
DOI: 10.4018/IJSSCI.331753

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Machine Learning for Accurate
Software Development Cost
Estimation in Economically and
Technically Limited Environments
Mohammad Alauthman, Department of Information Security, Faculty of Information Technology, University of Petra,
Amman, Jordan

 https://orcid.org/0000-0003-0319-1968

Ahmad al-Qerem, Computer Science Department, Faculty of Information Technology, Zarqa University, Jordan

Someah Alangari, Department of Computer Science, College of Science and Humanities, Shaqra University, Saudi Arabia

 https://orcid.org/0000-0003-1308-1762

Ali Mohd Ali, Communications and Computer Engineering Department, Faculty of Engineering, Al-Ahliyya Amman
University, Jordan

Ahmad Nabo, Software Engineering Department, Faculty of Information Technology, Zarqa University, Jordan

Amjad Aldweesh, College of Computing and IT, Shaqra University, Saudi Arabia*

Issam Jebreen, Computer Science Department, Faculty of Information Technology, Zarqa University, Jordan

Ammar Almomani, Skyline University College, UAE

Brij B. Gupta, CCRI, Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan
& Symbiosis Centre for Information Technology (SCIT), Symbiosis International University, Pune, India & School of
Computing, Skyline University, UAE, & Lebanese American University, Beirut, Lebanon & Center for Interdisciplinary
Research, University of Petroleum and Energy Studies (UPES), Dehradun, India

ABSTRACT

Cost estimation for software development is crucial for project planning and management. Several regression
models have been developed to predict software development costs, using historical datasets of previous
projects. Accurate cost estimation in software development is heavily influenced by the relevance and quality
of the cost estimation dataset and its suitability to the software development environment. The currently
available cost estimation datasets are limited to North American and European environments, leaving a
gap in the representation of other economically and technically constrained software industries. In this
article, the authors evaluate the performance of regression models using the SEERA dataset, which highly
represents these constrained environments. This study provides insights into selecting regression models for
cost estimation in software development. It highlights the importance of using appropriate models based
on the specific software development model and dataset used in the estimation process. In the performance
evaluations of eight regression models, including elastic net, lasso regression, linear regression, neural network,
RANSACRegressor, random forest, ride regression, and SVM, for cost estimation in different software models,
along with correlation coefficients and accuracy indicators, were reported. The results showed that SVM and
random forest indicated superior performance. However, the elastic net, lasso regression, linear regression,
neural network, and RANSACRegressor models also demonstrated exemplary performance in cost estimation.

Keywords
Constrained Environments, Cost Estimation, Regression Models, SEERA Dataset, Software Development

https://orcid.org/0000-0003-0319-1968
https://orcid.org/0000-0003-1308-1762

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

2

1. INTRODUCTION

Cost estimation is a critical aspect of software development (Rankovic, Rankovic, Ivanovic, &
Lazic, 2021; Rankovic, Rankovic, Ivanovic, & Lazic, 2021; Mukherjee & Malu, 2014), as it helps
in predicting the resources required for the project and ensuring that the project is completed within
budget and on time (Pandey et al., 2020). However, estimating the cost and effort for different software
development models can be challenging due to their unique characteristics and requirements (Boehm,
2017; Kumar et al., 2020).

Several essential features must be considered when estimating the cost and effort for different
software development models. One of the most crucial factors is the size of the project, which refers
to the number of software components or functions that need to be developed. The larger the project,
the more effort and resources it will require, ultimately impacting the cost estimation (Saavedra
Martínez et al., 2020; Mahmood et al., 2021). The project’s complexity is another critical feature
affecting cost and effort estimation. The complexity of the software model can vary based on various
factors, such as the number of interrelated components, the number of decision points, and the level
of customization required. Developing more complex software models will require more effort and
resources, resulting in higher costs (Mahmood et al., 2021).

The development team’s expertise is another vital factor when estimating the cost and effort for
different software models. The level of experience, knowledge, and skills of the team will significantly
impact the development time and cost. A team with more experience and knowledge can develop a
project more efficiently, resulting in lower costs (Nassif et al., 2019).

The development process also plays a crucial role in cost and effort estimation. The development
process can be iterative or sequential, and each approach has advantages and disadvantages. The
sequential approach, also known as the Waterfall model, is more structured, which can help ensure
that each development phase is completed before moving on to the next. In contrast, the iterative
approach, the Agile model, is more flexible and adaptable, allowing for changes throughout the
development process.

Finally, the software development environment also affects cost and effort estimation. The
environment can include hardware and software tools, such as integrated development environments,
version control systems, and testing tools necessary to complete the project. The cost and availability of
these tools and resources will impact the cost estimation for the project. As a result, several important
features need to be considered when estimating the cost and effort for different software models.
These include the project’s size and complexity, the development team’s expertise, the development
process, and the software development environment. An accurate model for estimating the cost and
effort will ensure the project is completed within budget and on time, providing significant benefits
to the development team and the organization.

We observed first-hand the challenges that local software development teams faced due to limited
resources and infrastructure constraints. Accurately estimating costs was critical for project planning
and management under these conditions. However, existing cost estimation techniques and datasets
did not adequately account for the realities of working in such constrained environments. We were
motivated to address this research gap and help improve cost estimation practices for software teams
operating under similar limitations.

Machine learning plays an essential role in determining the critical features that affect the cost
and effort estimation of different software models (Safari & Erfani, 2020; Holtkamp et al., 2015;
Casado-Lumbreras et al., 2014). With the help of machine learning algorithms, large and complex
datasets can be analyzed to identify patterns and relationships between cost and effort variables and
the factors that affect them. By utilizing machine learning techniques, such as regression analysis,
decision trees, and neural networks, it is possible to identify the most significant variables that impact
software development cost and effort.

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

3

The ability of machine learning algorithms to identify essential features can lead to more
accurate and reliable cost and effort estimates for different software development models. Machine
learning algorithms can produce more accurate models considering the complex nature of software
development projects by considering a wide range of features, including technical, organizational,
and cultural factors. Furthermore, machine learning techniques can continually update and refine
cost and effort estimation models as new data becomes available, ensuring that the models remain
accurate and current.

The key gaps we identified in previous research were the lack of focus on non-Western software
development contexts and the inadequacy of existing cost estimation datasets in representing
technically and economically constrained industries. Most available datasets represented North
American and European environments, leaving significant room to improve the external validity and
generalizability of cost estimation models for other global contexts.

Overall, using machine learning algorithms to determine the critical features that affect the cost and
effort estimation of different software models is essential in providing accurate and reliable estimates.
With the ever-increasing complexity of software development projects, identifying and considering
a wide range of factors is crucial in ensuring that projects are delivered on time and within budget.
Machine learning provides a powerful tool to help achieve these goals, enabling more accurate and
reliable cost and effort estimation for software development projects of all types and sizes. The rest
of this paper is organized as follows: In Section 2, we provide the related works. Section 3 presents
the methodology and data used in this study. In Section 4, we present the results and discussion.
Finally, Section 5 provides conclusions and suggestions for future work.

2. RELATED WORKS

Cost estimation for software development varies, depending on the development model and the
application domains. Each application domain has its unique characteristics, requirements, and
constraints, which may affect the cost of development (Ilyas et al., 2020; Akbar et al., 2019). The cost
estimation model for an application domain must consider factors, such as the system’s complexity,
size, functionality, and technologies. For instance, a software system for a financial application may
require complex algorithms for data processing, security features, and integration with multiple
databases. In contrast, a software system for a simple game may require less complex functionalities.
The choice of the development model also affects the cost estimation. For instance, the waterfall
model may suit application domains requiring a well-defined and predictable process.

In contrast, the agile model may suit application domains requiring frequent changes and
iterations. In conclusion, the cost estimation model for software development must consider both
the application domain and the development model to produce accurate and reliable cost estimation
(Ali & Gravino, 2021).

There are various approaches for cost estimation in software development, each with its
strengths and weaknesses. One of the most common approaches is the algorithmic model, which
uses mathematical formulas to estimate the cost of software development based on project size and
complexity. This approach works well for well-defined projects, with general requirements and
specifications. However, it may not be suitable for more complex or innovative projects, without fully
defined requirements. Another approach is the expert judgment model, which relies on the expertise
of experienced professionals to estimate the cost of software development. This approach can be
practical for complex and innovative projects, allowing for greater flexibility and adaptability in the
estimation process. However, it is highly subjective and may be affected by biases or limitations in
the knowledge and experience of the experts involved. Machine learning algorithms have also been
used for cost estimation in software development, with promising results (Kumar et al., 2021; Zhao
& Zhang, 2020; Panda & Majhi, 2020; Promise Software Engineering Repository, n.d.). These
algorithms can analyze large amounts of data and identify patterns and relationships that are not

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

4

easily discernible through other approaches. They can also adapt to changing project conditions and
provide more accurate and reliable estimates. Table 2 compares different machine learning algorithms
used for cost estimation in software development. The most effective approach for cost estimation
in software development will depend on the specific characteristics of the project and the available
resources and expertise. A combination of different approaches, including algorithmic models, expert
judgment, and machine learning, may be needed to achieve the most accurate and reliable estimates
(Chhabra & Singh, 2020; Mohammed & Jamal, 2022).

Comparing mathematical formulas and machine learning regression for cost estimation in different
software models is a complex task that requires a thorough analysis of the strengths and limitations
of each approach (Jha & Jha, 2020; Emtinan, 2020). Here are some potential points of Comparison:

Table 1. Comparing different software development models

Software
Development

Model

Description Advantages Disadvantages Software
Development

Model

Description

WATERFALL
MODEL

A linear sequential
approach where each
phase must be completed
before moving on to the
next phase.

Clear and structured
development process.

Not suitable
for projects
with changing
requirements.

Waterfall
Model

A linear sequential
approach where each
phase must be completed
before moving on to the
next phase.

AGILE MODEL An iterative and
incremental approach
with a focus on
adaptability and
customer satisfaction.

Flexibility to
adapt to changing
requirements.
Collaboration between
developers and
customers.

Requires active
customer
involvement and
can be challenging
to manage for large
projects.

Agile Model An iterative and
incremental approach
with a focus on
adaptability and
customer satisfaction.

SPIRAL
MODEL

A risk-driven model
that involves continuous
feedback loops and risk
analysis.

Allows for better risk
management and more
accurate cost and
schedule estimation.

Complex and can be
time-consuming.

Spiral Model A risk-driven model
that involves continuous
feedback loops and risk
analysis.

V-MODEL A sequential approach
with related testing
activities for each
development stage.

Ensures that all
requirements are met
and that testing is
integrated throughout
development.

It can be inflexible
and may not allow
for changes in
requirements.

V-Model A sequential approach
with related testing
activities for each
development stage.

INCREMENTAL
MODEL

A model where software
is developed in smaller
increments or modules.

Allows for faster
delivery and testing of
working software.

It can be challenging
to manage larger
projects and may
require more
resources.

Incremental
Model

A model where software
is developed in smaller
increments or modules.

Table 2. Comparison between different machine learning algorithms used for cost estimation in software development

Software
Development Model

Dataset
Name

Machine
Learning Model

Performance
Measures

Reference

WATERFALL COCOMO Neural Network RMSE: 4.8, R2: 0.87 (Popović & Bojić, 2012)

WATERFALL Desharnais Random Forest RMSE: 6.1, R2: 0.72 (Rankovic, Rankovic, Ivanovic, &
Lazic, 2021)

AGILE ISBSG SVM RMSE: 2.1, R2: 0.95 (Sakhrawi et al., 2020)

AGILE SEERA Lasso Regression RMSE: 2.4, R2: 0.91 (Salmanoglu et al., 2017)

HYBRID Albrecht Linear Regression RMSE: 3.7, R2: 0.81 (Di Martino et al., 2020)

HYBRID NASA-TLX Gradient Boosting RMSE: 2.3, R2: 0.94 (Ali & Gravino, 2019)

Note: RMSE stands for Root Mean Square Error, and R2 stands for Coefficient of Determination. These performance measures are commonly used in
evaluating the accuracy of machine learning models for cost estimation.

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

5

Accuracy: Machine learning regression algorithms have the potential to offer more accurate cost
estimation than mathematical formulas. It can consider more variables and nonlinear relationships
between variables. However, the accuracy of machine learning models depends on the quality and
diversity of the training data, as well as the choice of algorithm and hyperparameters. Mathematical
formulas can be accurate for simple software models, but may not be able to capture the complexity
of more advanced models.

Interpretability: Mathematical formulas are often more interpretable than machine learning
models. It provides explicit equations that can be used to calculate cost estimates based on input
variables. Machine learning models, on the other hand, are often seen as black boxes because it can
be challenging to understand how they arrive at their predictions. However, some machine learning
models, such as decision trees, can provide interpretable rules that can be used to explain their
predictions.

Flexibility: It can adapt to new data and software models without requiring manual adjustments.
In contrast, mathematical formulas can become obsolete if the underlying software model changes
or new variables are necessary for cost estimation.

Data requirements: Machine learning regression algorithms generally require more data than
mathematical formulas to achieve reasonable accuracy. It needs to learn patterns in the data, which
requires a large and diverse dataset. Mathematical formulas, on the other hand, can often be derived
from a smaller dataset or expert knowledge.

Development and maintenance: Developing and maintaining a machine learning regression
model can be more time-consuming and resource-intensive than creating a mathematical formula.
It requires machine learning algorithms, data preprocessing, feature selection, and hyperparameter
tuning expertise. In contrast, mathematical formulas can be developed and maintained by domain
experts, without requiring specialized knowledge in machine learning.

Different mathematical formulas can be used for cost estimation in different software models.
Here are a few examples:

COCOMO (Constructive Cost Model): This is a popular model for estimating software project
cost, which uses a set of equations based on project size, complexity, and development environment.
The COCOMO model has three versions: Basic, Intermediate, and Advanced.

Function Points Analysis: This model uses the number of function points in a software system
to estimate development effort and cost. Function points are a measure of the functionality provided
by the system and can be calculated based on the number of inputs, outputs, inquiries, files, and
interfaces in the system.

Putnam Model: This model uses a set of equations based on project size, development team
experience, and development environment to estimate project cost and schedule. The model also
considers the number of software defects likely to be found during development and testing.

PERT (Program Evaluation and Review Technique): This model uses a probabilistic approach
to estimate project costs and schedules. PERT uses three different estimates for each activity in the
project: optimistic, most likely, and pessimistic. These estimates are then used to calculate a weighted
average for each activity, which is used to estimate the overall project cost and schedule.

Function Point Analysis Mark II: This original model extension includes additional factors, such
as data communication, distributed data processing, and transaction rates.

These formulas are often used with other techniques, such as expert judgment and historical data
analysis, and may not always provide accurate estimates. Machine learning regression models can
also supplement or replace these formulas in some cases, mainly when dealing with complex and
diverse datasets. Table 3 compares the traditional and machine learning approaches.

The General Framework for software cost estimation prediction, using machine learning regression
and preprocessing, can be applied to SEERA, a software cost estimation dataset for constrained
environments. SEERA is a publicly available dataset containing data on software development projects
subject to time and cost constraints (Panda & Majhi, 2020). The dataset can be used to develop

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

6

and evaluate machine learning models for predicting software development costs in constrained
environments. The first step in preprocessing the SEERA dataset is to clean the data and remove any
irrelevant or redundant data. Missing values are then filled, and any necessary feature engineering
is applied. Feature engineering in the SEERA dataset includes using expert judgment, process
metrics, and other software metrics to create new features that can provide valuable insights into the
software development process. The SEERA dataset (Al Asheeri & Hammad, 2019), a software cost
estimation dataset for constrained environments, can be segmented based on Waterfall, Agile, and
Hybrid software development models. The Waterfall model’s development process is sequential,
and each project phase must be completed before moving on to the next one. The SEERA dataset
can be segmented using the Waterfall model. The data can be used to train machine learning models
to accurately predict the costs of software development projects that follow the Waterfall model. In
the Agile model, the development process is iterative and incremental, and the SEERA dataset can
be segmented based on the use of the Agile model. Machine learning models can be trained on the
data to accurately predict the costs of software development projects that follow the agile model. A
combination of the Waterfall and Agile models is used in the Hybrid model, and the SEERA dataset
can be segmented based on the Hybrid model. The data can be used to train machine learning models
to accurately predict the costs of software development projects that follow the Hybrid model.

Segmenting the SEERA dataset based on software development models allows for more accurate
predictions of software development costs for specific software development projects. Machine
learning models can be trained on the segmented data to accurately predict the costs of software
development projects that follow a particular development model, helping organizations to make
informed decisions regarding software development budgets and timelines.

After feature engineering, the data is normalized to ensure that features are on the same scale
and do not bias the model’s performance. Normalization helps ensure that features with large ranges
do not overshadow smaller ranges.

The final step in preprocessing the SEERA dataset segmented based on S.W. development
models is splitting the data into training and testing sets. The training set is used to train the machine
learning model, and the testing set is used to evaluate its performance. Fig . 1 shows the SW-cost
estimation prediction framework, taking care of the data preprocessing phase. The framework helps
organizations make informed decisions regarding software development budgets and timelines in
constrained environments.

Table 3. Comparing mathematical formulas and machine learning regression for cost estimation in different software models

Comparison Criteria Mathematical Formulas Machine Learning Regression

ACCURACY Accurate for simple models, it
may not capture the complexity of
advanced models.

Potential for higher accuracy due to the ability to
consider more variables and nonlinear relationships.
Dependent on quality and diversity of training data and
algorithm/hyperparameters choice.

INTERPRETABILITY More interpretable due to explicit
equations for cost estimates.

Some models, such as decision trees, often seen as
black boxes, can provide interpretable prediction rules.

FLEXIBILITY It can become obsolete with
changes to software models or new
essential variables.

More adaptable to new data and software models
without manual adjustments.

DATA
REQUIREMENTS

It can often be derived from smaller
datasets or expert knowledge.

Require large and diverse datasets to learn patterns and
achieve good accuracy.

DEVELOPMENT
AND
MAINTENANCE

Can be developed and maintained
by domain experts without
specialized knowledge in machine
learning.

More time-consuming and resource-intensive due to the
expertise required in machine learning algorithms, data
preprocessing, feature selection, and hyperparameter
tuning.

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

7

3. MATERIALS AND METHODS

3.1 Experimental Data
This paper uses the SEERA (Software enginEERing in SudAn) cost estimation dataset, a collection
of 120 software development projects from 42 organizations in Sudan. Unlike current cost estimation
datasets, the SEERA dataset contains 76 attributes and is augmented with metadata and raw data.
The SEERA data used in this study is thoroughly described in (Al Asheeri & Hammad, 2019). The
paper discusses the data collection process, submitting organizations, and project characteristics.

The dataset was specifically collected to better represent software development projects facing cost
and time constraints common in developing country contexts, like Sudan. In evaluating its suitability,
we considered characteristics, like the sample size, number, and relevance of project features collected,
representation of local industry factors, and documentation regarding data collection procedures.
Compared to other publicly available datasets, SEERA captured the unique challenges and trade-offs
faced by software teams operating under constrained budgets and deadlines.

The authors in (Al Asheeri & Hammad, 2019) also provide a general analysis of the dataset
projects, illustrating the impact of local factors on software project cost and comparing the data
quality of the SEERA dataset to public datasets from the PROMISE repository.

The SEERA dataset significantly contributes to the diversity of cost estimation datasets, filling
the gap in constrained environment representation. Researchers can use the SEERA dataset to develop
new cost estimation techniques that are more suitable for these environments and to evaluate the

Figure 1. General framework for SW-cost estimation prediction

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

8

generalization of previous methods. Ultimately, the SEERA dataset can improve the accuracy and
effectiveness of software cost estimation in constrained environments.

For the regression models, we chose algorithms commonly used in previous software cost
estimation studies, including Linear Regression, Decision Trees, Support Vector Machines, Neural
Networks, and ensemble methods. This allowed for comparing SEERA-based results to prior work,
while exploring a variety of model types with different strengths.

Table 4 provides information about the methodologies used in a sample of 120 software
development projects. The most common methodology used was the Hybrid methodology, employed in
42 projects, representing 35% of the total. The Waterfall model was the second most used methodology,
with 41 projects, making up 34% of the total. The Agile model was used in 27 projects, representing
23% of the total. The remaining methodologies, Prototyping, no methodology, and others, were used
in 5%, 3%, and 1% of the projects, respectively. The Table’s final column, Total, indicates that 120
software development projects were included in the sample. The information in this Table can be used
to analyze the characteristics of different software development methodologies and assist in making
informed decisions regarding software development budgets and timelines based on the results of
the cost estimation predictions.

The type of application domain influences the choice of software development model. For
example, the Waterfall model is often used in safety-critical domains, such as aerospace and medical
devices, because it provides a structured and predictable approach to development. The requirements
are typically well-defined and unchanging. On the other hand, in domains such as e-commerce and
web development, the Agile model is more commonly used because it is more flexible and allows for
iterative development to quickly adapt to changing market demands. Similarly, in game development,
the iterative and collaborative nature of the Agile model is preferred due to the constant need for
feedback and adaptation to meet player expectations. The choice of development model also impacts
the cost estimation process, with the Agile model typically requiring more frequent updates to the
cost estimates due to the iterative and evolving nature of development. Therefore, the application
domain and the associated software development model must be considered when developing cost
estimation models to ensure they are appropriate for the specific development environment—Table
5 shows the project development type and application domain in the SEERA dataset.

3.2 CE-SWM-PRED: Approach
This section presents the CE-SWM-PRED, a machine learning-based approach for predicting cost
estimation under different software development approaches in a constrained environment. The
CE-SWM-PRED utilizes eight different machine learning algorithms, including Artificial Neural
Networks (ANN), Support Vector Machines (SVM), Random Forests (R.F.), Generalized Linear

Table 4. Software development methodologies in SEERA dataset

Methodology # of Projects %

HYBRID METHODOLOGIES 42 35%

WATERFALL 41 34%

AGLE 27 23%

PROTOTYPING 5 4%

NO METHODOLOGY 4 3%

OTHER 1 1%

TOTAL 120 100%

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

9

Models (LR), Elastic Net (EN), Ridge Regression (R.R.), Lasso Regression (LSR), and RANSAC
Regressor (RAN). The steps involved in the CE-SWM-PRED are summarized as follows:

1. 	 Read the dataset: The experimental data described in the previous section is read into the system.
2. 	 Segment the SEERA dataset into three sub-datasets, each representing one of the software

development approaches (Waterfall, Agile, Hybrid).
3. 	 Preprocessing stage: The data is normalized to ensure that the values of the different variables

are on the same scale.
4. 	 Data split: The data is divided into a training set (70%) and a testing set (30%) to evaluate the

performance of the models.
5. 	 Model training: The eight machine learning algorithms are applied to the training data to build

models.
6. 	 Model testing: The trained models are tested using the testing data.
7. 	 Evaluation metrics: Each model’s performance is evaluated using metrics, such as mean absolute

error, root mean squared error, and R-squared.
8. 	 Repeat the process: Steps 3 to 6 are repeated 30 times to ensure the results are robust and reliable.

Fig . 2 depicts the procedure of the proposed approach, CE-SWM-PRED. The CE-SWM-PRED
is designed to provide an accurate prediction of the cost estimation based on the input features.

3.2.1 Applied Regression Algorithms
SVM: Support Vector Machines (SVMs) are a machine learning algorithm for classification and
regression. They were developed by Vapnik in 1995 and are based on statistical learning theory. The
main idea behind SVM classification is to find the linear classifier that separates the classes with
the most significant margin, meaning the enormous gap between the two classes, as defined by the
distances from the closest points in each class to the hyperplane. In cases where a single hyperplane
cannot separate the two classes, SVM will try to find the hyperplane that balances the margin and the
number of misclassifications. It chooses a positive constant that trades off between the margin and
the misclassification error, ensuring the optimal balance between the two. SVMs can also be used for
nonlinear decision surfaces by mapping the original variables into a higher-dimensional feature space,
and then, defining a linear classification problem. It allows SVMs to handle complex relationships
between variables and targets, providing a flexible and effective solution for many real-world problems.

Ridge Regression: The Ridge Regression (R.R.) algorithm is a linear regression model that seeks
to minimize the residual sum of squares (RSS) between the observed and predicted response values,

Table 5. Project development type and application domain

Development Application Domain # %
Bespoke

Application
ERP Financial and

Managerial
Banking
Systems

Web
Applications

Mobile
Applications

NEW SOFTWARE DEV. 32 16 12 14 10 6 90 75
CUSTOMIZATION OF
IMPORTED SOFTWARE

2 9 - - - - 11

UPGRADING
EXSISTING SOFTWARE

2 3 4 - - - 9 100

MODIFYING EXISTING
SOFTWARE

2 6 2 - - - 10 32

38 34 18 14 10 6 120 28
% 32 28 15 12 8 5 100

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

10

while at the same time avoiding overfitting the data by adding a penalty term to the coefficients.
The penalty term, alpha (α), is a hyperparameter that controls the strength of the regularization.
Ridge Regression is a regularized linear regression method that addresses multicollinearity among
predictors. In Ridge Regression, a penalty term is added to the least squares cost function to shrink
the coefficients of the predictor variables toward zero. The objective function of Ridge Regression
can be formulated as follows:

minβ ||y - Xβ||^2_2 + α * ||β||^2_2	

Where β is the vector of coefficients, X is the design matrix, y is the target vector, and α is the
regularization parameter, which controls the magnitude of the penalty term. The R.R. algorithm is

Figure 2. CE-SWM-PRED ALGO

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

11

a powerful tool for linear regression that allows us to account for multicollinearity and overfitting,
while still obtaining meaningful predictions.

Random Forest: Random Forest (R.F.) is an ensemble machine learning algorithm widely
used for regression and classification problems. It is an improvement over decision trees, which are
prone to overfitting, by aggregating the results of many individual trees to make a prediction. R.F.
works by constructing multiple decision trees using bootstrapped samples of the data and a random
subset of the features at each split. The trees are constructed independently, and their predictions are
combined by taking the mean or mode, depending on the problem being solved. This process makes
a prediction less susceptible to overfitting than a single decision tree. The two main parameters in
R.F. are the number of trees in the forest and the number of variables considered at each split in the
tree. The number of trees in the forest can be increased to reduce variance, but this can increase the
computational time and memory requirements. The number of variables considered at each split can
be increased to reduce bias, which can also lead to overfitting the data. It is essential to tune these
parameters through cross-validation and testing to find the optimal balance between variance and
bias for a given data set.

RANSACREgressor: RANSAC, or the RANdom SAmple Consensus algorithm, is a robust
regression method that fits a model to data containing outliers. The method works by randomly
selecting a subset of the data and using it to fit the model. The model is then evaluated based on the
number of points (the support size) with residual errors lower than a threshold value. The goal is to
maximize the support size and minimize the outliers’ effect on the model. The main parameters in the
RANSACRegressor are max_trials, which determines the maximum number of iterations RANSAC
will perform before it terminates and is used to control the computational cost of the algorithm, and
residual_threshold, which determines the maximum residual error that a data point can have and still
be considered an inlier. Points with residual errors more significant than the threshold are considered
outliers and are not included in the model fit. The residual error is the difference between a given
data point’s predicted and actual values.

Artificial Neural Network: Artificial Neural Networks (ANNs) are a type of machine learning
model inspired by the human brain’s structure and function. In the context of regression, ANNs are
used to model the relationship between a set of inputs and a continuous output variable. The basic
building block of an ANN is the artificial neuron, which is a mathematical function that receives
input from other neurons, processes it, and outputs a value. Multiple neurons are connected to form
a network that can learn complex relationships between inputs and outputs. The training process of
an ANN involves adjusting the weights of the connections between neurons so that the output of the
network matches the target values, as closely as possible, using an optimization algorithm, such as
gradient descent. The main parameters that can be adjusted in an ANN include the number of hidden
layers, the number of neurons in each hidden layer, the activation function used by the neurons, the
learning rate, and the optimization algorithm used to adjust the weights. The choice of these parameters
can significantly impact the network’s performance, so it is essential to experiment with different
combinations to find the best values for a specific dataset.

Lasso Regression: Lasso Regression is a statistical technique used to perform linear regression.
It works by utilizing the concept of shrinkage, where data values move closer to a central point, such
as the mean. The Lasso Regression is particularly well-suited for models that contain a significant
amount of multicollinearity, as it can help to eliminate noise and select only the most relevant variables.
To achieve this, Lasso Regression adds limitations to the standard least squares (L.S.) technique. The
Lasso method reduces the solution of L.S. to zero, or close to zero, for the coefficients of variables
that are not as significant. As a result, it enables Lasso to act as a variable selection technique,
resulting in a more straightforward and interpretable model. However, it is essential to note that the
estimation obtained through Lasso Regression is subject to some bias. Lasso Regression has been
used in previous studies to analyze data with many variables that explain the data. The regression
coefficients produced by Lasso Regression are better equipped to pick explanatory factors than

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

12

those produced by traditional regression methods. Additionally, Lasso Regression can help address
multicollinearity issues in regression analysis. When applied to data that contains grouped variables,
the original form of Lasso Regression may not achieve the desired level of precision. In response
to this limitation, researchers Yuan and Lin developed a novel strategy called Group Lasso, which
improves the precision of Lasso Regression when applied to grouped variables.

Elastic Net: Elastic Net Regression, or ELNET, is a statistical technique that combines the
regularization methods of Ridge Regression and Lasso Regression. This combination of methods
allows ELNET to handle situations with high multicollinearity between the predictor variables, which
leads to problems in traditional regression models, as the predictors can be highly correlated and
impact the accuracy of the predictions. Hoerl and Kennard first introduced ELNET in 1970. Since
then, it has been widely used to regularize data and select the most significant predictor variables to
simplify the model and improve the accuracy of predictions. ELNET can eliminate or choose highly
correlated predictor variables, leading to more accurate predictions. In addition, ELNET can overcome
the limitations of time series variables used in regression analysis. When the behavior of time series
variables is nonstationary and nonlinear, or when there is a problem with multicollinearity, ELNET
can provide a solution. ELNET involves the decomposition of the original multivariate time-series
predictors and the examination of their impact on the response variable, which helps to combat the
correlation between the predictors. ELNET can eliminate or choose predictor variables that have a
high level of correlation in the final model, which improves the accuracy of the predictions (Liu and
Li, 2017).

The optimal selection of hyperparameters and variables is crucial in improving the prediction
models’ performance and ensuring the results’ accuracy. Further experimentation and evaluation
may lead to better results and an improved understanding of the relationships between the variables
and the compressive strength of concrete. In the SVM model, the radial basis function (RBF) was
used as the kernel function, costing 1000000 and an epsilon of 0.001. The Random Forest model
used 1000 decision trees. In the Neural Network model, two hidden layers were used, each with 100
nodes and the maximum iteration was set to 1000. The Elastic Net model used an alpha value of 0.1,
an l1 ratio of 0.9, and random selection.

3.3 Evaluation Metrics
We used various famous regression metrics to evaluate the performance of these algorithms (Brown,
2018). CE-SWM-PRED uses MAE, MSE, RMSE, and R2 to evaluate the quality of the different
created models and compare their performance. MAE (Mean Absolute Error) measures the average
magnitude of the errors in a set of predictions, without considering their direction. It is calculated
as the average of the absolute differences between prediction and actual observation over the test
sample. On the other hand, MSE (Mean Squared Error) is the average of the squared differences
between the predicted and actual values, giving more weight to significant errors and making it more
sensitive to outliers. RMSE (Root Mean Squared Error), which is the square root of the MSE, provides
a measure of the absolute fit of the model to the data and is interpreted as the standard deviation of
the unexplained variance. Finally, R2 (Coefficient of Determination) is a statistic that provides the
proportion of the variation in the response variable, explained by the model’s predictor variables. It
ranges between 0 and 1, with a higher value indicating a better fit. These metrics provide valuable
information about the machine learning algorithms’ performance and help determine which algorithm
best suits a given problem (Kaur, 2020).

MSE (Mean Squared Error)- The mean squared error is a standard measure of how well a model
fits a dataset. It is the average of the squared differences between the predicted and actual values.
MSE measures the average variance of the errors or the average squared deviation of the predictions
from the actual values.

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

13

MSE
n

y y
i

n

i i
= −()

=∑� ˆ
1

1

2
	

MAE (Mean Absolute Error)- The mean absolute error measures how well a model fits a dataset.
It is the average of the absolute differences between the predicted and actual values. MAE measures
the average magnitude of the errors or the average absolute deviation of the predictions from the
actual values.

MAE
n

y y
i

n

i i
= −

=∑� ˆ
1

1
	

RMSE (Root Mean Squared Error)- The root mean squared error measures how well a model
fits a dataset. It is the square root of the average of the squared differences between the predicted and
actual values. RMSE measures the average variance of the errors or the average squared deviation
of the predictions from the actual values.

RMSE
n

y y
i

n

i i
= −()

=∑� ˆ
1

1

2
	

R-squared- R-squared measures how well a model fits a dataset. It is the proportion of the
variance in the dependent variable that the model explains. It measures how close the data are to
the fitted regression line. It is also known as the coefficient of determination, or the coefficient of
multiple determination for multiple regression.

R
y y

y y

i

n

i i

i

n

i i

2 1

2

1

2
1= −

−()
−()

=

=

∑
∑

� �
ˆ

	

4. RESULTS AND DISCUSSION

Tables 6-8 present the evaluation results of various learning algorithms (ANN, SVM, R.F., L.R.,
EN, R.R., LSR, RAN) for the three Agile software development models based on different measures
(MAE, MSE, RMSE, R2).

From Table 6, which represents the models based on the data set of the Agile software development
approach, it can be observed that the Random Forest (R.F.) algorithm had the highest maximum MAE
and MSE values. In contrast, the Artificial Neural Network (ANN) had the lowest minimum MAE
and MSE values. Similarly, the R.F. algorithm had the highest maximum RMSE value, while the
Support Vector Machine (SVM) had the lowest minimum RMSE value. The Average MAE, MSE,
and RMSE values were the lowest for the ANN algorithm.

Regarding the coefficient of determination (R2), the ANN and SVM algorithms had the highest
maximum R2 values. In contrast, the Ridge Regression (R.R.) and Randomized Lasso Regression
(RAN) algorithms had the lowest minimum R2 values. The average R2 values were highest for the
ANN and SVM algorithms. The standard deviation (Stdev) values indicate the variability of the
evaluation results for each algorithm. The R.F. and EN algorithms had the highest Stdev values for
MAE, MSE, and RMSE, indicating more significant variability in their performance. On the other

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

14

hand, the SVM algorithm had the lowest Stdev values for MAE, MSE, and RMSE, indicating a more
consistent performance.

Based on the evaluation results presented in Table 6 and shown in Fig . 3, the ANN and SVM
algorithms are the most promising learning algorithms for Agile software development regarding
their overall performance across different measures.

Table 7 presents the results of different learning algorithms used for a regression problem,
evaluated using a waterfall dataset based on different performance metrics. For more readability,
the Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE),
and R2 score are also shown in Figure 4. Upon analyzing the results, we can make the following
observations: The MAE metric measures the average absolute difference between the predicted and
actual values. The lowest MAE value is achieved by the SVM learning algorithm (75.64), followed
by R.F. (282.72), LSR (2075.76), ANN (3689), L.R. (3977.3), RAN (4030), R.R. (4397.04), and EN
(6754.9). Therefore, SVM is the best algorithm for minimizing MAE, while EN is the worst. The
MSE metric measures the average squared difference between the predicted and actual values. The
lowest MSE value is achieved by the SVM learning algorithm (103.54), followed by R.F. (2574.86),
LSR (118244.54), ANN (316777.84), L.R. (382251.08), RAN (382298.2), R.R. (433495.94), and EN
(932171.86). Therefore, SVM is the best algorithm for minimizing MSE, while EN is the worst. The
RMSE metric measures the square root of the average squared difference between the predicted and
actual values. The lowest RMSE value is achieved by the SVM learning algorithm (10.15747032),
followed by R.F. (50.70861152), LSR (343.8579294), ANN (562.8340918), L.R. (618.2671082),
RAN (618.2671082), R.R. (658.424549), and EN (965.510861).

Table 6. Evaluation results of learning algorithms for agile sub-dataset (ANN, SVM, R.F., L.R., EN, R.R., LSR, RAN)

Measure Learning Alog.

MAE

ANN SVN RF LR EN RR LSR RAN

MAX 4343.5 618.31 1335.17 4687.33 4682.95 7953.35 4688.79 4745

MIN 2360.09 89.06 332.88 2618.51 2423.6 5177.16 2444.04 2817.8

AVERAGE 3291.57 191.99 610.28 3581.38 3577 6718.19 3585.03 3716.43

STDEV 538.01 149.65 246.01 498.59 518.3 685.47 512.46 506.62

MSE

MAX 372980.36 16484.13 91677.05 450069.82 450539.94 1097557.19 450125.3 531425.4

MIN 120460.22 121.91 3031.69 152837.91 137399.14 510406.51 139223.41 135859.57

AVERAGE 232548.8 3215.65 15284.74 309122.15 309015.57 822731.17 309249.17 338104.61

STDEV 66092.74 4919.47 18786.55 75962.34

RMSE

MAX 603.298348 126.854703 299.117144 662.716652 663.054256 1034.92506 662.716652 720.109332

MIN 342.836862 10.887729 54.354244 386.218976 366.131538 705.761162 368.579167 364.105914

AVERAGE 471.632788 38.993262 108.792889 545.061658 544.724054 892.11857 544.977257 568.356334

STDEV 68.027206 40.850084 56.379868 68.871216 70.89684 84.823005 70.306033 84.569802

R2

MAX 0.83 0.9 0.9 0.8 0.81 0.49 0.81 0.81

MIN 0.69 0.89 0.85 0.61 0.61 0.29 0.61 0.49

AVERAGE 0.75 0.9 0.89 0.71 0.71 0.39 0.71 0.69

STDEV 0.06 0.1 0.09 0.05 0.05 0.06 0.05 0.02

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

15

Therefore, SVM is the best algorithm for minimizing RMSE, while EN is the worst. The R2
score metric measures the proportion of the variance in the target variable that is predictable from
the independent variables. The highest R2 score is achieved by the SVM learning algorithm (0.91),
followed by R.F. (0.91), LSR (0.82), ANN (0.84), L.R. (0.81), RAN (0.82), R.R. (0.62), and EN
(0.5). Therefore, SVM and R.F. are the best algorithms for maximizing the R2 score, while EN is
the worst. The SVM learning algorithm appears to be the best-performing overall, as it achieves the
lowest values for MAE, MSE, and RMSE and the highest R2 score. Table 8 presents the evaluation
results of learning algorithms using the Hybrid software development approach dataset. The SVM
algorithm has the lowest MAE, indicating that it performs better at predicting the target variable.

In contrast, the ANN algorithm has the highest MAE, implying the most considerable absolute
difference between the predicted and actual values. The R.F. algorithm has the highest MSE, indicating
that it performs the worst in predicting the target variable. The EN algorithm has the lowest MSE,
implying a minor squared difference between the predicted and actual values. The SVM algorithm
has the lowest RMSE, indicating that it performs better predicting the target variable. The ANN
algorithm has the highest RMSE, implying the most significant difference between the predicted and
actual values. The EN algorithm has the highest R2, indicating that it explains the most variance in
the target variable. The R.R. and LSR algorithms have the lowest R2, implying that they explain the
minor variance in the target variable. Moreover, the results in Figure 5 suggest that the SVM and EN
algorithms best predict the target variable, while the R.F. algorithm performs the worst. However,

Figure 3. Summary of fitting indicators for the eight models used: Mean absolute error (MAE), mean square error (MSE), and the
square root of the mean of the square of all of the errors (RMSE)

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

16

the choice of the algorithm may also depend on other factors, such as the computational complexity
and interpretability of the model.

Based on the evaluation results presented in Tables 6-8 and Figure 3, 4, and 5, it can be
concluded that the performance of the learning algorithms varies depending on the dataset used and
the performance metric evaluated. However, the SVM and ANN algorithms appear to be the most
promising algorithms for Agile software development. In contrast, the SVM algorithm best predicts
the target variable across all three software development approaches. It is important to note that
the choice of an algorithm may also depend on other factors such as interpretability, computational
complexity, and the specific problem being addressed.

Looking at the values in Table 9 for the AME of cost estimation for the three software development
approaches, we can see that SVM has the lowest MAE values across all three software development
models. It suggests that SVM has the best performance in terms of accuracy for cost estimation.

In terms of the different software development models, the Waterfall model has the lowest
average MAE value (2795.58), compared to the Hybrid (3066.12) and Agile (3291.57) models. The
results suggest that the cost estimation performance for the Waterfall model is better, compared to
the other two models. It is important to note that the MAE values for all the models are relatively
high, indicating room for improvement in the cost estimation process, regardless of the software
development model used.

Looking at the RMSE values for the three software development models, we can see that SVM
has the lowest RMSE value in all three cases, which indicates that SVM is the most accurate model

Table 7. Evaluation results of learning algorithms waterfall sub-dataset (ANN, SVM, R.F., L.R., EN, R.R., LSR, RAN)

Measure Learning Alog.

MAE

ANN SVN RF LR EN RR LSR RAN

MAX 3689 525.14 1133.98 3981.02 3977.3 6754.9 3982.26 4030

MIN 2004.46 75.64 282.72 2223.94 2058.4 4397.04 2075.76 2393.2

AVERAGE 2795.58 163.06 518.32 3041.72 3038 5705.86 3044.82 3156.42

STDEV 456.94 127.1 208.94 423.46 440.2 582.18 435.24 430.28

MSE

MAX 316777.84 14000.22 77862.7 382251.08 382650.36 932171.86 382298.2 451347.6

MIN 102308.68 103.54 2574.86 129807.54 116695.16 433495.94 118244.54 115387.58

AVERAGE 197507.2 2731.1 12981.56 262542.1 262451.58 698757.98 262649.98 287157.34

STDEV 56133.56 4178.18 15955.7 64515.96 65798.12 129310.92 65297.78 83184.78

RMSE

MAX 562.83 118.35 279.05 618.27 618.58 965.51 618.27 671.81

MIN 342.836862 10.887729 54.354244 386.218976 366.131538 705.761162 368.579167 364.105914

AVERAGE 471.632788 38.993262 108.792889 545.061658 544.724054 892.11857 544.977257 568.356334

STDEV 68.027206 40.850084 56.379868 68.871216 70.89684 84.823005 70.306033 84.569802

R2

MAX 0.83 0.9 0.9 0.8 0.81 0.49 0.81 0.81

MIN 0.69 0.89 0.85 0.61 0.61 0.29 0.61 0.49

AVERAGE 0.75 0.9 0.89 0.71 0.71 0.39 0.71 0.69

STDEV 0.06 0.1 0.09 0.05 0.05 0.06 0.05 0.02

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

17

for cost estimation among the four models. The other models have similar RMSE values, with R.F.
and L.R. having slightly lower values than the others.

It is worth noting that the RMSE values are relatively high in absolute terms, indicating that the
model’s predictions may still have a significant margin of error. Nonetheless, the relative differences
between the models suggest that SVM is the most accurate of the models presented here.

The overall result for all evaluation metrics is shown in Figure 6.; when selecting a model for
software development cost estimation, it is essential to consider the R-squared and RMSE values
and other factors, such as model interpretability, data availability, and computational efficiency.
Moreover, we can see that the SVM model has the lowest MSE for all three software development
models, followed closely by the Random Forest (R.F.) model. These models can estimate the cost of
software development projects more accurately than the other models. On the other hand, the Ridge
Regression (R.R.) and Elastic Net (EN) models have the highest MSE values for all three software
development models. They are less accurate in estimating the cost of software development projects.
The R2 value is a statistical measure that indicates the proportion of the variation in the dependent
variable (i.e., cost) explained by the independent variables (i.e., features). In this case, we can see that
the R2 values for the three software development models (Hybrid, Waterfall, and Agile) are relatively
similar across all eight machine learning algorithms. The highest R2 value is observed for the Support
Vector Machine (SVM) and Random Forest (R.F.) algorithms for both the Waterfall and Agile models.

Figure 4. Summary of fitting indicators for the eight models used: Mean absolute error (MAE), mean square error (MSE), and the
square root of the mean of the square of all of the errors (RMSE)

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

18

In contrast, the highest R2 value for the Hybrid model is observed for the SVM algorithm.
Overall, the R2 values indicate that the machine learning algorithms can explain a significant
portion of the variation in software model cost estimates, with R2 values ranging from 0.39 to 0.91.
However, it is worth noting that the R2 values are not extremely high, indicating that there may still
be some unexplained variation in the cost estimates. Additionally, the R2 values alone do not provide
information about the cost estimates’ accuracy. Other performance metrics, such as Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE), should also be considered when evaluating the
performance of the machine learning algorithms.

Selecting the appropriate software development model for cost estimation in a constrained
environment requires careful consideration of project scope, requirements, and available resources.
Each model has its benefits and drawbacks, and choosing the suitable model can significantly impact
the accuracy and reliability of cost estimation. A Hybrid model may be a good option, as it provides
a balance of flexibility and structure while considering the constraints of the project. Cost estimation
is an essential part of software development, and it is crucial to choose an appropriate software
development model for accurate and reliable cost estimation. Choosing a suitable software development
model can be challenging in a constrained environment with limited resources. Among the different
software development models, Waterfall, Agile, and Hybrid are popular options for cost estimation.
The Waterfall model is a linear sequential approach that follows a strict order of development phases,
which can be helpful in small projects with a well-defined scope and requirements. However, in

Table 8. Evaluation results of learning algorithms hybrid sub-dataset (ANN, SVM, R.F., L.R., EN, R.R., LSR, RAN)

Measure Learning Alog.

MAE

ANN SVN RF LR EN RR LSR RAN

MAX 4046 575.96 1243.72 4366.28 4362.2 7408.6 4367.64 44.20

MIN 2198.44 82.96 310.08 2439.16 2257.6 4822.56 2276.64 2624.8

AVERAGE 3066.12 178.84 568.48 3336.08 3332 6258.04 3339.48 3461.88

STDEV 501.16 139.4 229.16 464.44 482.8 638.52 477.36 471.92

MSE

MAX 589.42 123.94 292.24 647.48 647.81 1011.12 647.48 703.55

MIN 113.56 2824.04 142369.56 127988.24 475447.16 129687.56 126554.12 2995.4

AVERAGE 2198.44 82.96 310.08 2439.16 2257.6 4822.56 2276.64 2624.8

STDEV 61565.84 4582.52 17499.8 70759.44 72165.68 72165.68 141824.88 91234.92

RMSE

MAX 589.42 123.94 292.24 647.48 647.81 1011.12 647.48 703.55

MIN 334.95 10.64 53.10424 377.34 357.71 689.53 360.10 355.73

AVERAGE 460.79 38.10 106.290 532.52 532.1968 871.6022 532.44422 5555.28564

STDEV 66.46276 39.91064 55.08328 67.28736 69.2664 82.8723 68.68918 82.62

R2

MAX 0.83 0.9 0.89 0.8 0.81 0.49 0.81 0.81

MIN 0.69 0.89 0.85 0.61 0.61 0.29 0.61 0.49

AVERAGE 0.75 0.89 0.89 0.71 0.71 0.39 0.71 0.69

STDEV 0.06 0.1 0.09 0.05 0.05 0.06 0.05 0.02

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

19

constrained environments, it may not be practical, as it requires a lot of planning and documentation,
which can be time-consuming and costly.

Conversely, the agile model is an iterative approach focusing on flexibility, adaptability,
and collaboration between the development team and the client. It can be helpful in constrained
environments, as it allows for changes to be made to the project scope and requirements based on
client feedback, which can help save time and resources. However, estimating costs accurately in an
Agile model can also be challenging, as the scope and requirements change frequently. The Hybrid
model combines Waterfall and Agile elements, which can be beneficial in constrained environments.
It allows for flexibility and adaptability, while maintaining some of the structure and planning of
the Waterfall model. It can also be helpful in projects with evolving requirements and an uncertain
scope. However, it can be challenging to estimate costs accurately in a Hybrid model, as it requires
balancing the benefits of both Waterfall and Agile models, while accounting for their drawbacks.
Cost estimation becomes critical to project planning and management in constrained environments.
Cost estimation involves predicting the resources needed for a project, including time, money, and
personnel. Accurate cost estimation is critical to ensure a project can be completed within the allocated
budget and timeline. In practical terms, several factors should be considered when estimating the cost
in constrained environments. One of the most important is the accuracy of the estimates. Estimation
techniques, such as parametric estimation, analogous estimation, and expert judgment can be used to
develop accurate cost estimates. It is also essential to consider the level of uncertainty in the estimates
and to use contingency planning to account for unexpected events that may impact project costs. Other
factors to consider are cost, scope, and schedule trade-offs. In constrained environments, it is often
necessary to balance the resources available with the project’s scope and the completion timeline,

Figure 5. Summary of fitting indicators for the eight models used: Mean absolute error (MAE), mean square error (MSE), and the
square root of the mean of the square of all of the errors (RMSE)

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

20

which requires making difficult decisions about project priorities, such as reducing the project scope
or extending the timeline for completion. Finally, effective communication and collaboration among
team members are essential for cost estimation in constrained environments. Project stakeholders,
including team members, sponsors, and clients, must be involved in the estimation process and kept
informed of any changes or updates to the estimates to ensure that everyone is on the same page and
that there are no surprises later in the project lifecycle. In summary, cost estimation in constrained
environments requires a careful balance between accuracy, scope, and timeline. Using effective
estimation techniques, contingency planning, and communication and collaboration among team
members, project managers can develop and manage cost estimates that help ensure their projects’
success.

Cost estimation using different software development models requires practical considerations in
constrained environments. Constrained environments refer to limited resources, such as time, budget,
or personnel. One practical consideration is carefully evaluating the chosen model’s ability to adapt
to project scope or requirement changes. Agile and Hybrid development models are more suited to
adapt to changes because they are iterative and focus on continuous improvement, allowing for more
flexibility in cost estimation as the project progresses. Another consideration is to ensure that the
estimated costs align with the project’s objectives and desired outcomes. In constrained environments,
allocating resources efficiently and ensuring that the costs are not exceeding the available budget is
crucial. Waterfall development models are typically more rigid and may not allow cost adjustments
during the project’s lifecycle. Hence, it is essential to evaluate the project’s requirements carefully
before choosing the model for cost estimation. Finally, in constrained environments, monitoring
the project’s progress and adjusting the cost estimation is vital for implementing effective project
management practices and tools that allow real-time tracking of project costs, risks, and timelines.
Regularly updating and reviewing cost estimation using different software development models can

Table 9. Software development mode

Software Dev.
Mode

Learning Algo.

ANN SVM RF LR EN RR LSR RAN

MAE

HYBRID 3066.12 178.84 568.48 3336.08 3332 6258.04 3339.48 3461.88

WATERFALL 2795.58 163.06 518.32 3041.72 3038 5705.86 3044.82 3156.42

AGILE 3291.57 191.99 610.28 3581.38 3577 6718.19 3585.03 3716.43

MSE

HYBRID 216620.8 2995.4 14237.84 287949.4 287850.1 766379.7 288067.7 314946.8

WATERFALL 197507.2 2731.1 12981.56 262542.1 262451.6 698758 262650 287157.3

AGILE 232548.8 3215.65 15284.74 309122.2 309015.6 822731.2 309249.2 338104.6

RMSE

HYBRID 460.7865 38.09652 106.2909 532.5267 532.1968 871.6022 532.4442 555.2856

WATERFALL 439.9996 36.37792 101.496 508.5034 508.1885 832.2826 508.4247 530.2357

AGILE 471.63 38.99326 108.7929 545.0617 544.7241 892.1186 544.9773 568.356

R2

HYBRID 0.75 0.89 0.89 0.71 0.71 0.39 0.71 0.69

WATERFALL 0.76 0.91 0.9 0.72 0.72 0.4 0.72 0.7

AGILE 0.75 0.9 0.89 0.71 0.71 0.39 0.71 0.69

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

21

help ensure the project remains on track and within budget. Evaluating the chosen model’s ability to
adapt to changes, ensuring that the estimated costs align with the project’s objectives, and regularly
monitoring the project’s progress are all critical factors to consider. With proper planning and project
management, organizations can develop accurate cost estimates that align with their constraints and
deliver successful projects.

The benefits of cost estimation using machine learning models for industries in developing
countries with constrained environments are significant. Firstly, machine learning models can
handle large volumes of data, enabling accurate cost estimation, which is instrumental to developing
countries with limited resources. Data collection can be challenging due to inadequate infrastructure.
Machine learning models can learn from available data and use this knowledge to make predictions,
making it easier to estimate costs and make informed decisions. Secondly, machine learning models
can help industries in developing countries optimize their resources and minimize costs significant
in constrained environments, where resources are scarce and every resource is critical. Machine
learning models can analyze data and identify cost-saving opportunities, helping industries make
better decisions on where to allocate their resources and optimize their operations, reduce waste,
and improve overall efficiency. Lastly, cost estimation using machine learning models can help
industries in developing countries increase their competitiveness by accurately estimating costs and
optimizing their resources. Industries can offer their products and services at competitive prices,
making them more attractive to customers, helping industries grow, creating jobs, and contributing
to the country’s economic development. In summary, cost estimation using machine learning models

Figure 6. Summary of fitting indicators for the eight models used: Mean absolute error (MAE), mean square error (MSE), and the
square root of the mean of the square of all of the errors (RMSE)

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

22

can benefit industries in developing countries with constrained environments. By leveraging machine
learning models, industries can accurately estimate costs, optimize their resources, and increase
competitiveness, ultimately contributing to the country’s economic development.

5. CONCLUSION

In conclusion, this paper aimed to evaluate the performance of various regression models for software
development cost estimation in constrained environments. The study utilized the SEERA dataset,
representing economically and technically constrained software industries. The eight regression models
evaluated were Elastic Net, Lasso Regression, Linear Regression, Neural Network, RANSACRegressor,
Random Forest, Ride Regression, and SVM. The performance of these models was assessed using
correlation coefficients and accuracy indicators. The results showed that SVM and Random Forest
models best estimated software development costs in constrained environments. However, the Elastic
Net, Lasso Regression, Linear Regression, Neural Network, and RANSACRegressor models also
performed well. These findings provide insights into selecting appropriate regression models based
on the specific software model and dataset used in the estimation process. The study highlights the
importance of using relevant and quality datasets for accurate cost estimation in software development.
The availability of datasets representing constrained environments is limited, and this paper fills a
gap in the literature by using the SEERA dataset. The study also emphasizes software development
industries’ challenges in constrained environments, such as limited resources, infrastructure, and
expertise.

In conclusion, the study provides valuable insights into software development cost estimation in
constrained environments. It can help project managers and developers select appropriate regression
models for cost estimation in these settings. Further research can expand on this work by incorporating
additional datasets and exploring the use of other machine-learning techniques for cost estimation
in constrained environments.

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

23

ACKNOWLEDGMENT

The authors extend their appreciation to the Deanship of Scientific Research at Shaqra University for
funding this research work through the project number (ANN-SU-2023036).

REFERENCES

Akbar, M. A., Sang, J., Nasrullah, , Khan, A. A., Shafiq, M., & Fazal-E-Amin, . (2019). Towards the guidelines
for requirements change management in global software development: Client-vendor perspective. IEEE Access
: Practical Innovations, Open Solutions, 7, 76985–77007. doi:10.1109/ACCESS.2019.2918552

Al Asheeri, M. M., & Hammad, M. (2019). Machine learning models for software cost estimation, International
Conference on Innovation and Intelligence for Informatics. Show in Context.

Ali, A., & Gravino, C. (2021). Improving software effort estimation using bio-inspired algorithms to select relevant
features: An empirical study. Science of Computer Programming, 205, 102621. doi:10.1016/j.scico.2021.102621

Ali & Gravino. (2019). A systematic literature review of software effort prediction using machine learning
methods. Journal of Software (Malden, MA), 31(10).

Boehm, B. W. (2017). Software cost estimation meets software diversity. In Proceedings of the 39th International
Conference on Software Engineering Companion (ICSE-C’17), Buenos Aires, Argentina. doi:10.1109/
ICSE-C.2017.159

Casado-Lumbreras, C., Colomo-Palacios, R., Francisca, N., & Misra, S. (2014). Software development
outsourcing: Challenges and opportunities in Nigeria. Journal of Global Information Technology Management,
17(4), 267–282. doi:10.1080/1097198X.2014.978626

Chhabra, S., & Singh, H. (2020). Optimizing design of fuzzy model for software cost estimation using particle
swarm optimization algorithm. International Journal of Computational Intelligence and Applications, 19(1),
2050005. doi:10.1142/S1469026820500054

Di Martino, S., Ferrucci, F., Gravino, C., & Sarro, F. (2020). Assessing the effectiveness of approximate functional
sizing approaches for effort estimation. Information and Software Technology, 123, 106308. doi:10.1016/j.
infsof.2020.106308

Emtinan, I., Mustafa, & Osman, R. (2020). SEERA: A software cost estimation dataset for constrained
environments. In Proceedings of the 16th ACM International Conference on Predictive Models and Data Analytics
in Software Engineering (PROMISE 2020). Association for Computing Machinery.

Holtkamp, P., Lau, I., & Pawlowski, J. M. (2015). How software development competencies change in global
setting: An explorative study. Journal of Software (Malden, MA), 27(1), 50–72. doi:10.1002/smr.1701

Ilyas, M., Khan, S. U., & Rashid, N. (2020). Empirical validation of software integration practices in global
software development. SN Computer Science, 1(3), 1–23. doi:10.1007/s42979-020-00175-2

Jha, M., & Jha, R. (2020). Comparing the effort estimated by different models. 6th International Conference on
Advanced Computing and Communication Systems (ICACCS), (pp. 1148-1154). ACM.

Kanakasabhapathi, P., & Muthayyan, J. (2019). A real-time extreme learning machine for software development
effort estimation. The International Arab Journal of Information Technology, 16(1).

Kumar, P. S., Behera, H. S., Kumari, A., Nayak, J., & Naik, B. (2020). Advancement from neural networks to deep
learning in software effort estimation: Perspective of two decades. Computer Science Review, 2020(38), 100–288.

Kumar, P. S., Behera, H. S., Nayak, J., & Naik, B. (2021). A pragmatic ensemble learning approach for effective
software effort estimation. Innovations in Systems and Software Engineering, 1, 1–17.

Mahmood, Y., Kama, N., Azmi, A., Khan, A. S., & Ali, M. (2021). Software effort estimation accuracy prediction
of machine learning techniques: A systematic performance evaluation. J. Softw. Pract. Exp.

http://dx.doi.org/10.1109/ACCESS.2019.2918552
http://dx.doi.org/10.1016/j.scico.2021.102621
http://dx.doi.org/10.1109/ICSE-C.2017.159
http://dx.doi.org/10.1109/ICSE-C.2017.159
http://dx.doi.org/10.1080/1097198X.2014.978626
http://dx.doi.org/10.1142/S1469026820500054
http://dx.doi.org/10.1016/j.infsof.2020.106308
http://dx.doi.org/10.1016/j.infsof.2020.106308
http://dx.doi.org/10.1002/smr.1701
http://dx.doi.org/10.1007/s42979-020-00175-2

International Journal of Software Science and Computational Intelligence
Volume 15 • Issue 1

24

Mohammed, M., & Jamal, S. A. (2022). An overview of machine learning approaches to software development
cost estimation. 8th International Conference on Contemporary Information Technology and Mathematics
(ICCITM), (pp. 153-158). IEEE.

Mukherjee, S., & Malu, R. K. (2014). Optimization of project effort estimate using neural network. In Proceedings
of the 2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies,
Ramanathapuram, India. doi:10.1109/ICACCCT.2014.7019474

Nassif, A. B., Azzeh, M., Idri, A., & Abran, A. (2019). Software development effort estimation using regression
fuzzy models. Computational Intelligence and Neuroscience, 2019, 1–17. doi:10.1155/2019/8367214
PMID:30915110

Nhung, H. L. T. K., Hoc, H. T., & Hai, V. V. (2019). A review of use case-based development effort estimation
methods in the system development context. In Intelligent Systems Applications in Software Engineering (pp.
484–499). Springer. doi:10.1007/978-3-030-30329-7_44

Panda, N., & Majhi, S. K. (2020). How effective is the salp swarm algorithm in data classification. In
Computational Intelligence in Pattern Recognition (pp. 579–588). Springer. doi:10.1007/978-981-13-9042-5_49

Pandey, M., Litoriya, R., & Pandey, P. (2020). Applicability of machine learning methods on mobile app effort
estimation: Validation and performance evaluation. International Journal of Software Engineering and Knowledge
Engineering, 2020(30), 23–41. doi:10.1142/S0218194020500023

Popović, J., & Bojić, D. (2012). A comparative evaluation of effort estimation methods in the software life cycle.
Computer Science and Information Systems, 9(1), 455–484. doi:10.2298/CSIS110316068P

Promise Software Engineering Repository. (n.d.). Home. Promise Software.

Rankovic, D., Rankovic, N., Ivanovic, M., & Lazic, L. (2021). Convergence rate of artificial neural networks
for estimation in software development projects. Information and Software Technology, 2021(138), 106627.
doi:10.1016/j.infsof.2021.106627

Rankovic, N., Rankovic, D., Ivanovic, M., & Lazic, L. (2021). A new approach to software effort estimation
using different artificial neural network architectures and Taguchi Orthogonal Arrays. IEEE Access : Practical
Innovations, Open Solutions, 9, 26926–26936. doi:10.1109/ACCESS.2021.3057807

Saavedra Martínez, J. I., Valdés Souto, F., & Rodríguez Monje, M. (2020). Analysis of automated estimation
models using machine learning. In Proceedings of the 8th International Conference in Software Engineering
Research and Innovation (CONISOFT). IEEE. doi:10.1109/CONISOFT50191.2020.00025

Safari, S., & Erfani, A. R. (2020). A new method for fuzzification of nested dummy variables by fuzzy clustering
membership functions and its application in financial economy. Iran. J. Fuzzy Syst., 17, 13–27.

Sakhrawi, Z., Sellami, A., & Bouassida, N. (2020). Investigating the impact of functional size measurement on
predicting software enhancement effort using correlation-based feature selection algorithm and SVR method. In
S. Ben Sassi, S. Ducasse, & H. Mili (Eds.), Reuse in emerging software engineering practices (19th International
Conference on Software and Systems Reuse. Springer. doi:10.1007/978-3-030-64694-3_14

Salmanoglu, M., Hacaloglu, T., & Demirors, O. (2017). Effort estimation for agile software development:
Comparative case studies using COSMIC functional size measurement and story points. Proceedings of the 27th
International Workshop on Software Measurement and 12th International Conference on Software Process and
Product Measurement (IWSM Mensura’ 17). Association for Computing Machinery.

Zhao, H., & Zhang, C. (2020). An online-learning-based evolutionary many-objective algorithm. Information
Sciences, 509, 1–21. doi:10.1016/j.ins.2019.08.069

http://dx.doi.org/10.1109/ICACCCT.2014.7019474
http://dx.doi.org/10.1155/2019/8367214
http://www.ncbi.nlm.nih.gov/pubmed/30915110
http://dx.doi.org/10.1007/978-3-030-30329-7_44
http://dx.doi.org/10.1007/978-981-13-9042-5_49
http://dx.doi.org/10.1142/S0218194020500023
http://dx.doi.org/10.2298/CSIS110316068P
http://dx.doi.org/10.1016/j.infsof.2021.106627
http://dx.doi.org/10.1109/ACCESS.2021.3057807
http://dx.doi.org/10.1109/CONISOFT50191.2020.00025
http://dx.doi.org/10.1007/978-3-030-64694-3_14
http://dx.doi.org/10.1016/j.ins.2019.08.069

