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ABSTRACT

The loading of Automatic Identification System equipment on low-orbiting satellites can adapt to 
the demand of exchanging data and information with greater “capacity” brought by the AIS data 
information of ships in deep waters that cannot be covered by land-based stations. The information in 
the satellite AIS data contains a large number of potential features of ship activities, and by selecting 
the ship satellite AIS data of typical months in the South China Sea in 2020. Data mining, geographic 
information system, and traffic flow theory are used to visualize and analyze the ship activities in 
the South China Sea. The study shows that the distribution of ship routes in the South China Sea is 
highly compatible with the recommended routes of merchant ships, and the width of the track belt 
is obviously characterized. The number of ships passing through the southern waters of the Taiwan 
Strait has increased significantly, and the focus of traffic safety in the South China Sea should also 
focus on major route belt and important straits.
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INTRODUCTION

The South China Sea, as critical waters of the 21st Century Maritime Silk Road (Zhong & White, 
2017), is one of the most active waters in the world at present and is also a key area of high concern 
for countries around the world. Many scholars have been studying the waters of the South China Sea 
from multiple dimensions; the safety of ship navigation is the most important among these topics 
(Rosenberg & Chung, 2008). In view of the limitation of data sources in the South China Sea, most 
of the previous studies have focused on the port waterways along the South China Sea, including 
Singapore and the Strait of Malacca (Weng et al., 2012), and the Pearl River Delta region of China, 
etc. (Sasa et al., 2021). Few of them have analyzed the overall traffic conditions of the whole South 
China Sea and the key waters in depth (Du et al., 2016).
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As Figure 1 shows, according to the recommended routes in the authoritative book World Ocean 
Routes (Jenkins, 1973), the recommended routes in the South China Sea are mainly in the southwest 
and northeast directions and are generally divided into the eastern, central, and western routes, of 
which the central route is the main route and the two directions of the southern Taiwan Strait and the 
Bashi Strait through which the route passes are the key waters.

At present, the installation of AIS data transceiver equipment on low-orbiting satellites has served 
the modern demand for larger “capacity” data exchange (Greidanus et al., 2016). The mining of ship 
AIS data to build a maritime navigation characteristics map is one of the important means to track 

Figure 1. Recommended routes for major merchant ships in South China Sea
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the global ship behavior characteristics (Vespe et al., 2015) and regulate the ship order (Yliskylä-
Peuralahti & Gritsenko, 2014). By analyzing and visualizing ship movement patterns, traffic density, 
route preferences, and other relevant navigation information to provide a comprehensive depiction 
of maritime navigation characteristics in a specific area or region.

There is little research on the spatiotemporal characteristics, key areas, and port spatial information 
of water transportation in the South China Sea by domestic and foreign scholars. Based on AIS data, 
using computer technologies and methods such as time-space division, linear density analysis, cluster 
analysis, and complex network, the paper explores the time-space characteristics of water traffic in 
the South China Sea waters, identifies the key areas of the South China Sea waters, divides the levels 
of ports, and provides decision-making reference for the water regulatory authorities to optimize the 
channel and formulate port management policies.

The technology roadmap of this paper is as follows. Firstly, this article extracts trajectory points 
from the AIS database and uses Python for voyage recognition, achieving the preprocessing process 
from trajectory points to trajectory lines. Secondly, the time-space division result map and linear 
density analysis map are obtained by using the time-space division of route set, linear density analysis, 
time-space statistical analysis, and other methods to explore the time-space distribution characteristics 
of water traffic in the South China Sea waters. Then, based on hierarchical clustering, the ship berthing 
points are clustered to identify key areas. Finally, this paper uses the complex network method to 
build the port shipping network, analyze the centrality of the port network, divide the port hierarchy, 
obtain the centrality analysis diagram and port hierarchy result diagram, and mine the characteristics 
of port spatial information.

METHODS RESEARCH THEORY AND METHODOLOGY

Research Technology
The QGIS (Quantum Geographic Information System) is a powerful open-source geospatial analysis 
software. It enables users to analyze and interpret geographic data with a user-friendly interface. 
Its wide range of tools supports tasks like spatial querying, overlay analysis, and spatial statistics. 
QGIS promotes interoperability and collaboration within the geospatial community. Overall, 
it is a valuable tool for effective geospatial analysis. QGIS compares favourably to proprietary 
geospatial analysis software in terms of functionality and usability. It offers a wide range of features 
and capabilities while being user-friendly. Key features of QGIS that make it a powerful tool for 
geospatial analysis include its ability to handle various data formats and support for advanced 
geoprocessing and analysis, robust cartographic capabilities, extensive plug-in ecosystem, multi-
platform compatibility, and strong community support. By compiling and analyzing the parameter 
fields of Maritime Mobile Service Identify (MMSI), time, longitude, latitude, speed, course of the 
South China Sea ships, to obtain the spatial distribution and temporal characteristics, and then reveal 
the spatial and temporal distribution patterns of traffic information in the waters of the South China 
Sea. MMSI data, which stands for Maritime Mobile Service Identity, is compiled and analyzed by 
collecting AIS (Automatic Identification System) signals emitted by ships. These signals contain 
MMSI information, which is then processed and analyzed using geospatial analysis techniques to 
determine ship locations, movements, and patterns over time. Spatial distribution refers to how 
a phenomenon or variable is arranged across a geographic area, focusing on its location, density, 
and concentration. It involves analyzing the spread, clustering, or dispersion of the phenomenon 
in different spatial units. Temporal distribution, on the other hand, refers to how the phenomenon 
changes or varies over time, examining the frequency, timing, duration, and magnitude of its 
occurrence or changes. Spatial distribution relates to the arrangement in space, while temporal 
distribution relates to the pattern over time.
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Data Pre-Processing
Data Cleaning
Data cleaning (Gunnarsson, 2021) is the first step in the data processing process, and its purpose is 
mainly to find abnormal information and duplicate information in the data.

Preliminary cleaning of duplicate data. For the satellite AIS data in the South China Sea where 
the ship’s latitude and longitude have not changed for a long time, the satellite AIS data are judged to 
be at anchor or berthing and only one data point of the same latitude and longitude is retained, while 
the rest of the data are deleted. Identifying and retaining only one data point for ships at anchor or 
berthing with the same latitude and longitude is necessary to prevent data duplication and maintain 
accurate spatial analysis. The removal of redundant data for ships at anchor or berthing improves the 
analysis of satellite AIS data in the South China Sea by providing a more accurate representation 
of ship movements and patterns, eliminating data duplication, and reducing noise in the analysis. A 
ship’s latitude and longitude may remain unchanged for an extended period in the South China Sea 
due to various reasons. It could be anchored or moored, engaged in fishing or aquaculture activities, 
conducting research or surveys, involved in monitoring or surveillance operations, or experiencing 
technical or operational issues. Each case is unique, and factors such as the ship’s type, purpose, and 
prevailing conditions can contribute to its stationary position.

Screening of outliers. Calculate the residual error, the arithmetic mean and its standard deviation 
σ for the ship’s latitude and longitude, respectively, and remove data with errors greater than 3σ 
according to the 3σ rule (Karagiannidis & Themelis, 2021). Illogical ship anomalies in raw satellite 
AIS data can occur due to various reasons. These anomalies may result from data transmission errors, 
sensor malfunctions, intentional manipulation, environmental factors, or technical limitations. To 
address these issues, implementing data quality control measures and collaborating with maritime 
authorities and vessel operators can help identify and rectify the causes of these anomalies, ensuring 
accurate and reliable AIS data. There are illogical ship anomalies in the raw satellite AIS data due to 
AIS malfunction and sensor signal misalignment, which mainly include AIS data point drift, isolated 
points on the ship’s track line, and other anomalies. Sensor signal misalignment can contribute to 
illogical ship anomalies in satellite AIS data by causing positional inaccuracies or inconsistencies, 
leading to false or misleading ship observations and data anomalies. AIS malfunctions occur when 
illogical ship anomalies appear in raw satellite AIS data. These malfunctions can be caused by 
technical issues, signal interference, intentional interference, human error, or system vulnerabilities. 
To address these malfunctions, investigate the root cause, enhance system security, provide proper 
training, and conduct regular maintenance. Continuous monitoring and analysis of AIS data are 
crucial for detecting and resolving inconsistencies, as seen in Figure 2a for whole segment drift and 
Figure 2b for isolated points.

Figure 2. Schematic diagram of noise types of ship track data in South China Sea waters
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Due to excessive deviation of data outliers from actual values, in this paper the authors 
use the method of ship dynamic information change regulation for data outlier screening 
(Negenborn et al., 2021).

The ship dynamic information change supervision method involves monitoring changes in a ship’s 
track by comparing current and previous track points using parameters like heading angle, distance 
difference, and speed difference. By analyzing these differences, the method detects deviations or 
anomalies in the ship’s trajectory. It ensures the accuracy and reliability of ship tracking data, which is 
essential for navigation and safety purposes. The ship dynamic information change supervision method 
is used to judge whether the current ship track point pi and the previous track point pi-1 are within 
the setting range of standard deviation σ by the difference in heading angle ΔCog, distance difference 
ΔDis, and speed difference ΔV. If a single-track point is out of range, the point pi is considered to 
have drifted and the data repair algorithm is used to repair the data. The data repair algorithm is 
used to fix data when a single data point, “pi,” is outside the expected range due to drift. It identifies 
outliers, estimates the drift, and adjusts the value of “pi” to bring it back within the acceptable range. 
This ensures accurate and reliable data for analysis and decision-making.

Data Restoration Fusion
Data repair fusion involves using a combination of database techniques and algorithms to repair and 
restore data within a database. It includes analyzing the data, detecting errors, localizing the issues, 
and applying appropriate repair strategies such as data transformation, imputation, integration, and 
restoration. The repaired data is then validated, and the database is optimized to prevent future errors. 
The process is documented and reported for reference and auditing purposes. Data repair fusion (Tang 
et al., 2021) refers to the repair and restoration of data through database and algorithmic techniques 
and the fusion of valid information in the database to form data with complete information. The 
objective is to generate a complete dataset by combining valid information from various sources in a 
database. This includes analyzing the data, repairing any problems such as inconsistencies or missing 
values, integrating the repaired data, fusing information from various sources, and validating the final 
dataset for quality. Data repair fusion increases data reliability, enables better decision-making, and 
improves data analysis capabilities.

For the main routes in the South China Sea, they were divided into straight section routes and 
curved section routes (near the route inflection point) for data restoration. In Figure 3 the red boxed 
line is the curved section, and the blue boxed line is the straight section.

The WLS-Hermite restoration algorithm is highly prominent in image processing and computer 
vision. It effectively enhances degraded images by combining WLS and Hermite interpolation methods. 
The algorithm’s key features include adaptability to different types of degradation, preservation of 
edges and textures, parameter control, and computational efficiency. Its prominence is determined 
by its ability to improve image quality and its versatility in various applications. In the joint WLS-
Hermite restoration algorithm, the weighted least squares filtering algorithm (WLS) provides a better 
fit to the straight line (Wang, 2019). The weighted least squares (WLS) filtering algorithm improves 
the fit to a straight line by assigning weights to data points based on their reliability. It minimizes the 
weighted residuals, prioritizing more reliable points and reducing the impact of outliers. The algorithm 
iteratively adjusts the line parameters, optimizing the fit to the weighted data points. Overall, WLS 
considers uncertainties, balances influences, and produces a line fit that better captures the underlying 
trend. The principle of the algorithm is to assume that a set of data is sampled from a particular row 
and that there is a certain error. In order to estimate a straight line that passes through the data points 
and satisfies the weighted least squares criterion, it is required that this line passes through the center 
of the data point set N to find the global optimal solution. The process of determining the weights for 
each square in the weighted least squares criterion involves assigning weights based on the inverse 
of the estimated variances or uncertainties associated with each data point.



International Journal of Data Warehousing and Mining
Volume 19 • Issue 4

6

The segmented cubic Hermite interpolation algorithm is used for data repair to achieve a smooth 
curve for the navigation track line when the ship is sailing at the turn point of the route (Li et al., 
2017). The algorithm handles turn points in the ship’s navigation track line by detecting significant 
changes in direction or curvature. It applies appropriate interpolation techniques, such as segmented 
cubic Hermite interpolation, to smooth out the track line and ensure continuity. Segmented cubic 
Hermite interpolation, also referred to as piecewise cubic Hermite interpolation, is an interpolation 
method that approximates a smooth curve or function between given data points. It achieves this 
by constructing segments of cubic polynomials. This approach offers flexibility and continuity in 
interpolation, allowing for the incorporation of both data points and derivative information. By dividing 
the data range into segments and constructing cubic polynomials for each segment, segmented cubic 
Hermite interpolation provides a versatile and seamless interpolation technique. In the segmented 
cubic Hermite interpolation algorithm, the key steps are as follows. Firstly, consecutive points before 
and after each turn point are identified. Then, tangent vectors are calculated at each point to capture 

Figure 3. South China Sea waters route division
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the track direction. Control points for each segment are determined using neighboring tangent 
vectors. Next, the cubic Hermite interpolation formula is applied to interpolate points between 
control points, ensuring smoothness. The segmented cubic Hermite interpolation algorithm has the 
feature that the values of the functions of the corresponding nodes are equal and the values of the 
corresponding derivatives and their higher order inverse are also equal, so that there are tangents at 
the corresponding turning points to ensure the smoothness of the curve and achieve the feature that 
the interpolated function and the interpolated function are in good agreement (Zhou et al., 2020). 
By utilizing tangent vectors at each point. These tangent vectors capture the direction and rate of 
change of the function, enabling the algorithm to interpolate points in a way that preserves both the 
function values and their derivatives at the corresponding nodes. WLS filtering reduces noise, while 
Hermite interpolation establishes smooth curves from data points. Hermite interpolation is accurate 
and requires derivative information. WLS filtering assigns weights to reduce noise. WLS filtering is 
used in signal processing and time series analysis, whereas Hermite interpolation is used in graphics 
and function approximation. A decision is made based on the desired level of smoothness and noise. 
Hermite interpolation utilizes derivative information to improve accuracy by allowing for a more 
precise approximation of the underlying function. By incorporating derivative values at interpolation 
points, Hermite interpolation captures the local behavior of the function more effectively, resulting 
in a more accurate representation.

Water Grid Methodology
In satellite AIS data, the position information of ships is discrete points in space, and in fixed 
waters, to obtain the distribution of ships’ navigation trajectories and to analyze the ships’ navigation 
characteristics, a gridding method (Yan et al., 2020) can be adopted for fixed waters, so that the traffic 
characteristics of ships sailing in those waters can be extracted precisely. The gridding method is crucial 
for dividing continuous data into a grid structure, enabling efficient analysis and visualization in fields 
like computer graphics and data analysis. It facilitates tasks such as interpolation, reconstruction, and 
numerical computations while aiding in data visualization, compression, and storage. Advantages of 
using Hermite interpolation over other methods include higher accuracy due to the incorporation of 
derivative information, flexibility in handling irregularly spaced data points, smoothness in maintaining 
continuity, capturing the local behavior of the function accurately, and enabling both interpolation 
and extrapolation beyond the given data range.

The Hermite interpolation algorithm is chosen for data repair in navigation track lines because it 
can produce a smooth curve. It has a high level of accuracy, ensuring that the original data points are 
precisely approximated. It effectively captures local variations by considering derivative information. 
As a result, the curves are less distracting and continuous, with fewer abrupt changes. Furthermore, 
Hermite interpolation allows for curvature control and is noise resistant, which improves the accuracy 
and reliability of the repaired track lines. Assume that scatters are used to represent the track point 
location information broadcast at intervals from the ship’s AIS data. Then, according to the demand for 
three-dimensional management and service capability guarantee of maritime safety in the middle and 
long-range waters of the South China Sea, the entire study waters are gridded by using the gridding 
method based on the spatial location distribution of ships in longitude and latitude, with the grid 
granularity and area of 289km2, as seen in Figure 4.

Data Analysis and Applications
Based on the well-processed static AIS data source and ship track data source in the South China Sea, 
the static and dynamic characteristics of ships in the South China Sea are analyzed from the spatial 
and temporal dimensions through data statistics, data extraction thinning, QGIS visualization, and 
water gridding methods.

Vessel static characteristics analysis and vessel dynamic characteristics analysis in the South 
China Sea aim to assess and understand vessel behavior. Static analysis examines physical attributes, 
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while dynamic analysis focuses on performance in motion. These analyses inform decision-making 
for maritime safety, operations, and environmental management in the region. Due to reasons such 
as anchoring, berthing at a port, waiting for clearance, conducting maintenance activities, adverse 
weather conditions, or operational requirements.

Vessel static characteristics analysis. Seven ship observation lines are set up in the South China Sea 
waters, and the statistical analysis of ship length, ship speed, and ship draught are carried out through 
the static characteristics of ships in the observation line waters and the environmental characteristics 
of the South China Sea waters in the data source.

Vessel dynamic characteristics analysis. Using QGIS visualization technology and traffic flow 
analysis, the influence of navigable waters is comprehensively considered, and in-depth analysis of 
traffic conditions such as the distribution of navigation zones in the waters of the South China Sea 
is carried out using the setting of observation gate lines.

SATELLITE AIS VESSEL TRAFFIC FLOW OBSERVATION 
AND ANALYSIS IN THE SOUTH CHINA SEA

Traffic Information Condition Observation Gate Line 
Setting and Data Source Selection
Observation Gate Line Setting
The South China Sea are bounded by the Taiwan Strait and the Bashi Strait in the north and the 
Mindoro Strait and the Barabak Strait in the middle, and the southern part goes straight to Singapore, 
Indonesia, and Thailand. Therefore, based on historical routes and management and service needs, 
seven gate lines are set up clockwise from south to north, as shown in Figure 5 and Table 1.

Data Source
Due to the obvious monsoon climate characteristics in the South China Sea, the monsoon is highly 
correlated with the ship route traffic, and the ship activities in the navigation area show a regularity 
from year to year. Possible solutions for addressing ship route traffic in monsoon-affected regions 
include enhanced weather monitoring and forecasting, optimized route planning, improved vessel 
design and technology, diversification of ports and transshipment hubs, collaborative efforts and 
information sharing, seasonal planning and adjustments, and crew training. During the monsoon 

Figure 4. Grid-based data processing in South China Sea waters
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Figure 5. South China Sea ship traffic condition observation gate line

Table 1. Flow observation gate line basic information

Observation Gate Line 
Number

Observe the latitude and longitude of the 
goal line Note

Nanhai_line1 03° 41’ 57.8”N,113° 30’ 17.0”E 
10° 36’ 29.7”N,107° 28’ 56.8”E

By way of Nansha near 
Zengmuansha

Nanhai_line2 09° 13’ 16.7”N,117° 49’ 31.5”E 
12° 53’ 50.3”N,109° 28’ 01.8”E

By way of Nansha near Taiping 
Island

Nanhai_line3 16° 18’ 17.4”N,119° 46’ 51.7”E 
16° 12’ 52.7”N,108° 09’ 55.1”E

Passage near Xisha and Zhongsha 
Islands

Nanhai_line4 23° 23’ 18.5”N,117° 06’ 27.7”E 
22° 37’ 05.6”N,120° 15’ 23.5”E

Near the southern waters of the 
Taiwan Strait

Nanhai_line5 18° 39’ 58.9”N,120° 50’ 55.2”E 
21° 49’ 44.9”N,120° 51’ 44.2”E By way of Bashi Strait

Nanhai_line6 15° 56’ 19.1”N,119° 46’ 42.2”E 
12° 06’ 03.7”N,119° 29’ 54.9”E

Near Huangyan Reef and Mindoro 
Strait

Nanhai_line7 12° 06’ 03.7”N,119° 29’ 54.9”E 
06° 46’ 46.6”N,116° 43’ 33.7”E Near the Barabakh Strait
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season, these solutions aim to minimize disruptions and ensure safer and more efficient maritime 
transportation. In view of the large volume and repetition of data sources throughout the year, the 
representative southwest wind prevailing season in July and the northeast monsoon prevailing period 
in December are selected to procure satellite AIS ship data sources for data mining.

Disposition of Vessel Density and Vessel Traffic
Vessel density (Liu et al., 2020) refers to the number of vessels in a certain area of water at a certain 
moment, which directly reflects the spatial distribution of vessels in a certain area of water and can 
be used to measure the degree of vessel traffic congestion and danger in the water to some extent. 
Vessel traffic density is measured by the number of vessels passing through each grid or unit area. 
AIS, radar, and satellite imagery are used to calculate vessel density. Each grid counts vessels passing 
through the area of interest. Vessel traffic density (vessels per unit area) is calculated by dividing 
the vessel count by the grid area. This data helps to identify congested areas and collision risks and 
optimize maritime operations for navigation, safety, and planning. To compute the density of vessel 
traffic (vessels per unit area), the total count of observed or recorded vessels within a specific area is 
divided by the corresponding area size of the grid or spatial unit used for analysis. This calculation 
results in a density value that represents the average number of vessels present within each unit of 
area. The calculation of vessel traffic density value is measured by the number of vessels passing 
through each grid, as seen in Figure 4, in 1h, and the calculation formula is:

ρ =Q/h	 (1)

In Eq. (1) ρ is the ship density (ships/h), Q is the total number of ships passing through a certain 
area, and h is the time. A larger ρ indicates more ships passing through an area per unit time and 
more traffic congestion.

Vessel traffic volume (Zhang & Crabbe, 2021) is the number of all vessels passing through a 
specific location in the water at a certain time interval, and its size can characterize the busy traffic 
of the corresponding waterway to some extent; the larger the vessel traffic volume index is, the larger 
and busier the traffic flow of the corresponding waterway in the water is. The statistical model of 
traffic volume is introduced here as:

F F
i

n

i
=

=
∑

1

	 (2)

In Eq. (2) F   indicates the volume of ship traffic in a certain time period, Fi indicates the volume 
of traffic at a certain moment i, and n indicates the time. For the convenience of statistical analysis, 
the volume of marine vessel traffic through the study area is calculated based on the sampling data 
in terms of time (moment, month, season) to measure the marine traffic in the South China Sea. To 
assess marine traffic in the South China Sea, it involves analyzing the frequency of vessel sightings 
or AIS data over specific time intervals, such as moments, months, or seasons. By aggregating and 
analyzing the sampled data, the assessment of marine traffic in terms of time can be determined.

Statistics and Analysis of Major Traffic Flows in the Waters of Each Gate Line
The raw data of July and December 2020 were processed and mined for analysis such as combing, 
cleaning and screening, restoration fusion, and data extraction thinning, and the ship traffic was 
exported according to the seven gate-line distribution waters in Figure 5, and the statistical information 
is shown in Tables 2 and 3.
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The number of ships passing through each gate line in different months in the table is represented 
by pie charts, and the data are shown in Figure 6. It can be seen from Figure 6 and Tables 2 and 3 that 
the number of ships passing through gate line 1 and gate line 2 are basically similar, and the average 
length, width, draught, and speed are relatively large, so it is judged that the ships passing through 
these two places are mainly originally ocean-going ships sailing along the main channel, and some 
fishing vessels are active in the waters, which can pull down the average scale of vessels.

There is a significant increase in vessel traffic at gate line 3 compared to gate line 2. According 
to the scatters traffic flow maps in Figure 6, Figure 11, and Figure 12, it can be seen that there is a 
significant increase in vessel traffic along the coast of Vietnam at gate line 3, and thus the frequency 
of vessel activity along the coast of Vietnam can be characterized.

The number of ships passing through gate line 4 near the southern waters of the Taiwan Strait 
is significantly higher than other gate lines, while the scatters traffic flow map shows that there are 
more ships off the coast of Guangdong and Hainan, China. The average ship size is relatively small 
because the ship traffic at route gate line 4 is not only ocean-going ships passing through gate line 
3 but also a large number of coastal transport ships and fishing vessels sailing through Guangdong 
and Hainan. The average ship length, width, and draft of the ships near the Bus Strait in gate line 5 
are the largest among the seven gate lines, and it can be judged that the ships sailing through here are 
mostly large transiting ships crossing the South China Sea into the Pacific Ocean. The data show that 
the gate line 4 and 5 waters are the key waters for the safety control and service of ship navigation 
in the South China Sea.

Table 2. Summary table of the statistical information breakdown of the observed goal line in July

Observation Gate 
Line Number

Number of Vessels 
/vessel

Average 
length/m

Average ship 
width/m

Average 
draft/m

Average over-the-
line speed/kn.

Nanhai_line1 8050 179.638 29.306 7.611 10.553

Nanhai_line2 7868 190.787 30.340 8.782 12.011

Nanhai_line3 9481 201.699 31.972 9.049 12.176

Nanhai_line4 20503 147.383 22.899 6.058 9.929

Nanhai_line5 3177 235.879 38.346 11.073 12.759

Nanhai_line6 3084 218.435 34.439 9.860 12.243

Nanhai_line7 389 157.431 25.469 7.918 11.849

Table 3. Summary table of the statistical information breakdown of the observed goal line in December

Observation Gate 
Line Number

Number of Vessels 
/vessel

Average 
length/m

Average ship 
width/m

Average 
draft/m

Average over-the-
line speed/kn.

Nanhai_line1 5614 200.796 31.937 9.248 12.337

Nanhai_line2 5949 199.843 31.553 9.102 12.421

Nanhai_line3 8928 193.222 30.656 8.846 11.163

Nanhai_line4 18561 144.497 22.440 6.520 9.301

Nanhai_line5 3106 236.224 38.210 11.188 11.362

Nanhai_line6 2866 206.829 32.819 9.609 11.883

Nanhai_line7 524 169.461 27.058 8.125 11.702
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The average scale of ships near Huangyan Island Reef and Minduluo Strait by gate line 6 is 
relatively large, second only to the average scale of ships by gate line 5. At gate line 7 is the water 
via Barak Strait, whose number of ships is obviously reduced, and the average draft is smaller, but 
the speed of the ships passing through is larger.

Analysis of Vessel Traffic Flow Density Data in South China Sea
The distribution of ship density during the southwest monsoon season in July 2020 in the South China 
Sea is shown in Figure 7 after grid-based analysis. Statistics show that the number of ships in the main 

Figure 6. The percentage of the number of vessels crossing the observation line 1 to 7 in July and December 2020

Figure 7. Distribution of the number of vessels in the grid in July (Vessels/Month)
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waters of the South China Sea in July (excluding waters within 30 nautical miles off the coast) reached 
35,904, with a higher ship density in the main channel belt, and the southwest piece of waters at the 
southern end of the Spratly Islands in the south is more dense than the northern waters, where the 
largest density of the grid ship flow reached 4,212, located at the southwest end of the recommended 
route in the southern part of the South China Sea. The main channel midline waters in general have 
high ship density and wide voyage paths, which are the key waters for maritime safety control and 
service. These include the convergence of major shipping routes, substantial trade and economic 
activities in the area, navigational safety considerations prompting wider voyage paths, access to 
multiple ports, and the regional significance of the main channel as a vital transportation route.

According to the statistics of vessel heading (northward and southward), the ship flow in the 
grid with the highest density of vessels sailing northward reached 2,535, as seen in Figure 8a, and 
the highest density of vessels sailing southward reached 2,392, as seen in Figure 8b, whose location 
is still the southwest waters of the main channel in the southern part of the South China Sea, and the 
overall are consistent with the overall density distribution in July.

In December, under the influence of the northeast monsoon, there was a significant decrease 
in vessel density compared to July, with the highest density grid vessel traffic of 2,278, as seen in 
Figure 9, still located at the southwest end of the recommended route in the southern South China Sea.

Figure 8. Distribution of the number of vessels in the grid of northbound/southbound traffic flow in July (Vessels/Month)

Figure 9. Distribution of the number of vessels in the grid in December (Vessels/Month)
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According to the statistics of vessel heading (northbound and southbound), the vessel traffic in 
the grid with the highest density of vessels sailing northbound is 1115, as seen in Figure 10a, and 
the vessel traffic in the grid with the highest density of vessels sailing southbound is 1207, as seen 
in Figure 10b.

CHARACTERISTICS OF SHIP TRAFFIC FLOW IN SOUTH CHINA SEA

Ship Dynamic Characteristics in South China Sea
Vessel Track Belt Distribution
As shown in Figure 11 and 12, the track points in the grid are represented in the form of flow feature 
maps to obtain the ship satellite AIS data track distribution maps for July and December 2020. Since 

Figure 10. Distribution of the number of vessels in the grid of northbound/southbound traffic flow in December (Vessels/Month)

Figure 11. July South China Sea ship navigation traffic flow track distribution
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the number of ships is large, the number of ships is represented by 10x, which is the distribution 
of track points per 289km2 grid area. The scale in the figure is indicated by the color column of 
scatters/289km2/month, which indicates the distribution of the number of ship track point scatters 
on the grid area of 289km2 per month, and the darker color indicates the higher density.

The ship traffic flow visualization track map can visualize the flow characteristics of ships 
sailing through the South China Sea and show the customary routes of ships crossing the South 
China Sea between different ports. As known from Figure 11 and 12, the AIS data of the South China 
Sea route in July and December show that the east, middle and west routes through the South China 
Sea are consistent with the recommended routes provided in the nautical books; the traffic flow on 
the recommended north-south route between the Philippines and Guangzhou, Hong Kong, China 
is relatively small, and the route is mainly chosen during the weak northeast monsoon or monsoon 
transition and in December, due to the prevalence of the northeast monsoon, which has a greater 
impact on the safety of ships traveling through the Sulu Sea route (long time crosswind); ships mostly 
use other routes. The northeast monsoon’s spread during its season (November to March) can have a 
significant impact on the safety of ships traveling through the Sulu Sea Route. It brings high winds, 
rough seas, higher wave heights, decreased visibility, and an increased risk of storms. Navigating 
through these conditions becomes difficult, requiring careful monitoring, route and speed adjustments, 
and compliance to safety protocols to ensure the vessel’s and crew’s safety. At the same time, the 
deep mining results of satellite AIS data supplement the distribution status of the route belt for ship 
navigation in the South China Sea, and the distribution of its eastern, middle, and western route 
presents the route belt with width ranging from 30~80 nautical miles, and the waters southwest of 
Nansha Islands, near-shore and island waters, and the main route belt with high ship density, which 
is also the main trade route for ships entering the waters of the South China Sea from the southern 
part of the South China Sea.

Vessel Speed Situation Analysis
As shown in the July statistics in Figure 13a, the distribution of vessel speed at gate line 1, 2, and 3 
is more similar, and the vessel speed range with the highest number of vessels is 12kn to 13kn. The 

Figure 12. December South China Sea ship navigation traffic flow track distribution
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vessel speed range with the highest number of vessels at gate line 4 is 9kn to 10kn, with the number 
of vessels at 2278. And the ship speed range with the largest number of ships at gate line 5, 6, and 
7 is 12kn to 13kn.

As shown in the December statistics shown in Figure 13b, the ship speed range with the highest 
number of ships at gate line 1 is all 13kn to 14kn. The distribution of ship speed at gate lines 2 and 
3 is more similar, and the ship speed range with the highest number of ships is all 11kn to 12kn. 
The ship speed range with the highest number of ships at gate line 4 is 8kn to 9kn, with the number 
of 2,055 ship trips. The speed range with the highest number of ships at gate line 5, 6, and 7 is also 
11kn to 12kn.

After comparison, it can be seen that the overall sailing speed of ships in the South China Sea 
in December is lower than the ship speed in July, mainly because the ships are affected by frequent 
windy weather in winter in December; the overall speed distribution of ships passing through the 
main track with each gate line water is stable.

Ship Static Characteristics in South China Sea
The static characteristics of the gate-line vessels in the South China Sea waters in July as well as 
December 2020 are analyzed from two aspects of vessel draught and vessel length, which are shown 
in Figure 14 and Figure 15.

Comparing the distribution of ship draught in July and December, the main body of the draught 
distribution of gate line 1 in the South China Sea waters in July is 0m~1.0m, which is dominated 
by fishing vessels operating nearby, and the main body of ship draught in December is 9m~10.0m. 
The draught of ships in gate line 2 and 3 is mainly 8.0m~9.0m. The distribution of 0m~1m draught 
of ships in gate line 4 is particularly prominent, and it can be seen that there are a large number of 
fishing vessels operating at the southern exit of the Taiwan Strait in addition to merchant vessels. 
The draught of ships in gate line 5 and 6 is concentrated in 8.0m~10.0m, and the flow rate in July 
and December is basically close to each other, which indicates that the ships active in this water are 
basically mainly medium and large ships.

Figure 13. Speed distribution of boats at each gate line in July 2020 and speed distribution of boats at each gate line in 
December 2020
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A large number of fishing vessels were found in the statistics of crossing vessels in gate line 1 
as well as gate line 4. According to the satellite AIS data, the main distribution of fishing vessels 
is located in the above-mentioned fishing grounds in the South China Sea as well as in the fishing 
grounds in the Nansha Islands, which are basically based on regional activities (Li et al., 2021). The 
intensity of fishing vessel activities shows block or strip distribution within 100 km of the coastline, 
and the number of fishing vessel points reflects more concentrated offshore fishing activities with 
a certain periodicity (Li et al., 2021). Therefore, the activities of fishing vessels have less influence 

Figure 14. Draught distribution at each goal line in July 2020 and draught distribution at each goal line in December 2020

Figure 15. Length distribution of captains at each goal line in July 2020 and captain length distribution at each goal line in 
December 2020
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on the ship traffic in the main waters of the South China Sea and do not affect the analysis of the 
above-mentioned ship traffic situation (Yan et al., 2022).

According to Figure 15, the distribution of ship lengths at gate line 1, 2, and 3 is more similar 
in July and December, with ship lengths ranging from 182.0m to 202.0m, with large ships passing 
through the waters at gate line 3, with ship lengths ranging from 282.0m to 302.0m; the ship lengths 
at gate line 4 for the two months are mainly 82.0m to 104.0m, which coincides with the distribution 
of ship drafts The ship length at gate line 5 and 6 is mainly 282.0m~304.0m, mainly through medium 
and large ships.

In summary, analyzed from the perspective of seasonal influence, the whole number of ships in 
December is less than that in July, with a large difference of 1,942 ships in gate line 4. The difference 
in the number of ships is highly concentrated in small and medium-sized ships, mainly fishing boats 
and small surface boats near the coast and islands affected by the stronger northeast monsoon in 
winter (Gao et al., 2021). However, the number of ships in gate line 5 (Bashi Strait waters) is basically 
not affected by the season (mainly large ships voyage). The general trend of the state distribution of 
each gate line in 2 months is basically the same, indicating that the flow of ships sailing the South 
China Sea is relatively stable, and there is no obvious change of ship type due to the change of season 
(Zhang et al., 2022).

From the comparison of the ship’s length and draft scale, the number of ships corresponding 
to the length and draft at the seven gate lines are different but basically the same on the midline 
through the main channel, and the difference between inshore and island waters is obvious, which 
further verifies the validity of the data (Wang et al., 2021). Therefore, ships in the South China Sea 
are mainly free to choose their routes according to their tonnage/power, monsoon sea conditions, 
and other weather elements.

SPATIOTEMPORAL DATA MINING AND 
VISUALIZATION OF SHIP TRAJECTORIES

Recognition of Key Areas Based on Hierarchical Clustering
This section first extracts the ship berthing points in the water area and then uses the hierarchical 
clustering algorithm to cluster the ship berthing points, eliminate the clusters with less clustering 
sample point data, and analyze the spatial distribution of the remaining clusters, so as to mine the 
key areas of the distribution of the ship berthing points in the water area.

The paper extracted data from 33,819 mooring points in the South China Sea waters (August 
1st, 2020-2August 23rd, 2020) for a total of 23 days. The extraction process is shown in Figure 16.

First, cluster analysis is carried out on the berthing points based on hierarchical clustering 
algorithm, and the minimum threshold of the berthing points is set to 200, so as to eliminate the cluster 
with a small number of berthing points. Then, the clustering results are evaluated using the contour 
coefficient SC. The clustering results retained 33,055 anchor points, removed 764 discrete anchor 
points, had a contour coefficient of 0.652, and had 18 categories. Finally, visualize the clustering 
results in Architecture Geographic Information System (ARCGIS), and count the number of mooring 
points included in different categories to explore key areas in the South China Sea waters.

The number statistics of hierarchical clustering results based on mooring points in South China 
Sea waters are shown in Figure 17, from which the following characteristics can be seen:

1. 	 From the perspective of the number of berthing points, there are significant differences in the 
distribution of berthing points in the South China Sea waters. The number of berthing points in 
cluster 1 is the highest, reaching 6,117. Cluster 14 has the lowest number of mooring points, only 
219. The number of berthing points in clusters 1, 4, and 5 ranges from 4,000 to 6,000, making 
them the most densely populated area for ship berthing. The number of berths in clusters 3, 7, and 
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11 ranges from 2,000 to 4,000, making them densely populated areas. The number of berthing 
points for clusters 2 and 8 ranges from 1,000 to 2,000, while the number of berthing points for 
clusters 6, 12, and 13 is around 1,000. The number of berthing points in other clusters ranges 
from 200 to 500, which is a low-density area for ships to berth.

2. 	 From the spatial distribution of berthing points, it can be seen that the number of berthing points 
is unevenly distributed in the South China Sea waters. Clusters 1, 4, and 5 are densely populated 

Figure 16. Extraction process of mooring points in the South China Sea waters

Figure 17. Number of hierarchical clustering berthing points of different categories
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clusters of mooring points, mainly distributed around the main and secondary waterways. Clusters 
3 and 11 are dense clusters of berthing points, mainly distributed around major ports. Clusters 2 
and 7 are mainly distributed in the surrounding waters of medium-sized ports. The cluster with 
a relatively small number of berthing points is mainly distributed around small ports and islands.

Research has found that low-density clusters of berthing points are mainly distributed in small 
ports and waters near non main sea/inlet areas. High density clusters of berthing points are mainly 
distributed around large ports and major sea entrances/exits. The cluster with a large number of 
berthing points is mainly distributed in medium-sized ports, with secondary water areas near sea 
entrances/exits. The research shows that the major/minor inlets/outlets and medium and large ports 
are the key areas in the South China Sea waters.

Port Spatial Information Mining Based on Ship Trajectory
As an important relay station for the resource flow of water and land transportation, ports have 
transitioned from chaotic competition to hierarchical layout. Based on port shipping network analysis, 
it has become a research focus at this stage. Therefore, this section analyzes the shipping network 
of ports in the South China Sea based on complex network analysis. Firstly, determine the ports 
corresponding to the starting and ending points of the route. Then, the port network is constructed 
according to the complex network analysis method, and its relevant network parameters are analyzed. 
Finally, the port hierarchy is divided based on clustering analysis method.

The construction of port shipping network is based on each port as a node and the routes between 
two ports as edges. Ignoring the specific location, spatial scope, and edge shape of each port node, 
this section selects 22 ports in the South China Sea waters to build a port network for analysis. The 
degree of a port is the number of ports directly connected to that port. Port point strength refers to 
the number of all routes between the port and its directly connected ports. The port degree and point 
strength are direct manifestations of the port’s distribution capacity throughout the entire network. The 
larger the degree of the port, the more direct connections it has with other ports. The greater the point 
strength, the more routes it has to travel to and from other ports. Network centrality analysis starts 
from two aspects: centrality and centrality. In network centrality analysis, there are various aspects 
or measures used to assess the importance or centrality of nodes within a network. Two commonly 
used aspects are degree centrality and betweenness centrality. Centrality represents the importance 
of a node in the entire network. The central potential represents the tightness of the entire network. 
This article determines the belonging port by determining the starting/ending points of each route 
and constructs the degree and point strength of the port, as shown in Figure 18.

Clustering coefficient represents the aggregation of nodes in the network. The greater the 
clustering coefficient, the closer the connection between the nodes is, and the closer the connection 
between the ports is. The clustering coefficient of each port is shown in Figure 19. A higher clustering 
coefficient indicates stronger connections between nodes, including the ports themselves. Figure 19 
displays the clustering coefficient for each port, illustrating the extent of interconnectivity among 
the ports.

It can be seen from Figure 19 that the clustering coefficient of the port network in the South 
China Sea waters is 0.53, and the minimum value is 0.31, which is far higher than the theoretical 
value of the random network (0.15), indicating that the ports are closely connected.

Overall, the average path length of the port network in the South China Sea is 1.67, slightly 
lower than the theoretical average path length of a random network of the same size (approximately 
1.93). It indicates that the interconnection between any two ports in the South China Sea requires 
1-2 routes, indicating that the degree of mutual navigation between the two ports is relatively easy 
and the connectivity is strong.

Further hierarchical analysis is needed for each port to provide theoretical support for 
the development of port management systems by water related departments. In this paper, the 
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hierarchical clustering method is used to comprehensively distinguish the hierarchical structure of 
ports by considering the degree of direct and indirect connection between each port and other ports 
in combination with such indicators as port degree, point strength, and centrality. The hierarchical 
clustering results of ports are shown in Figure 20.

The study divides the ports in the South China Sea into five levels. The first level port degree, 
point strength, and centrality values are significantly higher than other levels of ports. This is attributed 
to the fact that these ports are the main ports of the Maritime Silk Road and important hubs of the 
national comprehensive transportation system. The first level port is an important distribution center 
and an important port open to the outside world in South China. The centrality values of the second 
level ports are similar to those of the first level ports, but the port strength is lower than that of the 
third level ports. This indicates that these ports have established connections with numerous ports, 
but the connections are not close enough, shipping and transportation are not yet developed, and port 

Figure 18. Scatter plot of port degree and point strength

Figure 19. Distribution of port clustering coefficient
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investment and construction still need to be strengthened. The third level ports are mostly located 
around the main or secondary sea ports, with higher port strength and slightly lower centrality values 
than the fourth level ports. This indicates that the transit and distribution capabilities of these ports 
are not strong, and there are fewer ports directly connected to them, but the connections are relatively 
close, which can easily lead to regional aggregation. The fourth level port is located on a secondary 
waterway, with a centrality similar to that of the third level port, and a port strength below 100. This 
indicates that the routes between these ports are relatively scattered and their direct contact with the 
ports is not close. The centrality and strength of various types of ports at the fifth level are relatively 
low, with poor transit and distribution capabilities.

CONCLUSION

Taking the South China Sea waters as the research object, based on the main data such as AIS data, 
port data, and basic geographic information data, this paper uses a variety of methods such as spatio-
temporal statistical analysis, linear density analysis cluster analysis, and complex network analysis to 
analyze the spatio-temporal characteristics of ship trajectories in the South China Sea waters, identify 
key areas, mine the characteristics of port information, and provide a reference for the maritime 
regulatory authorities to supervise ships. The main research conclusions are as follows.

The selection of sea routes is always based on the basic principle of “safety and economy,” and 
the results of satellite AIS data analysis show that the recommended routes for merchant ships in the 
South China Sea are consistent with those recommended by traditional navigation books. The satellite 
AIS data fully supports that the recommended routes in the South China Sea have been repeatedly 
chosen by the ships and the ships have stable speed and smooth navigation during the round trip.

AIS vessel traffic flow data in the South China Sea shows that the number of vessels passing 
through gate line 4 via the southern waters of the Taiwan Strait has increased significantly compared 
to other gate lines.

AIS ship traffic flow data mining shows that the average length, width and draft of ships near 
the Bashi Strait of route gate line 5 are the largest, and it can be judged that the ships sailing through 
here are mostly large transiting ships passing through the South China Sea into the Pacific waters.

The ship traffic flow in the South China Sea waters is relatively large, and the density of ships in 
non-coastal waters is mainly concentrated in the waters of the main channel belt. Through the route 
distribution mapping, it is found that the western route of Nansha Islands in the southern part of the 

Figure 20. Port hierarchical clustering results
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South China Sea waters is concentrated, and the northern waters of the South China Sea (Xisha, 
Zhongsha, and Dongsha waters) are distributed in multiple directions; the main width of the middle 
route belt reaches about 80 nautical miles, the track belt width of the western route is about 30 nautical 
miles, and the overall concentration varies from 30 to 80 nautical miles.

Based on the hierarchical clustering method, combining the degree, point strength, and centrality 
parameters of the port, the port is divided into five levels. There is a significant difference in the 
centrality of ports at different levels in the South China Sea waters, and the level of port development 
is uneven.
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