detected, including 
the ones with false bat detection, and take the average distance results of these frames.

Evaluation Results
The authors select five videos from their table tennis sports dataset, including professional and amateur 
players’ forehand attacks from two scenarios. To standardize the measurement, the authors extracted 
two seconds from each video segment that consisted of approximately 120-140 frames. The authors 
first compare the baselines on the test dataset, with the corresponding results reported in Table 1.

Optical flow requires relatively modest computational resources, but its performance is the least 
satisfactory. For each subsequent frame, the authors calculate the optical flow relative to the previous 
frame, including the magnitude and angle of the flow. Next, they identify the locations closest to 
the wrist keypoints with the highest optical flow intensity. They observe that the optical flow of the 
pixels near the bat in sports videos is not prominent and cannot be tracked effectively. Indeed, at 
times, the optical flow intensity around the bat is weaker than that of the more noticeable motion 
of the table tennis ball. Thus, determining the bat’s position by searching for the bright points may 
lead to significant errors. Although YOLOv8-seg is significantly better than optical flow, it still 
underperforms. This is because, first, both precision and recall scores are relatively low, as there 

Table 2. Trajectory estimation and reconstruction results of baselines on test datasets

Baselines Farneback YOLOv8-seg YOLOv5

P R IoU D P R IoU D P R IoU D

set1 0.812 0.605 0.254 131.895 0.963 0.684 0.568 17.278 0.938 0.789 0.755 4.515

set2 0.893 0.739 0.353 81.529 0.948 0.791 0.658 16.234 1 0.739 0.75 3.521

set3 0.598 0.528 0.209 134.044 0.713 0.685 0.581 291.097 1 0.85 0.791 4.735

set4 0.857 0.537 0.187 125.69 1 0.822 0.613 12.197 0.974 0.843 0.731 8.25

set5 0.912 0.796 0.41 51.399 0.954 0.71 0.552 18.539 1 0.741 0.651 5.328

total 0.814 0.641 0.283 104.911 0.916 0.738 0.594 71.069 0.982 0.792 0.736 5.27
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are some false and missed detections during the segmentation process, hindering the subsequent 
experiments. Second, the model has limited robustness, leading to considerable errors, especially on 
test set 3. Therefore, additional annotations of the bat’s surface from different sizes and angles are 
required to enhance the model’s effectiveness. Unlike object detection bounding boxes, segmentation 
annotations are more time-consuming and labor-intensive. In conclusion, YOLOv5 is more suitable 
as a baseline. However, since the precision score in YOLOv5 is not always 1, the filtering algorithm 
is essential to eliminate the wrong detections and increase the precision score to 1.

The authors evaluate the compared methods and their method on the test dataset. For convenience 
in observing the experimental results, they center each image around the bat and crop it to a size of 
100 100* . Regarding metrics P and R, if the bat appears fully within the image, they consider the bat 
center position correct. The corresponding results are reported in Table 2.

The precision of YOLOv5 is 0.982, highlighting the requirement for error filtering. After setting up 
rules to filter out false detection results, the precision of YOLOv5 was raised to 1. The results in Table 
2 indicate that the proposed method that fuses human body keypoint information achieves excellent 
performance. The interpolation method performs exceptionally well, so the authors apply it to their 
work. After incorporating confidence scores, the authors’ method exhibits superior performance across 
diverse test sets compared to other approaches, notably outperforming the interpolation method on 
average in the R metric. The IoU and D scores are comparable to the cubic spline interpolation method.

The authors compare the results of the proposed method to the ground truth value and draw 
a comparative line graph of bat position for 10 consecutive forward swing frames from these five 
test videos. Figure 8 illustrates the corresponding chart, highlighting that the bat trajectory restored 
by the proposed method is closer to the real trajectory, but there is still some error. Video 1 has the 
smallest error, while video 5 has the largest. This is because the bat target detection in the first stage 
of video 1 is good, and the shooting angle is 45° facing the athlete, which is consistent with the angle 
of the previously trained temporal prediction model, so the trajectory reconstruction is satisfied. 
The shooting viewpoint of video 5 is on the athlete’s side, so the bat’s trajectory during the swing 
differs from the training model. Although video 1 and video 5 have the same frame rate of 60fps, the 
swinging speed of the person in video 5 is faster than that in video 1. This produces more blurred 
bat images and poorer quality, leading to less effective tracking. Figure 9 depicts the bat bounding 
boxes of this method and ground truth for 10 consecutive forward swing frames of test video 1 and 
video 2, which suggests that training the model utilizing multi-view swing forward bat time series 
could improve the effectiveness and performance of the bat object detection model.

The idea of the authors’ method can be applied to other similar swing motion scenes (J. Wu et 
al., 2021). It is necessary to train different detection models and time series prediction models for 
different types of bats. However, the integration of human body keypoints is similar. The authors shoot 
the table tennis videos of athletes wearing different color jackets, different positions, and different 
illumination angles. These videos are used in different training sessions. The five test videos are 

Table 3. Trajectory estimation and reconstruction result of the authors’ approach and compared methods on test datasets

Methods YOLOv5S+I YOLOv5S+SL YOLOv5S+L Ours

R IoU D R IoU D R IoU D R IoU D

set1 0.921 0.866 6.325 0.877 0.711 40.727 0.86 0.666 46.946 1 0.866 6.213

set2 0.957 0.884 5.267 0.878 0.801 19.301 0.922 0.842 11.185 0.983 0.889 5.648

set3 1 0.878 5.338 0.929 0.793 84.371 0.937 0.806 20.582 0.976 0.853 7.609

set4 1 0.829 8.953 0.935 0.806 89.236 0.94 0.783 42.615 0.993 0.821 9.025

set5 0.898 0.882 10.219 0.834 0.724 30.254 0.86 0.751 25.47 0.891 0.818 10.721

total 0.955 0.868 7.22 0.891 0.767 52.778 0.904 0.77 29.36 0.969 0.849 7.843



International Journal on Semantic Web and Information Systems
Volume 20 • Issue 1

17

Figure 8. Comparative line graph of bat position of the authors’ method and ground truth for 10 consecutive forward swing 
frames from five test videos

Figure 9. Bat bounding boxes of the authors’ method and ground truth (abbreviated as GT) for 10 consecutive forward swing 
frames in Test Video 1 and 2
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different in terms of characters, environment, and lighting, and the results on these test sets show 
that this method has a good performance under varied lighting and background conditions typical in 
table tennis match environments. The real-time processing ability of the method is a very important 
aspect. The method contains two models, where YOLO’s inference time for each image is as fast as 
0.007 seconds, meaning 140 frames per second (FPS). Mediapipe Pose can reach the speed of 30 
FPS with only CPU. Other processing of the time series prediction model and other operations are 
consistent and extremely rapid. Therefore, this method has better real-time processing performance.

CoNCLUSIoN

This paper proposes a novel table tennis bat trajectory reconstruction method that fuses human body 
keypoints and confidence scores. Based on object detection, it combines a temporal prediction model 
and an interpolation method. In addition, the authors built multiple table tennis bat-related datasets, 
providing a rich resource for their training and testing. The comprehensive experimental evaluation 
results demonstrated the excellent performance of the proposed method in multiple scenarios compared 
to existing classic methods. Based on the proposed method, the output bat trajectories of table tennis 
training and competition videos can assist subsequent analysis tasks, such as hitting point evaluation 
and serving as a skill guide.

Considering the ease of implementation and use for coaches and sports analysts, this method can 
be further optimized and designed as a sports guidance app for coaches. They only need to shoot or 
upload a video from a specific angle to visualize the bat trajectory. This work can be mainly combined 
with the tracking trajectory of table tennis analyze the relevant indicators of hitting points. In future 
work, the authors are willing to try in this area. In terms of usage scenarios and functions, this approach 
has the potential for adapting the method for trajectory reconstruction in other sports that involve 
fast-moving objects. Though the scenes of these two sports are more open, so the angle and position 
of the recorded video need to be reconsidered. The idea of this method can be used for reference.

GCN models are approaches that can be applied to human critical point detection. Models such 
as (Jang & Lee, 2021; Yan et al., 2018) have extended graph neural networks to spatial-temporal 
graph models to obtain spatial and temporal characteristics of keypoints in the human body. At the 
present stage, the authors’ primary research focuses on the motion trajectory of the bat object in sports 
videos rather than the human body. Solving the identification and tracking of the bat is of utmost 
importance for the scenario examined in this paper. However, GCN can effectively capture complex 
spatial structures and temporal dependencies in action sequences by constructing temporal graphs. 
For future work, the authors will introduce advanced models like Graph Convolutional Networks to 
improve the capability of trajectory construction and validate and improve the proposed method on 
datasets with more videos.
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