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ABSTRACT

The directed cycles form a foundational structure within a network model. By analyzing the in-degree 
characteristic polynomial of three kinds of matrices of the directed cycles, the authors obtain the 
eigenvalues of the adjacency matrix A- , the Laplacian matrix L- , and the signless Laplacian matrix 
Q- . This study investigates the eigenvalues spectrum of these three types of matrices for directed 
cycles and introduces an eigenvalue-based entropy calculated from the real part of the eigenvalues. 
The computer simulation reveals interesting characteristics on the spectrum of the signless Laplacian. 
The concept of eigenvalue-based entropy holds promise for enhancing our understanding of graph 
neural networks and more applications of social networks.
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1. INTRoDUCTIoN

Both nature and society are complex systems. The complex structure serves as a model for studying 
problems related to complex network (Biggs, 2014; Brooks, 1993). A complex network is typically 
represented as a graph, with vertices and edges (Barnett, 1993; Chan et al., 1997). For instance, in 
technical networks, computers and routers are represented as vertices, while the physical connections 
between them are represented as edges (Ho & Dooren, 2005; Abreu, 2007; Godsil & Royle, 2001). 
Similarly, in a scientific collaboration network, scientists can be seen as vertices, and if two researchers 
co-author an article, the two vertices are connected by an edge (Anton & Rorres, 2014).

Spectrum and entropy have been popular topics in graph theory for a long time (Mowshowitz, 
1968; Bapat, 2014). While there have been numerous results on undirected graphs (Cvetkovic et 
al.,1998), there is less research on directed graphs due to the asymmetry of the matrix. Directed cycles 
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are common structures in directed graphs (Chung, 1997; Butler & Chung, 2013). Cyclic networks can 
be modeled using nearest neighbor coupling networks. This work discusses the spectrum and entropy 
of cyclic directed complex networks, calculates the eigenvalue-based entropy of cyclic networks, 
and verifies them in constructed nearest neighbor coupling networks through computer simulation.

This study contributes to a better understanding of graph neural networks (GCN) and more 
applications in social networks. The entropy of directed cyclic serves as an indicator of social 
computing (Bruna et al., 2014; Bronstein et al., 2017. During the process of applying real-life 
scenarios to game, research on cyclic networks is crucial for analyzing the level-up algorithms and 
some metaverse applications.

2. PRELIMINARy

Let G V E= ( ),  be a directed graph, where V v v v
n

= { }1 2
, , ,  is the set of vertices and E  is the 

set of ordered vertex pairs v v
i j
,( ) , which are edges of the directed graph. The edge is also denoted 

by v v
i j
® . The basic property of a vertex in a digraph is the degree of the vertex. The in-degree 

and out-degree of a vertex i  are denoted by d
i
-  and d

i
+ , respectively. The in-degree sum of vertex 

v
i
 is denoted by 

v v
i

j i

d
→

−∑ . The degree matrix D  is defined as the diagonal n n´  matrix, where each 

vertex’s degree is at the position of the main diagonal, and the term outside the main diagonal is zero. 
Similarly, in a digraph, the in-degree and the out-degree matrix can be defined as D-  and D+ , 
respectively. Let the in-degree adjacency matrix of the digraph be denoted by A- , in-degree Laplacian 
matrix be denoted by L- , and in-degree signless Laplacian matrix be denoted by Q-  (Cvetkovic et 
al., 1998).

Definition 1. The in-degree adjacency matrix A- , which has elements a
ji
-  ( i j n, , , ,∈ { }1 2 ), 

is defined as:

a

v v

if thereisanarc fromv
ji

i j
− =

=0

1

                    

 � � � � � �
jj i j i
tov or v v

others

� � , � →








0                    

 

For directed graphs, the adjacency matrix is asymmetric (Butler & Chung, 2013).
Definition 2. The in-degree Laplacian matrix L- , which has elements l

ji
-  ( i j n, , , ,∈ { }1 2 ), 

is defined as: 

l

d v v

if thereisanarc fromv tov or v v
ji

i i j

j i j i
−

−

=
=

− →1

0

� � � � � � � � , � .

oothers










 

Definition 3. The in-degree Laplacian matrix Q- , which has elements q
ji
-  ( i j n, , , ,∈ { }1 2 ), 

is defined as:
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q

d v v

if thereisanarc fromv tov or v v

o
ji

i i j

j i j i
−

−

=
=

→1

0

� � � � � � � � , � .

tthers










 

Definition 4. Let the distribution of information be s s s
n1 2

, , , . The information entropy can 
be defined as:

I s s
S

i

n

i i
= − ( )

=
∑
1

log .  (1)

For the characteristic polynomial f x a x a x a x a x
n
n( ) = + + + +

1 2
2

3
3

 , the distribution of the 
eigenvalues p p p p

i n1 2
, , , , , { }  of the characteristic polynomial f x( )  is defined as:

p
i

i

k

n

i

=

=∑

l

l
1

,  (2)

where l
i
 is eigenvalue of characteristic polynomial. Then the eigenvalue entropy of the 

characteristic polynomial is defined as:

I p p
P

i

n

i i
= − ( )

=
∑
1

log .  (3)

3. EIGENVALUE-BASED SPECTRUM AND ENTRoPy oF DIRECTED CyCLES

3.1 Eigenvalue-Based Spectrum of Directed Cycles
The characteristic polynomials of directed cycles can be written as follows:

f x

c c c c

c c c c

c c c c

c c c c

n

n n

n n n( ) =
−

− −

1 2 3

1 2 1

1 1 2

2 3 4 1







    



 

= + + + + + −
−c c x c x c x c x

n
n

0 1 2
2

3
3

1
1

 .  

The determinant of the above matrix is determined by the elements in the first row. The coefficients 
c i n
i
�( , , ,∈ { }1 2 ) are the elements of the first row of the circulant matrix (Yazlik & Taskara, 2012). 

It can be denoted by J Circ c c c c
n n n
= ( )1 2 3

, , , , , or C c c c c
n n1 2 3

, , , ,( ) , where J c
jk k j
= − +1

 mod 
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n . Specifically, C
1

0 1 0 0, , , ,( )  is the basic circulant matrix (Cybenko & Loan, 1986). The order 
n n´  matrix of the basic cycle is denoted by J , namely,

J =













0 1 0 0

0 0 1 0

0 0 0 0

1 0 0 0







    





.  (4)

If the second vertex from the start vertex to the right vertex is1 , then the cyclic matrix is 

J 2

0 0 1 0

0 0 0 1

0 0 0 0 1

0 1 0 0

=



















    





. (5)

Likewise,

J n =













1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1







    





= I .  (6)

Here I  is the identity matrix. Let l  be the eigenvalue of the basic circulant matrix (Trench, 
1989; Trench, 1991), then the characteristic equation of the basic circulant matrix is: 

JX X= l  

⇒ − =ln n n nI J X 0  

⇒ − =ln nI I 0 . (7)

Hence, the characteristic polynomial of the fundamental circulant matrixis f x n( ) = −l 1�(Trench, 
1991; Trench, 1993).

One can calculate the eigenvalues analyticaly by Fourier transformation. The eigenvalues of the 
digraph can be represented by the following equation:
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λ
π

k
k

n
i
n
k

e k n= =
=
∑

1

2

1, , , . (8)

l
k

 is n  unit eigenvalues of the characteristic equation ln − =1 0  . 
Theorem 1. Some properties of circulant matrix are presented as 
follows: 
1. If both J J

1 2
�and�  are cyclic matrices, then J J

1 2
+  is a cyclic 

matrix; 
2. If the basic cyclic matrix J  is a n  order matrix and JT  is 
its transpose cyclic matrix, then JJ J J IT T

n
= = ;

3. The fundamental cyclic matrix is orthogonal; 
4. For the basic cyclic matrix J , J = 1 or J = −1 holds;

5. If J  is a fundamental order n  cyclic matrix, then there 
exists a natural number m  such that J Im = ;
6. The eigenvalues of the basic cyclic matrix are complex 
eigenvalues of unit cycles. 

Examples of circulant matrix are given below.
Example. If the network is the k-nearest neighbor coupled directed network. Let the k of the 

k-nearest neighbor be2 , then the adjacency matrix of the k-nearest neighbor coupled directed network 
is formulated as follows:

C C
k
= =












2

0 1 1 0

0 0 1 1

0 0 0 1 1

1 1 0 0







    





= +J J 2.  (9)

It can be observed that the matrix in formula (9) is a circulant matrix.
So the eigenvalue of C

2
 is :  

λ λ λ
π π π π

C e e e en
i

n
i

n
i

n
i

2 1 2

2 2 2 2 4

( ) = + = + = +
*

. (10)

The eigenvectors of the cyclic matrix C
2
 is given by

u
n T

1
1 2 1 11

1
1= −( )( , , , , )w w w , 

u
n T

2
2 4 1 21

2
1= −( )( , , , , ) .w w w  

The nearest neighbor number is k = 2 , and the matrix C
2
 is the sum of the basic cyclic matrix 

J J+ 2 . So the nearest number is k  in the nearest neighbor coupling network. Namely, 
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C J J J
k

k= + + +2
 .  (11)

So the eigenvalue of C
k

 is :  

λ λ λ λ
π π π

C e e e
k k

n
i

n
i

k

n
i

( ) = + + + = + + +
1 2

2 2 2 2

 

* *

 (12)

The eigenvectors of the circulant matrix C
k

 are given as follows:

u
n T

1
1 2 1 11

1
1= −( )( , , , , ) ,w w w  

u
n T

2
2 4 1 21

2
1= −( )( , , , , ) ,w w w  

 , 

u
k

k
k k n k T= −( )1

1 2 1 2
( , , , , )w w w . 

Theorem 2. Let C
k

 be the adjacent matrix of the k-nearest neighbor coupled directed network. 
The characteristic polynomial is C x x

k
= l . According to equation (12), the equation 

λ λ λ λ
π π π

C e e e
k k

n
i

n
i

k

n
i

( ) = + + + = + + +
1 2

2 2 2 2

 

* *

 holds. We obtain the relationship between 
the in-degree adjacent and Laplacian matrix C

k
 of the k-nearest neighbor coupled directed network 

as follow:

L C kn
k

− = − − +( )( ) .1 l  

Hence, we obtain eigenvalues of in-degree Laplacian matrix:

λ
π π π

L C e e e nk
k

n n
i

n
i

k

n
i−( ) = − + + +











+, ( ) .1

2 2 2 2* *

  (13)

Similarly, the in-degree signless Laplacian matrix of the k-nearest neighbor coupled directed 
network is:

Q C k
k

− = −( )l .  

Eigenvalues of in-degree signless Laplacian matrix is:
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λ
π π π

Q C e e e nk
k

n
i

n
i

k

n
i−( ) = + + +











−, .

2 2 2 2* *

  (14)

Proof:
According to the characteristic polynomial of the adjacency matrix of the directed cycles,

C x x I C x
k k
= ⇒ − =l l 0  

⇒ − + + +( ) =lI J J J xk2 0  

⇒ − − − − =lI J J J k2 0 . 

The in-degree matrix of the k-nearest neighbor coupled directed network is denoted by D- . 
Since�D kI− =  and l lI kI k I+ = +( ) , the in-degree Laplacian matrix L-  of k-nearest neighbor 
coupled directed network can be calculated as follows: 

L I D C
k

− −= − +l  

⇒ −( )+ + + +( ) =lI kI J J J xk2 0  

⇒ − + + + + =lI kI J J J xk2 0  

⇒ −( ) +l k I C x
k

.  

So,

L C kn
k

− = − − +( )( ) .1 l  

l l l lL C k k k k
k k

−( ) = − + − + − + − +,
1 2

  

= − + + +










+( )1

2 2 2 2
n n

i
n
i

k

n
i

e e e nk
p p p* *

 . 

The equation (13) holds. Let the in-degree signless Laplacian matrix be denoted by Q-  for 
k-nearest neighbor directed network. Then, 

Q I D C
k

− −= − −l  

⇒ −( )− + + +( ) =lI kI J J J xk2 0  

⇒ − − − − − =lI kI J J J xk2 0  

⇒ −( ) −l k I C x
k

.  
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So,

Q C k
k

− = −( )l .  

l l l lQ C k k k k
k k

−( ) = − + − + − + −,
1 2

  

= + + +










−e e e nkn

i
n
i

k

n
i

2 2 2 2p p p* *

 .  

Hence, the equation (14) holds. Proof completed.

3.2 Distribution of Signless Laplacian Eigenvalue 
of Nearest Coupled Directed Cycles
According to Theorem 2, the eigenvalues of the three kinds matrices only differ bynk . To keep things 
simple, we illustrate the eigenvalue distribution using the eigenvalue of the in-degree signless Laplacian 
matrix. We provide a 1000-vertex directed cycles for this study. The study focuses on the parameter 
k of the nearest neighbor coupled network in directed cycles. On one hand, k  represents the nearest 
neighbor, as shown in Figure 1. On the other hand, k also represents vertex intervals.

For example, k = 6  corresponds to the sixth neighbor in the network. In Figure 1, each node is 
connected to six neighboring nodes in the network, resulting in six cycles.

The nearest neighbor coupled directed network model is a cyclic graph with n vertices, and its 
adjacency matrix exhibits translation symmetry (Yazlik & Taskara, 2012) in the constructed network 
(Aliaksei & Moura, 2013). In this model, each vertex is connected to at most k of its neighbors, and 
the edges are directed in one direction.

Figure 1. Spectrum of in-degree signless Laplacian of a directed nearest neighbor coupled network (k=6, n=1000)
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On the other side of this work, we investigate the properties of the eigenvalue-based in-degree 
signless Laplacian for different vertex intervals, specifically k  = 2, 3, 4, 5, 6, and 10. For the case 
of k  = 2, the eigenvalue of the nearest neighbor coupled network C

k=2
 is calculated as follows:

λ λ λ λ λ
π π π

Q C e e e
k m k

n
i

n
i

k m

n
i−

+

+( )

( ) = + + + + = + + +



,

1 3 5 1

2 3 2 1 2

 

*

* * *







−nk,  (15)

m n= −( )0 1 2, , , .  Then the spectrum of the nearest neighbor coupling network is shown in 
Figure 2.

When the intervals k = 3 , the eigenvalue of the nearest neighbor coupled network C
k=3

 is, 

λ λ λ λ λ
π π π

Q C e e e
k m k

n
i

n
i

m k

n
i−

+

+( )

( ) = + + + + = + + +



,

1 4 8 1

2 4 2 1 2

 

*

* * *







−nk,  (16)

m n= −( )0 1 3, , , . When intervals k = 3 , the spectrum of the nearest neighbor coupling 
network is shown in Figure 3.

In the case k = 4 , the eigenvalue of the nearest neighbor coupled network C
k=4

 is,

λ λ λ λ λ
π π π

Q C e e e
k m k

n
i

n
i

k m

n
i−

+

+( )

( ) = + + + + = + + +



,

1 5 9 1

2 5 2 1 2

 

*

* * *







−nk,  (17)

Figure 2. Spectrum of in-degree signless Laplacian of a directed nearest neighbor coupled network (k=2, n=1000)
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m n= −( )0 1 4, , , .  Then the spectrum of the nearest neighbor coupling network is shown in 
Figure 4.

If the interval of the cyclic directed network vertex is k = 5 , which means skipping 5 vertex to 
select the neighbor vertex, namely taking 1 6 11 5 1, , , , m× +{ } , then spectrum of the nearest 

Figure 3. Spectrum of in-degree signless Laplacian of a directed nearest neighbor coupled network (k=3, n=1000)

Figure 4. Spectrum of in-degree signless Laplacian of a directed nearest neighbor coupled network (k=4, n=1000)
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neighbor coupled network is shown in Figure 5. In the case k = 5 , the eigenvalue of the nearest 
neighbor coupled network C

k=5
 is, 

λ λ λ λ λ
π π π

Q C e e e
k m k

n
i

n
i

k m

n
i−

+

+( )

( ) = + + + + = + + +


,
1 6 11 1

2 6 2 1 2

 

*

* * *










−nk,  (18)

m n= −( )0 1 5, , , . 

If the interval is k = 10  in the cyclic directed network, which means skipping 10 vertex to select 
the neighbor vertex, namely taking � , , , , , , , ,1 10 20 10 1 1 10 20 10 m m n× +{ } = −( ) , then the 
spectrum of the nearest neighbor coupled network is shown in Figure 6.

In Fig.1~ Fig.6, on the left of figures is the relationship between the real part and the imaginary 
part of the eigenvalues of the nearest neighbor coupled network. On the right of figures is the 
Probability Density Function (PDF) of a eigenvalue, and red lines show Wigner’s Semicycles Law 
(Farkas et al., 2001) p O= =( ). , .5 0 252s .

3.3 Eigenvalue-Based Entropy of Directed Cycles
Due to the asymmetry of the directed network matrix, most of its eigenvalues are complex numbers, 
including both positive and negative values. In this study, we propose a novel entropy measure based 
on the in-degree eigenvalues of the adjacency matrix, in-degree Laplacian matrix, and in-degree 
signless Laplacian matrix. Let Re  denote the real part entropy. Since i  represents the imaginary 
unit, we use l

j
 to represent the absolute value of the j-th eigenvalue of the adjacency matrix. 

Similarly, m
j

 represents the absolute value of the j -th eigenvalue of the in-degree Laplacian matrix, 

Figure 5. Spectrum of in-degree signless Laplacian of a directed nearest neighbor coupled network (k=5, n=1000)
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and q
j

 represents the absolute value of the j -th eigenvalue of the in-degree signless Laplacian 
matrix for digraph. 

Next, we define the real part eigenvalue-based entropy for these three kinds matrices of directed 
networks in the following.

Definition 5. The eigenvalue-based real part entropy of adjacency matrix for digraph is defined as:

I Re A
Re

Re
log

Re

Rej

n
j

k

n

k

j

k

n

k

−

=
= =

( )( ) = − ( )
( )

( )
( )

∑
∑ ∑1

1 1

l

l

l

l�
.  

Definition 6. The eigenvalue-based real part entropy of in-degree Laplacian matrix for digraph 
is defined as:

I Re L
Re

Re
log

Re

Rej

n
j

k

n

k

j

k

n

k

−

=
= =

( )( ) = − ( )
( )

( )
( )

∑
∑ ∑1

1 1

m

m

m

m
.  

Definition 7. The eigenvalue-based real part entropy of in-degree signless Laplacian matrix for 
digraph is defined as:

I Re Q
Re q

Re q
log

Re q

Re qj

n
j

k

n

k

j

k

n

k

−

=
= =

( )( ) = − ( )
( )

( )
( )

∑
∑ ∑1

1 1

.  

Figure 6. Spectrum of in-degree signless Laplacian of a directed nearest neighbor coupled network (k=10, n=1000)
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We obtained the eigenvalue-based real part entropy of three kinds matrices of the directed cycles.
Let k = 1 , the eigenvalues are transformed by the complex Euler formula, 

λ
π ππ π

1

2
1

2 2 2
= = =










+











e e cos
n

isin
n

i
n

i
n .  

Extending to the general case,

λ
π ππ

k
k

n
i
n
k

k

n

k

n

e cos
n
k isin

n
k= =










+






= = =
∑ ∑ ∑

1

2

1 1

2 2






.  

I Re A
Re

Re
log

Re

Rej

n
j

k

n

k

j

k

n

k
j

n
−

=
= =

=

( )( ) = − ( )
( )

( )
( )

=∑
∑ ∑1

1 1
1

λ

λ

λ

λ
∑∑
∑


























=

cos
n
j

cos
n
k

log

cos
n
j

k

n

2

2

2

1

π

π

π















=∑ k

n
cos

n
k

1

2π
.  

According to equations (13) and (14), we obtain,

I Re L nk

cos
n
j

cos
n
k

n

j

n

k

n

−

=

=

( )( ) = + −
















∑
∑

( )1

2

21

1

p

p

























=∑

log

cos
n
j

cos
n
k

k

n

2

2
1

p

p
.  

I Re Q

cos
n
j

cos
n
kj

n

k

n

−

=

=

( )( ) =




















∑
∑1

1

2

2

p

p
llog

cos
n
j

cos
n
k

nk

k

n

2

2
1

p

p





















+

=∑
.  

4. EXPERIMENTAL SIMULATIoN oF EIGENVALUE-BASED ENTRoPy

Table 1 gives the eigenvalue-based entropy values of the real part in the nearest neighbor coupled 
network for k = 2 3 4 5 6, , , ,� � � � . 

Table 2 shows the eigenvalue-based real parts entropy values of the three matrix when the nearest 
neighbor number are invervals k = 10 125 175 225 350 500, , , , ,� � � � � . 

Table 1 and Table 2 show eigenvalue-based real part entropy in three kinds matrices. The evolution 
law of directed cycles is verified in Table 1 and Table 2.

5. CoNCLUSIoN

In this work, we study spectrum and the eigenvalue-based real part entropy of complex in directed 
cycles complex digraph. We visualize the spectral spectrum structure of in-degree signless Laplacian 
matrices.
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We obtain new interpretation of the nearest neighbor vertex k , which denotes the interval of the 
directed cycles network. Namely,k  is equivalent to hopping k  step to the neighbor vertex, m  is 
the total number of vertices of the network divided by k . 

Simulation experiments demonstrate that in-degree signless Laplacian spectrum and real 
numerical solution the eigenvalue-based real part entropy of directed cycles in complex digraph.

The work is helpful to deepen the understanding of GCN models (Aliaksei & Moura, 2013; 
Newman, 2001). It can also be applied to social computing. A regular model framework can be 
established for exploring the aggregation properties of distributions for classification of games.

Table 1. Eigenvalue-based real parts entropy values of the three kinds matrix in the nearest neighbor coupled network (
k = 2 3 4 5 6, , , , )

Nearest Neighbor Coupling k 2 3 4 5 6

I Re A−( )( ) 5.5969 5.7588 5.8024 5.8286 5.3525

I Re L−( )( ) 6.9002 6.8993 6.8983 6.8976 6.9038

I Re Q−( )( ) 6.9002 6.8996 6.8983 6.8977 6.9038

Table 2. Eigenvalue-based entropy values of the real parts of three kinds matrix in the nearest neighbor coupled network 
� ,� ,� ,� ,�k =( )10 125 175 350 500

Nearest Neighbor Coupling k 10 125 175 350 500

I Re A−( )( ) 5.6385 6.1739 6.5195 6.6091 6.7630

I Re L−( )( ) 6.9018 6.8364 6.8130 6.7644 6.6009

I Re Q−( )( ) 6.9018 6.8364 6.8130 6.7644 6.6009
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