
DOI: 10.4018/IJSST.333852

International Journal of Smart Security Technologies
Volume 10 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

A Comparative Study of BFV and
CKKs Schemes to Secure IoT
Data Using TenSeal and Pyfhel
Homomorphic Encryption Libraries
Yancho B. Wiryen, University of Douala, Cameroon*

Noumsi Woguia Auguste Vigny, University of Douala, Cameroon

Mvogo Ngono Joseph, University of Douala, Cameroon

Fono Louis Aimé, University of Douala, Cameroon

 https://orcid.org/0000-0002-7315-0427

ABSTRACT

Internet of things (IoT) devices and applications are on the rise, generating large amounts of sensitive
and confidential data that need to be processed securely. Due to resource constraints, the data generated
is often stored and processed in the cloud. The drawback of data cloud storage and processing is the
fact that it can be hacked, leaked, or sold by cloud companies. Fully homomorphic encryption (FHE)
allows computation on encrypted data using basic mathematical operations and has recently been
successfully implemented using schemes and libraries with better performance. In this paper, the
authors propose a mixture of edge-cloud-based security schemes using FHE to secure IoT data. The
authors evaluate the performance of two FHE schemes (BFV and CKKS) based on data: encoding
speed, encryption speed, arithmetic operations (addition and multiplication) speed, and decryption
decoding speed using two Python libraries (TenSEAL and PyFHEl). The encryption and decryption
are done at the edge node using a Raspberry Pi 4, while the processing is done at the cloud node
using a laptop.

KEywoRDS
BFV, CKKs, Edge Node, Fully Homomorphic Encryption (FHE), Internet of Things (IoT), Performance, Pyfhel,
TenSeal,

1. INTRoDUCTIoN

In our world today, we have billions of connected devices, sensors, actuators, controllers, and
applications that are communicating and interacting to form the Internet of Things (IoT). These IoTs
help to improve our health, the quality of life in our homes, save time, and make our workplace more

https://orcid.org/0000-0002-7315-0427

International Journal of Smart Security Technologies
Volume 10 • Issue 1

2

productive, thereby improving our welfare. By 2030, our world will be revolutionized by the IoT market
(Griffiths & Ooi, 2018), and as projected by Gartner, IoT data will arguably become the biggest big
data source, possibly overtaking enterprise, media, and entertainment data (Akbar, 2017). Despite
the numerous advantages of IoT, they are unable to handle and compute the large amount of data
they generate due to resource constraints and because the cost of implementing some computation
of massive data on them might outweigh the benefits (Evans & Eyers, 2012). A combination of IoT,
machine learning, and cloud computing technology has often been used as a solution to this large
amount of data, and even more so due to the prevalence of the COVID-19 pandemic, as everyone is
now soliciting for cloud services (Iezzi, 2020).

A security mechanism capable of preserving this data needs to be put in place to ensure that
IoT data is not accessed by cloud companies or third parties or does not end up in the wrong hands.
This mechanism is difficult to achieve with traditional encryption schemes (Song et al., 2018). For
traditional encryption schemes, each time a computation needs to be performed on the encrypted
data stored in the cloud, the data is first decrypted. After the decrypted data is processed, it will be
re-encrypted and re-uploaded to the cloud. This process often gives the cloud service providers and
the model owners’ access to the data and is very tedious and time-consuming (Maha et al., 2012). For
the users, they want cloud service providers to process the data and extract the valuable information
contained while keeping it unknown to other users and third-party services. In other words, there is
the desire to manipulate data while ensuring data protection, privacy, and anonymization to ensure
that IoT data does not get into the wrong hands..

Homomorphic encryption is capable of handling this challenge and enables computation on
encrypted data without decryption. In 2009, there was a remarkable breakthrough when Gentry
(Gentry, 2009) successfully demonstrated that fully homomorphic encryption (FHE) was possible, even
though it had difficulties in implementation and was time-consuming. FHE refers to a specific class of
encryption scheme that allows computing directly (a large number of different types of mathematical
operations) on encrypted data without having to decrypt it first. The result of the ciphertext when
decrypted is the same as the output of the mathematical operations on the corresponding plaintext.

Several FHE schemes and libraries have been published that allow even those who are not good
at cryptography to apply FHE in various domains ranging from data science (Iezzi, 2020), healthcare
(Wood et al., 2020), IoT (Song et al., 2018), (Alabdulatif et al., 2019), (Butpheng et al., 2020), (Ramesh
& Govindarasu, 2020), and banking (Ren et al., 2021) to enhance data security and privacy. We will
evaluate the performance of the two most successful FHE schemes: Brakerski/Fan-Vercauteren (BFV)
(Fan & Vercauteren, 2012) and Cheon, Kim, Kim, and Son (CKKS) (Cheon et al., 2017), used in
TenSEAL (Benaissa et al., 2021) and PyFHEl (Ibarrondo & Viand, 2021) python base libraries that
we have considered in this paper. Their main feature is the use of the residue number system (RNS)
for performing operations (Babenko et al., 2020). This is done by determining the execution time
of the main functions (encoding, encryption, addition/multiplication operations, decryption, and
decoding) in the scheme, thereby determining the most productive scheme.

The majority of the FHE-based IoT data privacy and security models that are currently in use
are based on the cloud. There is a need to extend these schemes and models to incorporate edge
computing because there is always a possibility for data to be a compromise between the IoT device
and the cloud (Ma et al., 2020). Secondly, the overall performance of the BFV and CKKs schemes
is affected by certain parameters, which tend to determine and influence the degree of required
security, speed and number of mathematical operations done in each scheme (Fawaz et al., 2021).
Limited information exists on quantitative comparison as concerns the variation of these parameters
according to the various schemes and libraries. This makes different FHE schemes have distinctive
advantages (Jiang & Ju, 2022). It is therefore necessary to implement and modify these parameters
to determine which schema performs well in a particular scenario.

The remaining sections are structured as follows: Section 2 provides an overview of related works
on Fully Homomorphic Encryption (FHE) and introduces two libraries and schemes utilized in this

International Journal of Smart Security Technologies
Volume 10 • Issue 1

3

study. Section 3 delves into the methods, results, and analysis of the schemes and libraries’ privacy
performance. Finally, Section 4 presents concluding observations.

2. LITERATURE REVIEw AND DESCRIPTIoN oF USEFUL CoNCEPTS

2.1 Literature Review
The original concept behind the cryptography technique was to ensure secure communication
between multiple parties. In this process, one party encrypts a message and sends it to another
party, who then decrypts it (Wood et al., 2020). Among the various methods for data security and
preservation, Craig Gentry’s groundbreaking work (Gentry, 2009) demonstrated the feasibility of
Fully Homomorphic Encryption (FHE). However, implementing FHE posed challenges due to its
enormous computational time. FHE refers to a specific class of encryption schemes that enable
computation directly on encrypted data without the need for prior decryption. Each time the ciphertext
is decrypted, the result should match the output of the mathematical operations performed on the
corresponding plaintext. Numerous research works focus on preserving data security and privacy
using Homomorphic Encryption schemes. Below, we outline some of the related work we reviewed
regarding the enhancement of data security using HE.

Hossein et al. (2017) proposed Pilatus, a data protection platform that stores only encrypted
data in the cloud. It supports certain queries like range and sum and was implemented in two mobile
applications (Fitbit and Ava). However, its efficiency was low as it relied on Partially Homomorphic
Encryption (PHE). Wei-Tao Song et al. (2018) improved the bootstrapping technique of Halevi and
Shoup by introducing SIMD homomorphic computation techniques, thereby enhancing the efficiency
of re-encryption. Goiuri et al. (2019) demonstrated the enhancement of data privacy and security
in the cloud by combining Network Coding (NC) with HE technology. Practical implementation
issues arose due to platform differences. Abdulatif et al. (2021) introduced the Edge of Things (EoT)
paradigm, a secure smart healthcare surveillance framework utilizing FHE for data privacy. The
proposed framework was evaluated using patient bio-signal data. However, the Brakerski-Gentry-
Vaikuntanathan (BGV) framework used in this system, limited to computation over integers, presented
implementation challenges. Ahmed et al. (2019) introduced an efficient and symmetric verifiable
FHE scheme based on a noise-free mathematical structure, employing simple matrix operations for
homomorphic computations. The implementation utilized the JAVA programming language and
Microsoft Azure as a cloud computing environment without utilizing edge computing for encryption.
Jiasen Liu et al. (2021) employed the TenSEAL library and the CKKS scheme to encrypt user data,
implementing a secure KNN classification scheme (CKKSKNNC) in cloud servers for Cyberspace.
Shereen et al. (2021) conducted a comparative study of the BFV and CKKS FHE schemes using
the Microsoft SEAL library in C++ to preserve data. Encryption and multiplication processes were
performed in the cloud, without edge encryption. The scheme utilized simple matrix operations for
homomorphic computations, with the encryption process taking only a few milliseconds in a cloud
environment.

These research works have demonstrated the ability of Fully Homomorphic Encryption (FHE)
to maintain the privacy of sensitive data throughout the computation process. Various solutions have
been suggested to enhance the security of IoT data, particularly at the cloud level. Further research is
required to practically implement FHE for securing IoT data, as well as to examine the performance
of different schemes at the edge when dealing with growing data volumes.

In the next subsection, we will provide a brief description of the Brakerski-Fan-Vercauteren
Homomorphic Encryption scheme (BFV scheme) and the Cheon-Kim-Kim-Song Homomorphic
Encryption Scheme (CKKS scheme), as well as some useful devices.

International Journal of Smart Security Technologies
Volume 10 • Issue 1

4

2.2 Description of the Two Useful Schemes (BFV and CKKS)
A good FHE Schemes should be capable of supporting two main homomorphic operations (Luka
& Vuletić, n.d.):

1. Additive Homomorphic Encryption;

Enc (m1 + m2) = Enc (m1) + Enc (m2); ∀m1, m2 ∈ M.

2. Multiplicative Homomorphic Encryption.

Enc (m1 * m2) = Enc (m1) * Enc (m2); ∀m1, m2 ∈ M

2.2.1 Brakerski-Fan-Vercauteren Scheme (BFV Scheme)
In 2012, Fan and Vercauteren (2012) made modifications to Brakerski’s Fully Homomorphic
Encryption (FHE) scheme based on Learning With Errors (LWE) to work under the security
assumption of RLWE, resulting in the BFV scheme. BFV exhibits powerful Single Instruction Multiple
Data (SIMD) parallelism, making it efficient for handling large data. Theoretically, BFV supports
bootstrapping, a technique for noise removal by applying a circuit representing the decryption algorithm
of an FHE scheme to a ciphertext and an encrypted private key (Sathya et al., 2018). However, the
bootstrapping process is slow and rarely used in practice. The BFV scheme operates on integers using
modular arithmetic and allows for addition and multiplication operations on encrypted data while
preserving the privacy of the underlying plaintext. It is defined over a polynomial ring modulo a prime
number, with plaintext represented as an element of this ring and ciphertext as a pair of polynomials.
The BFV scheme involves multiple steps, as mentioned below.

• Key Generation:
 ◦ Parameters: Choose appropriate security parameters, such as the modulus “q” and plaintext

space “R”.
 ◦ Secret Key (sk) Generation: Select a secret key “s” uniformly at random from the set Z_q

and compute the public key (pk) corresponding to “s”.
• Encryption:

 ◦ Plaintext Mapping: Represent the plaintext message “m” as an integer in the plaintext space
“R”.

 ◦ Error Generation: Generate a small random error “e” from a distribution centered around 0.
 ◦ Encryption: Compute the ciphertext “c” by encrypting the plaintext “m” with the public key

(pk) using the encryption function Enc:

c = Enc(pk, m, e) = (q * m + 2 * e + s) mod q.

• Homomorphic Operations:
 ◦ Homomorphic Addition: Given two ciphertexts “c1” and “c2” representing encrypted

messages “m1” and “m2”, homomorphic addition is performed by adding the ciphertexts
together:

c_add = c1 + c2 mod q.

International Journal of Smart Security Technologies
Volume 10 • Issue 1

5

 ◦ Homomorphic Multiplication: Given two ciphertexts “c1” and “c2” representing encrypted
messages “m1” and “m2”, homomorphic multiplication is performed by multiplying the
ciphertexts together modulo q^2:

c_mul = c1 * c2 mod q^2.

• Decryption:
 ◦ Using the secret key (sk), decrypt the ciphertext “c” to obtain the original plaintext message

“m” using the decryption function Dec:

m = Dec(sk, c) = (c mod q) mod R.

The BFV scheme incorporates techniques such as modulus switching and noise management to
ensure the correctness and security of the computations. These techniques enable secure computation
on encrypted data while preserving the privacy of the underlying plaintext.

2.2.2 Cheon-Kim-Kim-Song Scheme (CKKS Scheme)
CKKS, proposed by Cheon, Kim, Kim, and Song (2017) in 2017, is an approximate number arithmetic
scheme that enables computations on vectors containing both real and complex values. This gives
CKKS an advantage over BFV, which only supports computations over integers. During computation,
CKKS supports homomorphic rounding-off and treats noise as a part of the numerical error in its
approximation. The Cheon-Kim-Kim-Song (CKKS) scheme is a FHE scheme that operates on complex
numbers using approximate arithmetic. It is defined over a cyclotomic ring of characteristic zero,
where the plaintext is an element of this ring and the ciphertext is a vector of complex numbers. The
CKKS scheme involves multiple steps:

• Key Generation:
 ◦ Parameters: Choose appropriate parameters, such as the degree of the polynomial “n”,

modulus “q”, and scaling factor “s”.
 ◦ Secret Key (sk) Generation: Randomly generate a secret key “s” and compute the public

key (pk) corresponding to “s”.
• Encryption:

 ◦ Plaintext Mapping: Represent the plaintext message “m” as a polynomial with complex
coefficients.

 ◦ Error Generation: Generate a small random error polynomial with complex coefficients.
 ◦ Encryption: Compute the ciphertext “c” by encrypting the plaintext polynomial “m” with

the public key (pk) using the encryption function Enc:

c = Enc(pk, m, e) = (m + e) mod q.

• Homomorphic Operations:
 ◦ Homomorphic Addition: Given two ciphertexts “c1” and “c2” representing encrypted

polynomials “m1” and “m2”, homomorphic addition is performed by adding the ciphertexts
together:

c_add = c1 + c2 mod q.

International Journal of Smart Security Technologies
Volume 10 • Issue 1

6

 ◦ Homomorphic Multiplication: Given two ciphertexts “c1” and “c2” representing encrypted
polynomials “m1” and “m2”, homomorphic multiplication is performed by multiplying the
ciphertexts together modulo q:

c_mul = c1 * c2 mod q.

• Decryption:
 ◦ Decryption: Using the secret key (sk), decrypt the ciphertext “c” to obtain the original

plaintext polynomial “m” using the decryption function Dec:

m = Dec(sk, c) = c mod q.

The CKKS scheme incorporates rescaling to manage noise accumulation during homomorphic
operations, ensuring accurate computations on encrypted data. By multiplying the ciphertext with a
power of the scaling factor, it handles this process. CKKS utilizes complex numbers and approximate
arithmetic, enhancing efficiency while introducing minor errors in the results.

This paper focuses on the CKKS and BFV homomorphic encryption schemes due to their
practicality, extensive research, and real-world applicability. CKKS and BFV are fully homomorphic
encryption schemes, allowing arbitrary computations on encrypted data. They offer versatility, with
CKKS suitable for real or complex number computations and BFV excelling in computations on
encrypted integers. These schemes are widely used, well-documented, and supported by libraries,
making them comprehensive and accessible options for various applications.

In the present day, various computing technologies such as Edge, Fog, and Cloud computing
have emerged. These technologies can be leveraged in the realm of IoT to tackle certain challenges
by offering flexible resources and services to end users at the network’s edge. In this Subsection, we
conclude by elucidating these three computing technologies within the context of IoT.

The edge encompasses various components such as sensors, controllers, actuators, tag and tag
readers, communication elements, gateways, and physical devices. Its primary function is to minimize
the required communication bandwidth between sensors and the central data center by conducting
analytics and generating insights at or near the data source. Additionally, data encryption can also
be implemented at this specific node or level.

Fog computing is viewed as an expansion of the cloud computing model that extends from the
core of the network to its edge. It operates as a highly virtualized platform, offering fundamental
computation, encryption, storage, and networking services between end devices and conventional
cloud servers.

A Cloud refers to a centralized online system that offers services such as enabling immediate,
on-demand provision of computing infrastructure, databases, storage, and applications required for
processing and analyzing data points generated by numerous IoT devices.

Throughout this paper, we present a security scheme that focuses on preserving privacy by
utilizing FHE to safeguard IoT data from unauthorized access by attackers and cloud companies.
We will compare different libraries and schemes in order to achieve this objective. In pursuit of this
goal, we will proceed to:

1. Encrypt IoT plaintext data at edge node using rasp berry pi 4
2. Send the FHE data to a computer at the level of cloud
3. Perform two arithmetic operations (addition and/or multiplication) on the FHE data.
4. Send back the FHE data to the edge node (rasp berry pi 4) for decryption.

International Journal of Smart Security Technologies
Volume 10 • Issue 1

7

5. Measure, record and compare the time for each round operation for both PyFHEl and TensSEAL
library under CKKs and BFV schemes.

3. METHoDS, RESULTS AND DISCUSSIoNS

3.1 Methods
Python is a flexible and currently one of the world’s leading programming language when it comes to
data science and machine learning since it enables rapid prototyping. To begin with the implementation
of FHE, we choose two schemes and two Python libraries from Table 1 that utilize Python, in contrast
to the majority of FHE encryption libraries that are based on C++. The choice of these libraries are
guided by the simplicity and readability of their language, making it ideal for prototyping.

TenSEAL is an open-source library that leverages Microsoft SEAL to perform Fully Homomorphic
Encryption operations on tensors. While it utilizes a Python API, the majority of its efficient operations
are implemented in C++. TenSEAL seamlessly integrates with popular machine learning frameworks,
simplifying the process of implementing tensor operations on encrypted data. TenSEAL relies on the
implementation of CKKS and BFV schemes as in Microsoft SEAL.

Python for Homomorphic Encryption Libraries (Pyfhel) by Alberto Ibarrondo and Alexander
Viand is an easy to use python library for FHE schemes, which also currently includes the Brakerski-
FanVercauteren (BFV) scheme, the Cheon-Kim-Kim-Song (CKKS) scheme, and bootstrapping for
CKKS. Pyfhel implements functionalities of multiple Homomorphic Encryption libraries such as
addition, multiplication, exponentiation or scalar product in Python and Cython on top of C++. This
library is useful both for simple Homomorphic Encryption Demos as well as for complex problems
such as Machine Learning algorithms.

We propose a combined edge and cloud-based architecture to enhance the security and privacy
of data within our network. Figure 1 illustrates the edge architecture, and we have identified the
application of Fully Homomorphic Encryption (FHE) on both the edge and cloud as a potential
solution for improving the security and privacy of IoT data and applications.

Within this new architecture, we encrypt the data generated by the IoT device at the edge using
Raspberry Pi 4 before transmitting it to the cloud. Encrypting the data at the edge is chosen due to its
robust preprocessing and encryption capabilities, which prevent privacy breaches or attacks before the
data reaches the cloud. Additionally, it helps prevent cloud controllers from accessing critical data.

Thus, our IoT system generates data from customer devices, which is encrypted at the edge level
using Raspberry Pi 4 and a public key. The public key can be shared with anyone, while the private
key remains exclusively shared with the customer to unlock the data. The encrypted data is then
sent to the cloud for processing, which involves operations such as addition and multiplication of

Table 1. FHE libraries

Name Programming Language Schemes

CKKs BFV BGV

TenSEAL C++, Python ✓ ✓ ✓

PyFHEl C++, Python ✓ ✓ ✓

SEAL C++, .NET ✓ ✓ ✓

PALISADE C, C++ ✓ ✓ ✓

HElib C, C++ ✓ ✗ ✓

HEAAN C++ ✓ ✗ ✗

Lattigo C++ ✓ ✓ ✗

International Journal of Smart Security Technologies
Volume 10 • Issue 1

8

encrypted data. The resulting outcomes are also encrypted and transmitted back to the customer at
the edge node (Raspberry Pi 4). The customer can then use the private key to unlock and decrypt the
results, which are subsequently provided to the user in an unencrypted format, as depicted in Figure 2.

3.2 Results and Discussions
In this Subsection, we will present a comparative evaluation of addition and multiplication operations
using the TenSEAL and PyFHEl library. The encryption and decryption was conducted on Raspberry
pi 4 at the edge while the mathematical operations took place in a computer (with the characteristics:
Windows10 operating system, Intel(R), Core(TM) i5-4310U CPU @, 2.00GHz and 4 GB RAM).
Using Anaconda 3-2019.07, Spider 5.0.5 and python IDE to call TenSEAL-0.3.5, PyFHEl-2.3.1
libraries, we implement both CKKS and BFV encryption scheme. By applying each scheme (of each
associated library) on two linear homomorphic operations (addition and multiplication), a comparative
analysis with respect to the time consumed by each computation is done. We give runtimes for addition
and multiplication in BFV and CKKs schemes using TenSEAL and PyFHEl libraries under given
parameters as in Table 2,3,4,5. There are three mean HE parameters used by the schemes:

• n (polynomial degree): It determines the number of slots of the plaintext vectors (n in BFV
and n/2 in CKKS).

Figure 1. The edge architecture

International Journal of Smart Security Technologies
Volume 10 • Issue 1

9

• p (plaintext modulus): It determines the modulus of the plaintext space in BFV, which determines
how large encrypted values can get before wrap-around occurs. This module also does not affect
security

• q (plain text size or cyphertext modulus): It determines how much noise can accumulate before
decryption fails. This module has no effect on the degree of security. Instead of providing a
ciphertext modulus Q, users working with CKKS must provide a modulus chain of prime sizes
example (q = [40, 40, 40, 40]) (Fan & Vercauteren, 2012).

The computation process often begins with the KeyGen algorithm to set up the various keys
which can be implemented in python using Pyfhel library as shown below:
from Pyfhel import PyCtxt, Pyfhel, PyPtxt
HE = Pyfhel ()
HE. contextGen (scheme =’BFV ‘, n=4096, p= 65537)
HE. keyGen ()
from Pyfhel import PyCtxt, Pyfhel, PyPtxt
HE = Pyfhel ()
HE. contextGen (scheme =’CKKS ‘, n=4096, q

s
=[40, 40, 40, 40])

HE. keyGen ()
Next, we need to encode and encrypt the message using the encryption algorithm. In a similar

manner after decryption, the plaintext will need to be decoded as shown below.
import numpy as np
np_array = np. array ([[11,20,30,75,5,16,7,80,60,10]], dtype =np.
int64)
array_ptxt = HE. encode (np_array)
array_ctxt = HE. encrypt (array_ptxt)
array_dec = HE. decrypt (array_ctxt, decode = True)

Figure 2. System architecture

International Journal of Smart Security Technologies
Volume 10 • Issue 1

10

In Table 2, we perform TenSEAL BFV and CKSS vector addition using two vectors recording the
time in millisecond (ms) for each of the five operations (Encoding, Encryption, Addition, Decryption
and Decoding). When we increase the ciphertext dimension n while keeping constant p and q, we
notice an increase in the time for each operation for both schemes. We also observed that;

• The encryption operation takes a great deal of time compared to the addition, encoding, decrypting
and decoding operations.

• CKKS encryption takes more time than BFV encryption
• Addition operation is faster for CKKS than BFV but slower for CKK when the value of “n” is

increased up 216(32768).

We record the time for TenSEAL BFV and CKKS Multiplication with the same parameters and
operations (Encoding, Encryption, Addition, Decryption and Decoding) like those of Table 2. From
the results of Table 3 we observe that;

• Multiplication operation consumed a larger amount of time for the same parameters (n, p, q)
than the addition operation in Table 2.

• The multiplication operation consumed more time than the encryption or decryption operations.

We perform Pyfhel BFV and CKSS vector addition using two vectors recording the time in
millisecond (ms) for each of the five operations (Encoding, Encryption, Addition, Decryption and
Decoding). The results in Table 4 were similar to those of Table 2. The following observations were
made;

• The encryption procedure took longer compared to the addition operation, which required less
time.

• CKKS encryption takes more time than BFV encryption
• For values of n <16384 BFV addition is more performant than CKKs and for values of n≥16384

BFV addition is less performant than CKKs.

In Table 5 we present the time for the multiplication computation process for Pyfhel library and
observed as follows;

• The Pyfhel BFV multiplication and encryption operations took approximately the same amount
of time, whereas the Pyfhel CKKS multiplication operations required significantly less time
compared to encoding and encryption.

• For values of n <16384 the total time for BFV multiplication is faster than CKKs and for values
of n≥16384 BFV multiplication is slower than CKKs.

Upon comparing the results presented in Tables 2, 3, 4, and 5, we observed variations in the
timings of the two Python FHE libraries (TenSEAL and Pyfhel) across different schemes (BFV and
CKKS). Figures 3 and 4 provide a comparative analysis of the implementation of these libraries and
schemes across various operations. Figure 3 specifically demonstrates the timing disparity between
the two libraries and schemes during the addition process. Based on the results, it is evident that
the TenSEAL library outperforms the Pyfhel library for values of n < 32768, while it lags behind
for values of n ≥ 32768. Furthermore, across all polynomial degrees, the BFV schemes consistently
exhibit faster performance compared to the CKKS schemes. When examining Figure 4, it becomes
apparent that the total time required for Pyfhel Multiplication exceeds that of TenSEAL multiplication

International Journal of Smart Security Technologies
Volume 10 • Issue 1

11

Ta
bl

e 2
. T

en
SE

AL
 B

FV
 an

d
CK

KS
 ad

di
tio

n

H
E

Pa
ra

m
et

er
Te

nS
EA

L
BF

V
 V

ec
to

r
A

dd
iti

on
 T

im
e(

m
s)

Te
nS

EA
L

C
K

K
s V

ec
to

r
A

dd
iti

on
 T

im
e(

m
s)

n(
po

ly
-n

om
ia

l
de

gr
ee

)
En

co
de

En
cr

yp
t

A
dd

iti
on

D
ec

ry
pt

D
ec

od
e

To
ta

l T
im

e
En

co
de

En
cr

yp
t

A
dd

iti
on

D
ec

ry
pt

D
ec

od
e

To
ta

l
Ti

m
e

40
96

0.
10

15
.6

4
0.

00
0.

90
0.

01
16

.6
5

8.
90

31
.2

4
0.

00
0.

95
9.

00
50

.0
9

81
96

0.
20

46
.8

5
0.

23
3.

00
0.

20
50

.3
2

18
.0

9
57

.7
1

0.
07

1.
11

16
.0

1
93

.1
5

16
38

4
1.

20
12

2.
01

1.
91

11
.1

0
0.

70
13

6.
91

37
.8

0
10

0.
11

1.
90

3.
01

40
.0

0
18

1.
83

32
76

8
3.

00
37

4.
92

15
.6

1
31

.2
6

3.
00

44
4.

79
65

.0
0

10
0.

22
31

.0
0

5.
02

60
.0

0
26

1.
24

p(
pl

ai
nt

ex
t M

od
ul

us
)

65
53

7
65

53
7

/
q(

pl
ai

n
te

xt
 si

ze
)

[4
0,

40
,4

0,
40

]
/

[4
0,

40
,4

0,
40

]

Ta
bl

e 3
. T

en
SE

AL
 B

FV
 an

d
CK

KS
 m

ul
tip

lic
at

io
n

H
E

Pa
ra

m
et

er
Te

nS
EA

L
BF

V
 V

ec
to

r
M

ul
tp

lic
at

io
n

Ti
m

e(
m

s)
Te

nS
EA

L
C

K
K

s V
ec

to
r

M
ul

tip
lic

at
io

n
Ti

m
e(

m
s)

n(
po

ly
n-

om
ia

l d
eg

re
e)

En
co

de
En

cr
yp

t
M

ul
tip

lic
at

io
n

D
eC

ry
pt

D
ec

od
e

To
ta

l T
im

e
En

co
de

En
cr

yp
t

M
ul

tip
lic

at
io

n
D

ec
ry

pt
D

ec
od

e
To

ta
l T

im
e

40
96

0.
10

15
.6

4
15

.6
2

0.
90

0.
01

32
.2

2
8.

90
31

.2
4

2.
50

0.
95

9.
00

50
.0

9
81

92
0.

20
46

.8
5

31
.2

7
3.

00
0.

20
81

.5
2

18
.0

9
57

.7
1

5.
07

1.
11

16
.0

1
93

.1
5

16
38

4
1.

20
12

2
15

6.
00

11
.1

0
0.

70
29

1.
0

37
.8

0
10

0.
11

15
.7

1
10

.0
1

50
.0

0
21

1.
6

32
76

8
3.

00
37

4.
92

73
4.

00
31

.2
6

3.
35

11
46

65
.0

0
10

0.
22

62
6.

00
5.

02
60

.0
0

85
6.

22
p(

pl
ai

n
te

xt
 M

od
ul

us
)

65
53

7
65

53
7

/
q(

pl
ai

n
te

xt
 si

ze
)

[4
0,

40
,4

0,
40

]
/

[4
0,

40
,4

0,
40

]

International Journal of Smart Security Technologies
Volume 10 • Issue 1

12

Ta
bl

e 5
. P

yf
he

l B
FV

 an
d

CK
KS

 m
ul

tip
lic

at
io

n

H
E

Pa
ra

m
et

er
Py

fh
el

 B
FV

 V
ec

to
r

M
ul

tp
lic

at
io

n
Ti

m
e(

m
s)

Py
fh

el
 C

K
K

s V
ec

to
r

M
ul

tip
lic

at
io

n
Ti

m
e(

m
s)

n(
po

ly
n-

om
ia

l d
eg

re
e)

En
co

de
En

cr
yp

t
M

ul
tip

lic
at

io
n

D
ec

ry
pt

D
ec

od
e

To
ta

l T
im

e
En

co
de

En
cr

yp
t

M
ul

tip
lic

at
io

n
D

ec
ry

pt
D

ec
od

e
To

ta
l T

im
e

40
96

0.
12

16
.4

1
25

.3
3

1.
00

0.
09

42
.9

7
8.

90
31

.2
5

4.
00

2.
05

9.
00

55
.2

0

81
96

0.
29

47
.0

0
45

.6
0

3.
90

0.
20

96
.9

9
18

.0
9

57
.7

1
10

.0
7

3.
11

16
.0

1
10

5.
0

16
36

4
2.

78
12

2.
0

17
1.

20
19

.1
9

1.
90

31
7.

0
37

.8
0

10
0.

11
31

.2
5

13
.0

1
50

.0
0

23
2.

1

32
76

8
3.

00
42

1
56

2.
00

31
.0

3.
0

10
17

68
.0

1
20

0.
22

15
0.

02
30

.0
80

.0
0

53
0.

0

p(
pl

ai
n

te
xt

 M
od

ul
us

)
65

53
7

65
53

7
/

q(
pl

ai
n

te
xt

 si
ze

)
[4

0,
40

,4
0,

40
]

/
[4

0,
40

,4
0,

40
]

Ta
bl

e 4
. P

yf
he

l B
FV

 an
d

CK
KS

 ad
di

tio
n

H
E

Pa
ra

m
et

er
Py

fh
el

 B
FV

 V
ec

to
r

A
dd

iti
on

 T
im

e(
m

s)
Py

fh
el

 C
K

K
s V

ec
to

r
A

dd
iti

on
 T

im
e(

m
s)

n(
po

ly
n-

om
ia

l d
eg

re
e)

En
co

de
En

cr
yp

t
A

dd
iti

on
D

ec
ry

pt
D

ec
od

e
To

ta
l T

im
e

En
-c

od
e

En
cr

yp
t

A
dd

iti
on

D
ec

ry
pt

D
ec

od
e

To
ta

l T
im

e

40
96

0.
12

16
.4

1
0.

00
1.

00
0.

09
17

.2
6

8.
90

31
.2

5
0.

00
2.

05
9.

00
51

.2

81
96

0.
29

47
.0

0
0.

61
3.

90
0.

20
52

.0
0

18
.0

9
57

.7
1

0.
18

3.
11

16
.0

1
95

.1

16
38

4
2.

78
12

2.
0

4.
01

19
.1

9
1.

90
14

9.
8

37
.8

0
10

0.
11

0.
90

13
.0

1
50

.0
0

20
1.

8

32
76

8
3.

00
42

1
4.

09
31

.0
0

3.
03

46
2

68
.0

1
20

0.
01

2.
0

20
.2

0
80

.0
36

8

p(
pl

ai
n

te
xt

 M
od

ul
us

)
65

53
7

65
53

7
/

q(
pl

ai
n

te
xt

 si
ze

)
[4

0,
40

,4
0,

40
]

/
[4

0,
40

,4
0,

40
]

International Journal of Smart Security Technologies
Volume 10 • Issue 1

13

when n < 32768, but the situation is reversed when n ≥32768, regardless of the specific operations
performed on the vectors.

Furthermore, upon examining Figure 3 and Figure 4, it becomes evident that in the CKKS
scheme, ciphertext addition demonstrates superior performance for polynomial degrees or ciphertext
dimensions (n) up 16384, regardless of whether the TenSeal or Pyfhel libraries are used. On the other
hand, for values of n > 16384, both the TenSeal and Pyfhel libraries exhibit better performance with
the BFV scheme.

In ciphertext addition, TenSeaL library is more performant than Pyfhel library for both CKK
and BFV schemes for all values of ciphertext dimension n.

Figure 3. Addition time for TenSEAL BFV vs. CKKS

Figure 4. Addition time for Pyfhel BFV vs. CKKS

International Journal of Smart Security Technologies
Volume 10 • Issue 1

14

We observe from Figures 3-6 that ciphertext multiplication is much more complex and more
time consuming than ciphertext addition.

Based on the observations made in Figure 5 and Figure 6, it is apparent that the CKKS scheme
demonstrates superior performance for ciphertext multiplication when the ciphertext dimension n
≥ 8192. This holds true for implementations using both the TenSeal and Pyfhel libraries. However,
when the dimension is lower, specifically for n < 8192, the results indicate slightly better performance
using the BFV scheme for both libraries.

For polynomial degrees (n) up to 16384, the TenSeal library demonstrates significantly better
performance in ciphertext multiplication. However, when dealing with higher polynomial degrees
(n > 16384), the Pyfhel library yields better results in terms of performance.

Figure 6. Multiplication time for Pyfhel BFV vs. CKKS

Figure 5. Multiplication time in TenSEAL (BFV and CKKS)

International Journal of Smart Security Technologies
Volume 10 • Issue 1

15

4. CoNCLUDING REMARKS

In this paper, we present an edge-cloud base FHE and we analyze its ability to enhance data security
and privacy with practical implementation of FHE models using two python libraries TenSEAL and
PyFHEl which are based on two schemes Brakerski-Fan-Vercauteren scheme (BFV) and Cheon, Kim,
Kim, and Song (CKKS). The proposed process has two phases:

• The Encryption/decryption is done at the edge node (edge computing) using Raspberry pi 4,
• The computation (addition and multiplication) is done in the cloud using laptop.

The results obtained from implementing and testing FHE in real-world IoT data scenarios
showcase the feasibility of deploying FHE at the edge node. The computational time for basic
operations such as multiplication and addition exhibits significant differences only when dealing with
very large vector sizes (polynomial degree of n ≥ 215). However, this challenge can be addressed by
utilizing GPU hardware that supports FHE computations.

The FHE Python libraries, namely TenSEAL and Pyfhel, along with their BFV and CKKS
schemes, offer user-friendly interfaces and modifiability, making FHE accessible to a broader audience.
Consequently, even an untrusted party can securely perform computations on IoT encrypted data,
yielding results consistent with those obtained from unencrypted data or ciphertexts.

This solution allows us to identify the most performant FHE scheme for different vector sizes of
IoT data, considering their propensity to generate substantial amounts of data.

In our future work, we aim to expand our research by comparing more intricate mathematical
operations, utilizing larger datasets to test various operations, and exploring additional libraries.
Moreover, we plan to implement machine learning algorithms such as Support Vector Machine,
regression, and Neural Networks on this IoT encrypted data. We anticipate that the performance can
be further enhanced by implementing FHE on Graphics Processing Units (GPUs).

ACKNowLEDGMENT

This work was done under the research grant FR 21-333 RG/MATHS/AF/ AC_G-FR 3240319514
from Unesco-TWAS and the Swedish International Development Cooperation Agency (SIDA). The
views expressed herein do not necessary represent those of UNESCO-TWAS, Sida or its Board of
Governors.

International Journal of Smart Security Technologies
Volume 10 • Issue 1

16

REFERENCES

Akbar, A. (2017). Extracting Knowledge from Raw IoT Data Streams. University of Surrey.

Alabdulatif, A., Khalil, I., Yi, X., & Guizani, M. (2019). Secure edge of things for smart healthcare
surveillance framework. IEEE Access : Practical Innovations, Open Solutions, 7, 31010–31021. doi:10.1109/
ACCESS.2019.2899323

Babenko, M. G. E., Golimblevskaia, E. I., & Shiriaev, E. M. (2020). Comparative analysis of homomorphic
encryption algorithms based on learning with errors. Труды института системного программирования
РАН, 32(2), 37-51.

Butpheng, C., Yeh, K. H., & Xiong, H. (2020). Security and privacy in IoT-cloud-based e-health systems-A
comprehensive review. Symmetry, 12(7), 1191. doi:10.3390/sym12071191

Cheon, J. H., Kim, A., Kim, M., & Song, Y. (2017, December). Homomorphic encryption for arithmetic of
approximate numbers. In International Conference on the Theory and Application of Cryptology and Information
Security (pp. 409-437). Springer. doi:10.1007/978-3-319-70694-8_15

El-Yahyaoui, A., & Dafir Ech-Cherif El Kettani, M. (2019). A verifiable fully homomorphic encryption scheme
for cloud computing security. Technologies, 7(1), 21. doi:10.3390/technologies7010021

Evans, D., & Eyers, D. M. (2012, November). Efficient data tagging for managing privacy in the internet of
things. In 2012 IEEE International Conference on Green Computing and Communications (pp. 244-248). IEEE.
doi:10.1109/GreenCom.2012.45

Fan, J., & Vercauteren, F. (2012). Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive.

Fawaz, S. M., Belal, N., ElRefaey, A., & Fakhr, M. W. (2021, December). A Comparative Study of Homomorphic
Encryption Schemes Using Microsoft SEAL. Journal of Physics: Conference Series, 2128(1), 012021.
doi:10.1088/1742-6596/2128/1/012021

Gentry, C. (2009). A fully homomorphic encryption scheme. Stanford University.

Griffiths, F., & Ooi, M. (2018). The fourth industrial revolution-Industry 4.0 and IoT. IEEE Instrumentation &
Measurement Magazine, 21(6), 29–43. doi:10.1109/MIM.2018.8573590

Ibarrondo, A., & Viand, A. (2021, November). Pyfhel: Python for homomorphic encryption libraries. In
Proceedings of the 9th on Workshop on Encrypted Computing & Applied Homomorphic Cryptography (pp.
11-16). doi:10.1145/3474366.3486923

Iezzi, M. (2020, December). Practical privacy-preserving data science with homomorphic encryption: An
overview. In 2020 IEEE International Conference on Big Data (Big Data) (pp. 3979-3988). IEEE.

Liu, J., Wang, C., Tu, Z., Wang, X. A., Lin, C., & Li, Z. (2021). Secure KNN Classification Scheme
Based on Homomorphic Encryption for Cyberspace. Security and Communication Networks, 2021, 2021.
doi:10.1155/2021/8759922

Luka, U. A. B., & Vuletić, P. V. (n.d.). Performance comparison of homomorphic encryption scheme
implementations. Academic Press.

Ma, Z., Ma, J., Miao, Y., Liu, X., Choo, K. K. R., Yang, R., & Wang, X. (2020). Lightweight privacy-preserving
medical diagnosis in edge computing. IEEE Transactions on Services Computing, 1.

Maha, T. E. B. A. A., Saïd, E., & Abdellatif, E. (2012). Homomorphic encryption applied to the cloud computing
security. In Proceedings of the World Congress on Engineering (Vol. 1, pp. 4-6). Academic Press.

Peralta, G., Garrido, P., Bilbao, J., Agüero, R., & Crespo, P. M. (2019). On the combination of multi-cloud and
network coding for cost-efficient storage in industrial applications. Sensors (Basel), 19(7), 1673. doi:10.3390/
s19071673 PMID:30965629

Ramesh, S., & Govindarasu, M. (2020). An efficient framework for privacy-preserving computations on encrypted
IoT data. IEEE Internet of Things Journal, 7(9), 8700–8708. doi:10.1109/JIOT.2020.2998109

http://dx.doi.org/10.1109/ACCESS.2019.2899323
http://dx.doi.org/10.1109/ACCESS.2019.2899323
http://dx.doi.org/10.3390/sym12071191
http://dx.doi.org/10.1007/978-3-319-70694-8_15
http://dx.doi.org/10.3390/technologies7010021
http://dx.doi.org/10.1109/GreenCom.2012.45
http://dx.doi.org/10.1088/1742-6596/2128/1/012021
http://dx.doi.org/10.1109/MIM.2018.8573590
http://dx.doi.org/10.1145/3474366.3486923
http://dx.doi.org/10.1155/2021/8759922
http://dx.doi.org/10.3390/s19071673
http://dx.doi.org/10.3390/s19071673
http://www.ncbi.nlm.nih.gov/pubmed/30965629
http://dx.doi.org/10.1109/JIOT.2020.2998109

International Journal of Smart Security Technologies
Volume 10 • Issue 1

17

Yancho B. Wiryen is a PhD Student and Researcher, laboratory of Applied Computer science, University of Douala.

Noumsi Woguia Auguste Vigny Enseignant à l’université de Douala, Cameroun. PhD obtenu à l’Université de
Rennes 1 et à l’université de Douala depuis 2010.

Mvogo Ngono Joseph is a research and senior lecturer in the field of signal and image processing at the University
of Douala, he holds a PHD in image processing, his work focuses on data coding and compression.

Fono Louis Aimé was born in July 1969 in Douala-Cameroon, former student of the Higher Teacher Training
College of the University of Yaounde I-Cameroon and, Ph.D. holder in Applied Mathematics for Social Science of
the Laboratory of MASS of the same University, M. Louis Aimé FONO is Associate Professor in the Department
of Mathematics and Computer Science at the University of Douala-Cameroon and he chairs the Laboratory of
Mathematics of the University. His areas of interest are: Fuzzy Mathematics, Preference Modeling, Social Choice,
Financial Mathematics, Mathematics for Life Insurance and Mathematics for Supply Chain Management.

Ren, W., Tong, X., Du, J., Wang, N., Li, S. C., Min, G., & Bashir, A. K. (2021). Privacy-preserving using
homomorphic encryption in Mobile IoT systems. Computer Communications, 165, 105–111. doi:10.1016/j.
comcom.2020.10.022

Shafagh, H., Hithnawi, A., Burkhalter, L., Fischli, P., & Duquennoy, S. (2017, November). Secure sharing of
partially homomorphic encrypted IoT data. In Proceedings of the 15th ACM Conference on Embedded Network
Sensor Systems (pp. 1-14). doi:10.1145/3131672.3131697

Song, W. T., Hu, B., & Zhao, X. F. (2018). Privacy protection of IoT based on fully homomorphic encryption.
Wireless Communications and Mobile Computing, 2018, 2018. doi:10.1155/2018/5787930

Ullah, A., Azeem, M., Ashraf, H., Alaboudi, A. A., Humayun, M., & Jhanjhi, N. Z. (2021). Secure healthcare
data aggregation and transmission in IoT-A survey. IEEE Access : Practical Innovations, Open Solutions, 9,
16849–16865. doi:10.1109/ACCESS.2021.3052850

Wood, A., Najarian, K., & Kahrobaei, D. (2020). Homomorphic encryption for machine learning in medicine
and bioinformatics. ACM Computing Surveys, 53(4), 1–35. doi:10.1145/3394658

http://dx.doi.org/10.1016/j.comcom.2020.10.022
http://dx.doi.org/10.1016/j.comcom.2020.10.022
http://dx.doi.org/10.1145/3131672.3131697
http://dx.doi.org/10.1155/2018/5787930
http://dx.doi.org/10.1109/ACCESS.2021.3052850
http://dx.doi.org/10.1145/3394658

