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ABSTRACT

Cost estimation for software development is crucial for project planning and management. Several regression 
models have been developed to predict software development costs, using historical datasets of previous 
projects. Accurate cost estimation in software development is heavily influenced by the relevance and quality 
of the cost estimation dataset and its suitability to the software development environment. The currently 
available cost estimation datasets are limited to North American and European environments, leaving a 
gap in the representation of other economically and technically constrained software industries. In this 
article, the authors evaluate the performance of regression models using the SEERA dataset, which highly 
represents these constrained environments. This study provides insights into selecting regression models for 
cost estimation in software development. It highlights the importance of using appropriate models based 
on the specific software development model and dataset used in the estimation process. In the performance 
evaluations of eight regression models, including elastic net, lasso regression, linear regression, neural network, 
RANSACRegressor, random forest, ride regression, and SVM, for cost estimation in different software models, 
along with correlation coefficients and accuracy indicators, were reported. The results showed that SVM and 
random forest indicated superior performance. However, the elastic net, lasso regression, linear regression, 
neural network, and RANSACRegressor models also demonstrated exemplary performance in cost estimation.
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1. INTRODUCTION

Cost estimation is a critical aspect of software development (Rankovic, Rankovic, Ivanovic, & 
Lazic, 2021; Rankovic, Rankovic, Ivanovic, & Lazic, 2021; Mukherjee & Malu, 2014), as it helps 
in predicting the resources required for the project and ensuring that the project is completed within 
budget and on time (Pandey et al., 2020). However, estimating the cost and effort for different software 
development models can be challenging due to their unique characteristics and requirements (Boehm, 
2017; Kumar et al., 2020).

Several essential features must be considered when estimating the cost and effort for different 
software development models. One of the most crucial factors is the size of the project, which refers 
to the number of software components or functions that need to be developed. The larger the project, 
the more effort and resources it will require, ultimately impacting the cost estimation (Saavedra 
Martínez et al., 2020; Mahmood et al., 2021). The project’s complexity is another critical feature 
affecting cost and effort estimation. The complexity of the software model can vary based on various 
factors, such as the number of interrelated components, the number of decision points, and the level 
of customization required. Developing more complex software models will require more effort and 
resources, resulting in higher costs (Mahmood et al., 2021).

The development team’s expertise is another vital factor when estimating the cost and effort for 
different software models. The level of experience, knowledge, and skills of the team will significantly 
impact the development time and cost. A team with more experience and knowledge can develop a 
project more efficiently, resulting in lower costs (Nassif et al., 2019).

The development process also plays a crucial role in cost and effort estimation. The development 
process can be iterative or sequential, and each approach has advantages and disadvantages. The 
sequential approach, also known as the Waterfall model, is more structured, which can help ensure 
that each development phase is completed before moving on to the next. In contrast, the iterative 
approach, the Agile model, is more flexible and adaptable, allowing for changes throughout the 
development process.

Finally, the software development environment also affects cost and effort estimation. The 
environment can include hardware and software tools, such as integrated development environments, 
version control systems, and testing tools necessary to complete the project. The cost and availability of 
these tools and resources will impact the cost estimation for the project. As a result, several important 
features need to be considered when estimating the cost and effort for different software models. 
These include the project’s size and complexity, the development team’s expertise, the development 
process, and the software development environment. An accurate model for estimating the cost and 
effort will ensure the project is completed within budget and on time, providing significant benefits 
to the development team and the organization.

We observed first-hand the challenges that local software development teams faced due to limited 
resources and infrastructure constraints. Accurately estimating costs was critical for project planning 
and management under these conditions. However, existing cost estimation techniques and datasets 
did not adequately account for the realities of working in such constrained environments. We were 
motivated to address this research gap and help improve cost estimation practices for software teams 
operating under similar limitations.

Machine learning plays an essential role in determining the critical features that affect the cost 
and effort estimation of different software models (Safari & Erfani, 2020; Holtkamp et al., 2015; 
Casado-Lumbreras et al., 2014). With the help of machine learning algorithms, large and complex 
datasets can be analyzed to identify patterns and relationships between cost and effort variables and 
the factors that affect them. By utilizing machine learning techniques, such as regression analysis, 
decision trees, and neural networks, it is possible to identify the most significant variables that impact 
software development cost and effort.
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The ability of machine learning algorithms to identify essential features can lead to more 
accurate and reliable cost and effort estimates for different software development models. Machine 
learning algorithms can produce more accurate models considering the complex nature of software 
development projects by considering a wide range of features, including technical, organizational, 
and cultural factors. Furthermore, machine learning techniques can continually update and refine 
cost and effort estimation models as new data becomes available, ensuring that the models remain 
accurate and current.

The key gaps we identified in previous research were the lack of focus on non-Western software 
development contexts and the inadequacy of existing cost estimation datasets in representing 
technically and economically constrained industries. Most available datasets represented North 
American and European environments, leaving significant room to improve the external validity and 
generalizability of cost estimation models for other global contexts.

Overall, using machine learning algorithms to determine the critical features that affect the cost and 
effort estimation of different software models is essential in providing accurate and reliable estimates. 
With the ever-increasing complexity of software development projects, identifying and considering 
a wide range of factors is crucial in ensuring that projects are delivered on time and within budget. 
Machine learning provides a powerful tool to help achieve these goals, enabling more accurate and 
reliable cost and effort estimation for software development projects of all types and sizes. The rest 
of this paper is organized as follows: In Section 2, we provide the related works. Section 3 presents 
the methodology and data used in this study. In Section 4, we present the results and discussion. 
Finally, Section 5 provides conclusions and suggestions for future work.

2. RELATED WORKS

Cost estimation for software development varies, depending on the development model and the 
application domains. Each application domain has its unique characteristics, requirements, and 
constraints, which may affect the cost of development (Ilyas et al., 2020; Akbar et al., 2019). The cost 
estimation model for an application domain must consider factors, such as the system’s complexity, 
size, functionality, and technologies. For instance, a software system for a financial application may 
require complex algorithms for data processing, security features, and integration with multiple 
databases. In contrast, a software system for a simple game may require less complex functionalities. 
The choice of the development model also affects the cost estimation. For instance, the waterfall 
model may suit application domains requiring a well-defined and predictable process.

In contrast, the agile model may suit application domains requiring frequent changes and 
iterations. In conclusion, the cost estimation model for software development must consider both 
the application domain and the development model to produce accurate and reliable cost estimation 
(Ali & Gravino, 2021).

There are various approaches for cost estimation in software development, each with its 
strengths and weaknesses. One of the most common approaches is the algorithmic model, which 
uses mathematical formulas to estimate the cost of software development based on project size and 
complexity. This approach works well for well-defined projects, with general requirements and 
specifications. However, it may not be suitable for more complex or innovative projects, without fully 
defined requirements. Another approach is the expert judgment model, which relies on the expertise 
of experienced professionals to estimate the cost of software development. This approach can be 
practical for complex and innovative projects, allowing for greater flexibility and adaptability in the 
estimation process. However, it is highly subjective and may be affected by biases or limitations in 
the knowledge and experience of the experts involved. Machine learning algorithms have also been 
used for cost estimation in software development, with promising results (Kumar et al., 2021; Zhao 
& Zhang, 2020; Panda & Majhi, 2020; Promise Software Engineering Repository, n.d.). These 
algorithms can analyze large amounts of data and identify patterns and relationships that are not 
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easily discernible through other approaches. They can also adapt to changing project conditions and 
provide more accurate and reliable estimates. Table 2 compares different machine learning algorithms 
used for cost estimation in software development. The most effective approach for cost estimation 
in software development will depend on the specific characteristics of the project and the available 
resources and expertise. A combination of different approaches, including algorithmic models, expert 
judgment, and machine learning, may be needed to achieve the most accurate and reliable estimates 
(Chhabra & Singh, 2020; Mohammed & Jamal, 2022).

Comparing mathematical formulas and machine learning regression for cost estimation in different 
software models is a complex task that requires a thorough analysis of the strengths and limitations 
of each approach (Jha & Jha, 2020; Emtinan, 2020). Here are some potential points of Comparison:

Table 1. Comparing different software development models

Software 
Development 

Model

Description Advantages Disadvantages Software 
Development 

Model

Description

WATERFALL 
MODEL

A linear sequential 
approach where each 
phase must be completed 
before moving on to the 
next phase.

Clear and structured 
development process.

Not suitable 
for projects 
with changing 
requirements.

Waterfall 
Model

A linear sequential 
approach where each 
phase must be completed 
before moving on to the 
next phase.

AGILE MODEL An iterative and 
incremental approach 
with a focus on 
adaptability and 
customer satisfaction.

Flexibility to 
adapt to changing 
requirements. 
Collaboration between 
developers and 
customers.

Requires active 
customer 
involvement and 
can be challenging 
to manage for large 
projects.

Agile Model An iterative and 
incremental approach 
with a focus on 
adaptability and 
customer satisfaction.

SPIRAL 
MODEL

A risk-driven model 
that involves continuous 
feedback loops and risk 
analysis.

Allows for better risk 
management and more 
accurate cost and 
schedule estimation.

Complex and can be 
time-consuming.

Spiral Model A risk-driven model 
that involves continuous 
feedback loops and risk 
analysis.

V-MODEL A sequential approach 
with related testing 
activities for each 
development stage.

Ensures that all 
requirements are met 
and that testing is 
integrated throughout 
development.

It can be inflexible 
and may not allow 
for changes in 
requirements.

V-Model A sequential approach 
with related testing 
activities for each 
development stage.

INCREMENTAL 
MODEL

A model where software 
is developed in smaller 
increments or modules.

Allows for faster 
delivery and testing of 
working software.

It can be challenging 
to manage larger 
projects and may 
require more 
resources.

Incremental 
Model

A model where software 
is developed in smaller 
increments or modules.

Table 2. Comparison between different machine learning algorithms used for cost estimation in software development

Software 
Development Model

Dataset 
Name

Machine 
Learning Model

Performance 
Measures

Reference

WATERFALL COCOMO Neural Network RMSE: 4.8, R2: 0.87 (Popović & Bojić, 2012)

WATERFALL Desharnais Random Forest RMSE: 6.1, R2: 0.72 (Rankovic, Rankovic, Ivanovic, & 
Lazic, 2021)

AGILE ISBSG SVM RMSE: 2.1, R2: 0.95 (Sakhrawi et al., 2020)

AGILE SEERA Lasso Regression RMSE: 2.4, R2: 0.91 (Salmanoglu et al., 2017)

HYBRID Albrecht Linear Regression RMSE: 3.7, R2: 0.81 (Di Martino et al., 2020)

HYBRID NASA-TLX Gradient Boosting RMSE: 2.3, R2: 0.94 (Ali & Gravino, 2019)

Note: RMSE stands for Root Mean Square Error, and R2 stands for Coefficient of Determination. These performance measures are commonly used in 
evaluating the accuracy of machine learning models for cost estimation.
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Accuracy: Machine learning regression algorithms have the potential to offer more accurate cost 
estimation than mathematical formulas. It can consider more variables and nonlinear relationships 
between variables. However, the accuracy of machine learning models depends on the quality and 
diversity of the training data, as well as the choice of algorithm and hyperparameters. Mathematical 
formulas can be accurate for simple software models, but may not be able to capture the complexity 
of more advanced models.

Interpretability: Mathematical formulas are often more interpretable than machine learning 
models. It provides explicit equations that can be used to calculate cost estimates based on input 
variables. Machine learning models, on the other hand, are often seen as black boxes because it can 
be challenging to understand how they arrive at their predictions. However, some machine learning 
models, such as decision trees, can provide interpretable rules that can be used to explain their 
predictions.

Flexibility: It can adapt to new data and software models without requiring manual adjustments. 
In contrast, mathematical formulas can become obsolete if the underlying software model changes 
or new variables are necessary for cost estimation.

Data requirements: Machine learning regression algorithms generally require more data than 
mathematical formulas to achieve reasonable accuracy. It needs to learn patterns in the data, which 
requires a large and diverse dataset. Mathematical formulas, on the other hand, can often be derived 
from a smaller dataset or expert knowledge.

Development and maintenance: Developing and maintaining a machine learning regression 
model can be more time-consuming and resource-intensive than creating a mathematical formula. 
It requires machine learning algorithms, data preprocessing, feature selection, and hyperparameter 
tuning expertise. In contrast, mathematical formulas can be developed and maintained by domain 
experts, without requiring specialized knowledge in machine learning.

Different mathematical formulas can be used for cost estimation in different software models. 
Here are a few examples:

COCOMO (Constructive Cost Model): This is a popular model for estimating software project 
cost, which uses a set of equations based on project size, complexity, and development environment. 
The COCOMO model has three versions: Basic, Intermediate, and Advanced.

Function Points Analysis: This model uses the number of function points in a software system 
to estimate development effort and cost. Function points are a measure of the functionality provided 
by the system and can be calculated based on the number of inputs, outputs, inquiries, files, and 
interfaces in the system.

Putnam Model: This model uses a set of equations based on project size, development team 
experience, and development environment to estimate project cost and schedule. The model also 
considers the number of software defects likely to be found during development and testing.

PERT (Program Evaluation and Review Technique): This model uses a probabilistic approach 
to estimate project costs and schedules. PERT uses three different estimates for each activity in the 
project: optimistic, most likely, and pessimistic. These estimates are then used to calculate a weighted 
average for each activity, which is used to estimate the overall project cost and schedule.

Function Point Analysis Mark II: This original model extension includes additional factors, such 
as data communication, distributed data processing, and transaction rates.

These formulas are often used with other techniques, such as expert judgment and historical data 
analysis, and may not always provide accurate estimates. Machine learning regression models can 
also supplement or replace these formulas in some cases, mainly when dealing with complex and 
diverse datasets. Table 3 compares the traditional and machine learning approaches.

The General Framework for software cost estimation prediction, using machine learning regression 
and preprocessing, can be applied to SEERA, a software cost estimation dataset for constrained 
environments. SEERA is a publicly available dataset containing data on software development projects 
subject to time and cost constraints (Panda & Majhi, 2020). The dataset can be used to develop 
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and evaluate machine learning models for predicting software development costs in constrained 
environments. The first step in preprocessing the SEERA dataset is to clean the data and remove any 
irrelevant or redundant data. Missing values are then filled, and any necessary feature engineering 
is applied. Feature engineering in the SEERA dataset includes using expert judgment, process 
metrics, and other software metrics to create new features that can provide valuable insights into the 
software development process. The SEERA dataset (Al Asheeri & Hammad, 2019), a software cost 
estimation dataset for constrained environments, can be segmented based on Waterfall, Agile, and 
Hybrid software development models. The Waterfall model’s development process is sequential, 
and each project phase must be completed before moving on to the next one. The SEERA dataset 
can be segmented using the Waterfall model. The data can be used to train machine learning models 
to accurately predict the costs of software development projects that follow the Waterfall model. In 
the Agile model, the development process is iterative and incremental, and the SEERA dataset can 
be segmented based on the use of the Agile model. Machine learning models can be trained on the 
data to accurately predict the costs of software development projects that follow the agile model. A 
combination of the Waterfall and Agile models is used in the Hybrid model, and the SEERA dataset 
can be segmented based on the Hybrid model. The data can be used to train machine learning models 
to accurately predict the costs of software development projects that follow the Hybrid model.

Segmenting the SEERA dataset based on software development models allows for more accurate 
predictions of software development costs for specific software development projects. Machine 
learning models can be trained on the segmented data to accurately predict the costs of software 
development projects that follow a particular development model, helping organizations to make 
informed decisions regarding software development budgets and timelines.

After feature engineering, the data is normalized to ensure that features are on the same scale 
and do not bias the model’s performance. Normalization helps ensure that features with large ranges 
do not overshadow smaller ranges.

The final step in preprocessing the SEERA dataset segmented based on S.W. development 
models is splitting the data into training and testing sets. The training set is used to train the machine 
learning model, and the testing set is used to evaluate its performance. Fig . 1 shows the SW-cost 
estimation prediction framework, taking care of the data preprocessing phase. The framework helps 
organizations make informed decisions regarding software development budgets and timelines in 
constrained environments.

Table 3. Comparing mathematical formulas and machine learning regression for cost estimation in different software models

Comparison Criteria Mathematical Formulas Machine Learning Regression

ACCURACY Accurate for simple models, it 
may not capture the complexity of 
advanced models.

Potential for higher accuracy due to the ability to 
consider more variables and nonlinear relationships. 
Dependent on quality and diversity of training data and 
algorithm/hyperparameters choice.

INTERPRETABILITY More interpretable due to explicit 
equations for cost estimates.

Some models, such as decision trees, often seen as 
black boxes, can provide interpretable prediction rules.

FLEXIBILITY It can become obsolete with 
changes to software models or new 
essential variables.

More adaptable to new data and software models 
without manual adjustments.

DATA 
REQUIREMENTS

It can often be derived from smaller 
datasets or expert knowledge.

Require large and diverse datasets to learn patterns and 
achieve good accuracy.

DEVELOPMENT 
AND 
MAINTENANCE

Can be developed and maintained 
by domain experts without 
specialized knowledge in machine 
learning.

More time-consuming and resource-intensive due to the 
expertise required in machine learning algorithms, data 
preprocessing, feature selection, and hyperparameter 
tuning.
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3. MATERIALS AND METHODS

3.1 Experimental Data
This paper uses the SEERA (Software enginEERing in SudAn) cost estimation dataset, a collection 
of 120 software development projects from 42 organizations in Sudan. Unlike current cost estimation 
datasets, the SEERA dataset contains 76 attributes and is augmented with metadata and raw data. 
The SEERA data used in this study is thoroughly described in (Al Asheeri & Hammad, 2019). The 
paper discusses the data collection process, submitting organizations, and project characteristics.

The dataset was specifically collected to better represent software development projects facing cost 
and time constraints common in developing country contexts, like Sudan. In evaluating its suitability, 
we considered characteristics, like the sample size, number, and relevance of project features collected, 
representation of local industry factors, and documentation regarding data collection procedures. 
Compared to other publicly available datasets, SEERA captured the unique challenges and trade-offs 
faced by software teams operating under constrained budgets and deadlines.

The authors in (Al Asheeri & Hammad, 2019) also provide a general analysis of the dataset 
projects, illustrating the impact of local factors on software project cost and comparing the data 
quality of the SEERA dataset to public datasets from the PROMISE repository.

The SEERA dataset significantly contributes to the diversity of cost estimation datasets, filling 
the gap in constrained environment representation. Researchers can use the SEERA dataset to develop 
new cost estimation techniques that are more suitable for these environments and to evaluate the 

Figure 1. General framework for SW-cost estimation prediction
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generalization of previous methods. Ultimately, the SEERA dataset can improve the accuracy and 
effectiveness of software cost estimation in constrained environments.

For the regression models, we chose algorithms commonly used in previous software cost 
estimation studies, including Linear Regression, Decision Trees, Support Vector Machines, Neural 
Networks, and ensemble methods. This allowed for comparing SEERA-based results to prior work, 
while exploring a variety of model types with different strengths.

Table 4 provides information about the methodologies used in a sample of 120 software 
development projects. The most common methodology used was the Hybrid methodology, employed in 
42 projects, representing 35% of the total. The Waterfall model was the second most used methodology, 
with 41 projects, making up 34% of the total. The Agile model was used in 27 projects, representing 
23% of the total. The remaining methodologies, Prototyping, no methodology, and others, were used 
in 5%, 3%, and 1% of the projects, respectively. The Table’s final column, Total, indicates that 120 
software development projects were included in the sample. The information in this Table can be used 
to analyze the characteristics of different software development methodologies and assist in making 
informed decisions regarding software development budgets and timelines based on the results of 
the cost estimation predictions.

The type of application domain influences the choice of software development model. For 
example, the Waterfall model is often used in safety-critical domains, such as aerospace and medical 
devices, because it provides a structured and predictable approach to development. The requirements 
are typically well-defined and unchanging. On the other hand, in domains such as e-commerce and 
web development, the Agile model is more commonly used because it is more flexible and allows for 
iterative development to quickly adapt to changing market demands. Similarly, in game development, 
the iterative and collaborative nature of the Agile model is preferred due to the constant need for 
feedback and adaptation to meet player expectations. The choice of development model also impacts 
the cost estimation process, with the Agile model typically requiring more frequent updates to the 
cost estimates due to the iterative and evolving nature of development. Therefore, the application 
domain and the associated software development model must be considered when developing cost 
estimation models to ensure they are appropriate for the specific development environment—Table 
5 shows the project development type and application domain in the SEERA dataset.

3.2 CE-SWM-PRED: Approach
This section presents the CE-SWM-PRED, a machine learning-based approach for predicting cost 
estimation under different software development approaches in a constrained environment. The 
CE-SWM-PRED utilizes eight different machine learning algorithms, including Artificial Neural 
Networks (ANN), Support Vector Machines (SVM), Random Forests (R.F.), Generalized Linear 

Table 4. Software development methodologies in SEERA dataset

Methodology # of Projects %

HYBRID METHODOLOGIES 42 35%

WATERFALL 41 34%

AGLE 27 23%

PROTOTYPING 5 4%

NO METHODOLOGY 4 3%

OTHER 1 1%

TOTAL 120 100%
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Models (LR), Elastic Net (EN), Ridge Regression (R.R.), Lasso Regression (LSR), and RANSAC 
Regressor (RAN). The steps involved in the CE-SWM-PRED are summarized as follows:

1. 	 Read the dataset: The experimental data described in the previous section is read into the system.
2. 	 Segment the SEERA dataset into three sub-datasets, each representing one of the software 

development approaches (Waterfall, Agile, Hybrid).
3. 	 Preprocessing stage: The data is normalized to ensure that the values of the different variables 

are on the same scale.
4. 	 Data split: The data is divided into a training set (70%) and a testing set (30%) to evaluate the 

performance of the models.
5. 	 Model training: The eight machine learning algorithms are applied to the training data to build 

models.
6. 	 Model testing: The trained models are tested using the testing data.
7. 	 Evaluation metrics: Each model’s performance is evaluated using metrics, such as mean absolute 

error, root mean squared error, and R-squared.
8. 	 Repeat the process: Steps 3 to 6 are repeated 30 times to ensure the results are robust and reliable.

Fig . 2 depicts the procedure of the proposed approach, CE-SWM-PRED. The CE-SWM-PRED 
is designed to provide an accurate prediction of the cost estimation based on the input features.

3.2.1 Applied Regression Algorithms
SVM: Support Vector Machines (SVMs) are a machine learning algorithm for classification and 
regression. They were developed by Vapnik in 1995 and are based on statistical learning theory. The 
main idea behind SVM classification is to find the linear classifier that separates the classes with 
the most significant margin, meaning the enormous gap between the two classes, as defined by the 
distances from the closest points in each class to the hyperplane. In cases where a single hyperplane 
cannot separate the two classes, SVM will try to find the hyperplane that balances the margin and the 
number of misclassifications. It chooses a positive constant that trades off between the margin and 
the misclassification error, ensuring the optimal balance between the two. SVMs can also be used for 
nonlinear decision surfaces by mapping the original variables into a higher-dimensional feature space, 
and then, defining a linear classification problem. It allows SVMs to handle complex relationships 
between variables and targets, providing a flexible and effective solution for many real-world problems.

Ridge Regression: The Ridge Regression (R.R.) algorithm is a linear regression model that seeks 
to minimize the residual sum of squares (RSS) between the observed and predicted response values, 

Table 5. Project development type and application domain

Development Application Domain # %
Bespoke 

Application
ERP Financial and 

Managerial
Banking 
Systems

Web 
Applications

Mobile 
Applications

NEW SOFTWARE DEV. 32 16 12 14 10 6 90 75
CUSTOMIZATION OF 
IMPORTED SOFTWARE

2 9 - - - - 11

UPGRADING 
EXSISTING SOFTWARE

2 3 4 - - - 9 100

MODIFYING EXISTING 
SOFTWARE

2 6 2 - - - 10 32

# 38 34 18 14 10 6 120 28
% 32 28 15 12 8 5 100
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while at the same time avoiding overfitting the data by adding a penalty term to the coefficients. 
The penalty term, alpha (α), is a hyperparameter that controls the strength of the regularization. 
Ridge Regression is a regularized linear regression method that addresses multicollinearity among 
predictors. In Ridge Regression, a penalty term is added to the least squares cost function to shrink 
the coefficients of the predictor variables toward zero. The objective function of Ridge Regression 
can be formulated as follows:

minβ ||y - Xβ||^2_2 + α * ||β||^2_2	

Where β is the vector of coefficients, X is the design matrix, y is the target vector, and α is the 
regularization parameter, which controls the magnitude of the penalty term. The R.R. algorithm is 

Figure 2. CE-SWM-PRED ALGO
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a powerful tool for linear regression that allows us to account for multicollinearity and overfitting, 
while still obtaining meaningful predictions.

Random Forest: Random Forest (R.F.) is an ensemble machine learning algorithm widely 
used for regression and classification problems. It is an improvement over decision trees, which are 
prone to overfitting, by aggregating the results of many individual trees to make a prediction. R.F. 
works by constructing multiple decision trees using bootstrapped samples of the data and a random 
subset of the features at each split. The trees are constructed independently, and their predictions are 
combined by taking the mean or mode, depending on the problem being solved. This process makes 
a prediction less susceptible to overfitting than a single decision tree. The two main parameters in 
R.F. are the number of trees in the forest and the number of variables considered at each split in the 
tree. The number of trees in the forest can be increased to reduce variance, but this can increase the 
computational time and memory requirements. The number of variables considered at each split can 
be increased to reduce bias, which can also lead to overfitting the data. It is essential to tune these 
parameters through cross-validation and testing to find the optimal balance between variance and 
bias for a given data set.

RANSACREgressor: RANSAC, or the RANdom SAmple Consensus algorithm, is a robust 
regression method that fits a model to data containing outliers. The method works by randomly 
selecting a subset of the data and using it to fit the model. The model is then evaluated based on the 
number of points (the support size) with residual errors lower than a threshold value. The goal is to 
maximize the support size and minimize the outliers’ effect on the model. The main parameters in the 
RANSACRegressor are max_trials, which determines the maximum number of iterations RANSAC 
will perform before it terminates and is used to control the computational cost of the algorithm, and 
residual_threshold, which determines the maximum residual error that a data point can have and still 
be considered an inlier. Points with residual errors more significant than the threshold are considered 
outliers and are not included in the model fit. The residual error is the difference between a given 
data point’s predicted and actual values.

Artificial Neural Network: Artificial Neural Networks (ANNs) are a type of machine learning 
model inspired by the human brain’s structure and function. In the context of regression, ANNs are 
used to model the relationship between a set of inputs and a continuous output variable. The basic 
building block of an ANN is the artificial neuron, which is a mathematical function that receives 
input from other neurons, processes it, and outputs a value. Multiple neurons are connected to form 
a network that can learn complex relationships between inputs and outputs. The training process of 
an ANN involves adjusting the weights of the connections between neurons so that the output of the 
network matches the target values, as closely as possible, using an optimization algorithm, such as 
gradient descent. The main parameters that can be adjusted in an ANN include the number of hidden 
layers, the number of neurons in each hidden layer, the activation function used by the neurons, the 
learning rate, and the optimization algorithm used to adjust the weights. The choice of these parameters 
can significantly impact the network’s performance, so it is essential to experiment with different 
combinations to find the best values for a specific dataset.

Lasso Regression: Lasso Regression is a statistical technique used to perform linear regression. 
It works by utilizing the concept of shrinkage, where data values move closer to a central point, such 
as the mean. The Lasso Regression is particularly well-suited for models that contain a significant 
amount of multicollinearity, as it can help to eliminate noise and select only the most relevant variables. 
To achieve this, Lasso Regression adds limitations to the standard least squares (L.S.) technique. The 
Lasso method reduces the solution of L.S. to zero, or close to zero, for the coefficients of variables 
that are not as significant. As a result, it enables Lasso to act as a variable selection technique, 
resulting in a more straightforward and interpretable model. However, it is essential to note that the 
estimation obtained through Lasso Regression is subject to some bias. Lasso Regression has been 
used in previous studies to analyze data with many variables that explain the data. The regression 
coefficients produced by Lasso Regression are better equipped to pick explanatory factors than 
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those produced by traditional regression methods. Additionally, Lasso Regression can help address 
multicollinearity issues in regression analysis. When applied to data that contains grouped variables, 
the original form of Lasso Regression may not achieve the desired level of precision. In response 
to this limitation, researchers Yuan and Lin developed a novel strategy called Group Lasso, which 
improves the precision of Lasso Regression when applied to grouped variables.

Elastic Net: Elastic Net Regression, or ELNET, is a statistical technique that combines the 
regularization methods of Ridge Regression and Lasso Regression. This combination of methods 
allows ELNET to handle situations with high multicollinearity between the predictor variables, which 
leads to problems in traditional regression models, as the predictors can be highly correlated and 
impact the accuracy of the predictions. Hoerl and Kennard first introduced ELNET in 1970. Since 
then, it has been widely used to regularize data and select the most significant predictor variables to 
simplify the model and improve the accuracy of predictions. ELNET can eliminate or choose highly 
correlated predictor variables, leading to more accurate predictions. In addition, ELNET can overcome 
the limitations of time series variables used in regression analysis. When the behavior of time series 
variables is nonstationary and nonlinear, or when there is a problem with multicollinearity, ELNET 
can provide a solution. ELNET involves the decomposition of the original multivariate time-series 
predictors and the examination of their impact on the response variable, which helps to combat the 
correlation between the predictors. ELNET can eliminate or choose predictor variables that have a 
high level of correlation in the final model, which improves the accuracy of the predictions (Liu and 
Li, 2017).

The optimal selection of hyperparameters and variables is crucial in improving the prediction 
models’ performance and ensuring the results’ accuracy. Further experimentation and evaluation 
may lead to better results and an improved understanding of the relationships between the variables 
and the compressive strength of concrete. In the SVM model, the radial basis function (RBF) was 
used as the kernel function, costing 1000000 and an epsilon of 0.001. The Random Forest model 
used 1000 decision trees. In the Neural Network model, two hidden layers were used, each with 100 
nodes and the maximum iteration was set to 1000. The Elastic Net model used an alpha value of 0.1, 
an l1 ratio of 0.9, and random selection.

3.3 Evaluation Metrics
We used various famous regression metrics to evaluate the performance of these algorithms (Brown, 
2018). CE-SWM-PRED uses MAE, MSE, RMSE, and R2 to evaluate the quality of the different 
created models and compare their performance. MAE (Mean Absolute Error) measures the average 
magnitude of the errors in a set of predictions, without considering their direction. It is calculated 
as the average of the absolute differences between prediction and actual observation over the test 
sample. On the other hand, MSE (Mean Squared Error) is the average of the squared differences 
between the predicted and actual values, giving more weight to significant errors and making it more 
sensitive to outliers. RMSE (Root Mean Squared Error), which is the square root of the MSE, provides 
a measure of the absolute fit of the model to the data and is interpreted as the standard deviation of 
the unexplained variance. Finally, R2 (Coefficient of Determination) is a statistic that provides the 
proportion of the variation in the response variable, explained by the model’s predictor variables. It 
ranges between 0 and 1, with a higher value indicating a better fit. These metrics provide valuable 
information about the machine learning algorithms’ performance and help determine which algorithm 
best suits a given problem (Kaur, 2020).

MSE (Mean Squared Error)- The mean squared error is a standard measure of how well a model 
fits a dataset. It is the average of the squared differences between the predicted and actual values. 
MSE measures the average variance of the errors or the average squared deviation of the predictions 
from the actual values.
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MAE (Mean Absolute Error)- The mean absolute error measures how well a model fits a dataset. 
It is the average of the absolute differences between the predicted and actual values. MAE measures 
the average magnitude of the errors or the average absolute deviation of the predictions from the 
actual values.
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RMSE (Root Mean Squared Error)- The root mean squared error measures how well a model 
fits a dataset. It is the square root of the average of the squared differences between the predicted and 
actual values. RMSE measures the average variance of the errors or the average squared deviation 
of the predictions from the actual values.
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R-squared- R-squared measures how well a model fits a dataset. It is the proportion of the 
variance in the dependent variable that the model explains. It measures how close the data are to 
the fitted regression line. It is also known as the coefficient of determination, or the coefficient of 
multiple determination for multiple regression.
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4. RESULTS AND DISCUSSION

Tables 6-8 present the evaluation results of various learning algorithms (ANN, SVM, R.F., L.R., 
EN, R.R., LSR, RAN) for the three Agile software development models based on different measures 
(MAE, MSE, RMSE, R2).

From Table 6, which represents the models based on the data set of the Agile software development 
approach, it can be observed that the Random Forest (R.F.) algorithm had the highest maximum MAE 
and MSE values. In contrast, the Artificial Neural Network (ANN) had the lowest minimum MAE 
and MSE values. Similarly, the R.F. algorithm had the highest maximum RMSE value, while the 
Support Vector Machine (SVM) had the lowest minimum RMSE value. The Average MAE, MSE, 
and RMSE values were the lowest for the ANN algorithm.

Regarding the coefficient of determination (R2), the ANN and SVM algorithms had the highest 
maximum R2 values. In contrast, the Ridge Regression (R.R.) and Randomized Lasso Regression 
(RAN) algorithms had the lowest minimum R2 values. The average R2 values were highest for the 
ANN and SVM algorithms. The standard deviation (Stdev) values indicate the variability of the 
evaluation results for each algorithm. The R.F. and EN algorithms had the highest Stdev values for 
MAE, MSE, and RMSE, indicating more significant variability in their performance. On the other 
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hand, the SVM algorithm had the lowest Stdev values for MAE, MSE, and RMSE, indicating a more 
consistent performance.

Based on the evaluation results presented in Table 6 and shown in Fig . 3, the ANN and SVM 
algorithms are the most promising learning algorithms for Agile software development regarding 
their overall performance across different measures.

Table 7 presents the results of different learning algorithms used for a regression problem, 
evaluated using a waterfall dataset based on different performance metrics. For more readability, 
the Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), 
and R2 score are also shown in Figure 4. Upon analyzing the results, we can make the following 
observations: The MAE metric measures the average absolute difference between the predicted and 
actual values. The lowest MAE value is achieved by the SVM learning algorithm (75.64), followed 
by R.F. (282.72), LSR (2075.76), ANN (3689), L.R. (3977.3), RAN (4030), R.R. (4397.04), and EN 
(6754.9). Therefore, SVM is the best algorithm for minimizing MAE, while EN is the worst. The 
MSE metric measures the average squared difference between the predicted and actual values. The 
lowest MSE value is achieved by the SVM learning algorithm (103.54), followed by R.F. (2574.86), 
LSR (118244.54), ANN (316777.84), L.R. (382251.08), RAN (382298.2), R.R. (433495.94), and EN 
(932171.86). Therefore, SVM is the best algorithm for minimizing MSE, while EN is the worst. The 
RMSE metric measures the square root of the average squared difference between the predicted and 
actual values. The lowest RMSE value is achieved by the SVM learning algorithm (10.15747032), 
followed by R.F. (50.70861152), LSR (343.8579294), ANN (562.8340918), L.R. (618.2671082), 
RAN (618.2671082), R.R. (658.424549), and EN (965.510861).

Table 6. Evaluation results of learning algorithms for agile sub-dataset (ANN, SVM, R.F., L.R., EN, R.R., LSR, RAN)

Measure Learning Alog.

MAE

ANN SVN RF LR EN RR LSR RAN

MAX 4343.5 618.31 1335.17 4687.33 4682.95 7953.35 4688.79 4745

MIN 2360.09 89.06 332.88 2618.51 2423.6 5177.16 2444.04 2817.8

AVERAGE 3291.57 191.99 610.28 3581.38 3577 6718.19 3585.03 3716.43

STDEV 538.01 149.65 246.01 498.59 518.3 685.47 512.46 506.62

MSE

MAX 372980.36 16484.13 91677.05 450069.82 450539.94 1097557.19 450125.3 531425.4

MIN 120460.22 121.91 3031.69 152837.91 137399.14 510406.51 139223.41 135859.57

AVERAGE 232548.8 3215.65 15284.74 309122.15 309015.57 822731.17 309249.17 338104.61

STDEV 66092.74 4919.47 18786.55 75962.34

RMSE

MAX 603.298348 126.854703 299.117144 662.716652 663.054256 1034.92506 662.716652 720.109332

MIN 342.836862 10.887729 54.354244 386.218976 366.131538 705.761162 368.579167 364.105914

AVERAGE 471.632788 38.993262 108.792889 545.061658 544.724054 892.11857 544.977257 568.356334

STDEV 68.027206 40.850084 56.379868 68.871216 70.89684 84.823005 70.306033 84.569802

R2

MAX 0.83 0.9 0.9 0.8 0.81 0.49 0.81 0.81

MIN 0.69 0.89 0.85 0.61 0.61 0.29 0.61 0.49

AVERAGE 0.75 0.9 0.89 0.71 0.71 0.39 0.71 0.69

STDEV 0.06 0.1 0.09 0.05 0.05 0.06 0.05 0.02
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Therefore, SVM is the best algorithm for minimizing RMSE, while EN is the worst. The R2 
score metric measures the proportion of the variance in the target variable that is predictable from 
the independent variables. The highest R2 score is achieved by the SVM learning algorithm (0.91), 
followed by R.F. (0.91), LSR (0.82), ANN (0.84), L.R. (0.81), RAN (0.82), R.R. (0.62), and EN 
(0.5). Therefore, SVM and R.F. are the best algorithms for maximizing the R2 score, while EN is 
the worst. The SVM learning algorithm appears to be the best-performing overall, as it achieves the 
lowest values for MAE, MSE, and RMSE and the highest R2 score. Table 8 presents the evaluation 
results of learning algorithms using the Hybrid software development approach dataset. The SVM 
algorithm has the lowest MAE, indicating that it performs better at predicting the target variable.

In contrast, the ANN algorithm has the highest MAE, implying the most considerable absolute 
difference between the predicted and actual values. The R.F. algorithm has the highest MSE, indicating 
that it performs the worst in predicting the target variable. The EN algorithm has the lowest MSE, 
implying a minor squared difference between the predicted and actual values. The SVM algorithm 
has the lowest RMSE, indicating that it performs better predicting the target variable. The ANN 
algorithm has the highest RMSE, implying the most significant difference between the predicted and 
actual values. The EN algorithm has the highest R2, indicating that it explains the most variance in 
the target variable. The R.R. and LSR algorithms have the lowest R2, implying that they explain the 
minor variance in the target variable. Moreover, the results in Figure 5 suggest that the SVM and EN 
algorithms best predict the target variable, while the R.F. algorithm performs the worst. However, 

Figure 3. Summary of fitting indicators for the eight models used: Mean absolute error (MAE), mean square error (MSE), and the 
square root of the mean of the square of all of the errors (RMSE)
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the choice of the algorithm may also depend on other factors, such as the computational complexity 
and interpretability of the model.

Based on the evaluation results presented in Tables 6-8 and Figure 3, 4, and 5, it can be 
concluded that the performance of the learning algorithms varies depending on the dataset used and 
the performance metric evaluated. However, the SVM and ANN algorithms appear to be the most 
promising algorithms for Agile software development. In contrast, the SVM algorithm best predicts 
the target variable across all three software development approaches. It is important to note that 
the choice of an algorithm may also depend on other factors such as interpretability, computational 
complexity, and the specific problem being addressed.

Looking at the values in Table 9 for the AME of cost estimation for the three software development 
approaches, we can see that SVM has the lowest MAE values across all three software development 
models. It suggests that SVM has the best performance in terms of accuracy for cost estimation.

In terms of the different software development models, the Waterfall model has the lowest 
average MAE value (2795.58), compared to the Hybrid (3066.12) and Agile (3291.57) models. The 
results suggest that the cost estimation performance for the Waterfall model is better, compared to 
the other two models. It is important to note that the MAE values for all the models are relatively 
high, indicating room for improvement in the cost estimation process, regardless of the software 
development model used.

Looking at the RMSE values for the three software development models, we can see that SVM 
has the lowest RMSE value in all three cases, which indicates that SVM is the most accurate model 

Table 7. Evaluation results of learning algorithms waterfall sub-dataset (ANN, SVM, R.F., L.R., EN, R.R., LSR, RAN)

Measure Learning Alog.

MAE

ANN SVN RF LR EN RR LSR RAN

MAX 3689 525.14 1133.98 3981.02 3977.3 6754.9 3982.26 4030

MIN 2004.46 75.64 282.72 2223.94 2058.4 4397.04 2075.76 2393.2

AVERAGE 2795.58 163.06 518.32 3041.72 3038 5705.86 3044.82 3156.42

STDEV 456.94 127.1 208.94 423.46 440.2 582.18 435.24 430.28

MSE

MAX 316777.84 14000.22 77862.7 382251.08 382650.36 932171.86 382298.2 451347.6

MIN 102308.68 103.54 2574.86 129807.54 116695.16 433495.94 118244.54 115387.58

AVERAGE 197507.2 2731.1 12981.56 262542.1 262451.58 698757.98 262649.98 287157.34

STDEV 56133.56 4178.18 15955.7 64515.96 65798.12 129310.92 65297.78 83184.78

RMSE

MAX 562.83 118.35 279.05 618.27 618.58 965.51 618.27 671.81

MIN 342.836862 10.887729 54.354244 386.218976 366.131538 705.761162 368.579167 364.105914

AVERAGE 471.632788 38.993262 108.792889 545.061658 544.724054 892.11857 544.977257 568.356334

STDEV 68.027206 40.850084 56.379868 68.871216 70.89684 84.823005 70.306033 84.569802

R2

MAX 0.83 0.9 0.9 0.8 0.81 0.49 0.81 0.81

MIN 0.69 0.89 0.85 0.61 0.61 0.29 0.61 0.49

AVERAGE 0.75 0.9 0.89 0.71 0.71 0.39 0.71 0.69

STDEV 0.06 0.1 0.09 0.05 0.05 0.06 0.05 0.02
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for cost estimation among the four models. The other models have similar RMSE values, with R.F. 
and L.R. having slightly lower values than the others.

It is worth noting that the RMSE values are relatively high in absolute terms, indicating that the 
model’s predictions may still have a significant margin of error. Nonetheless, the relative differences 
between the models suggest that SVM is the most accurate of the models presented here.

The overall result for all evaluation metrics is shown in Figure 6.; when selecting a model for 
software development cost estimation, it is essential to consider the R-squared and RMSE values 
and other factors, such as model interpretability, data availability, and computational efficiency. 
Moreover, we can see that the SVM model has the lowest MSE for all three software development 
models, followed closely by the Random Forest (R.F.) model. These models can estimate the cost of 
software development projects more accurately than the other models. On the other hand, the Ridge 
Regression (R.R.) and Elastic Net (EN) models have the highest MSE values for all three software 
development models. They are less accurate in estimating the cost of software development projects. 
The R2 value is a statistical measure that indicates the proportion of the variation in the dependent 
variable (i.e., cost) explained by the independent variables (i.e., features). In this case, we can see that 
the R2 values for the three software development models (Hybrid, Waterfall, and Agile) are relatively 
similar across all eight machine learning algorithms. The highest R2 value is observed for the Support 
Vector Machine (SVM) and Random Forest (R.F.) algorithms for both the Waterfall and Agile models.

Figure 4. Summary of fitting indicators for the eight models used: Mean absolute error (MAE), mean square error (MSE), and the 
square root of the mean of the square of all of the errors (RMSE)
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In contrast, the highest R2 value for the Hybrid model is observed for the SVM algorithm. 
Overall, the R2 values indicate that the machine learning algorithms can explain a significant 
portion of the variation in software model cost estimates, with R2 values ranging from 0.39 to 0.91. 
However, it is worth noting that the R2 values are not extremely high, indicating that there may still 
be some unexplained variation in the cost estimates. Additionally, the R2 values alone do not provide 
information about the cost estimates’ accuracy. Other performance metrics, such as Mean Absolute 
Error (MAE) and Root Mean Squared Error (RMSE), should also be considered when evaluating the 
performance of the machine learning algorithms.

Selecting the appropriate software development model for cost estimation in a constrained 
environment requires careful consideration of project scope, requirements, and available resources. 
Each model has its benefits and drawbacks, and choosing the suitable model can significantly impact 
the accuracy and reliability of cost estimation. A Hybrid model may be a good option, as it provides 
a balance of flexibility and structure while considering the constraints of the project. Cost estimation 
is an essential part of software development, and it is crucial to choose an appropriate software 
development model for accurate and reliable cost estimation. Choosing a suitable software development 
model can be challenging in a constrained environment with limited resources. Among the different 
software development models, Waterfall, Agile, and Hybrid are popular options for cost estimation. 
The Waterfall model is a linear sequential approach that follows a strict order of development phases, 
which can be helpful in small projects with a well-defined scope and requirements. However, in 

Table 8. Evaluation results of learning algorithms hybrid sub-dataset (ANN, SVM, R.F., L.R., EN, R.R., LSR, RAN)

Measure Learning Alog.

MAE

ANN SVN RF LR EN RR LSR RAN

MAX 4046 575.96 1243.72 4366.28 4362.2 7408.6 4367.64 44.20

MIN 2198.44 82.96 310.08 2439.16 2257.6 4822.56 2276.64 2624.8

AVERAGE 3066.12 178.84 568.48 3336.08 3332 6258.04 3339.48 3461.88

STDEV 501.16 139.4 229.16 464.44 482.8 638.52 477.36 471.92

MSE

MAX 589.42 123.94 292.24 647.48 647.81 1011.12 647.48 703.55

MIN 113.56 2824.04 142369.56 127988.24 475447.16 129687.56 126554.12 2995.4

AVERAGE 2198.44 82.96 310.08 2439.16 2257.6 4822.56 2276.64 2624.8

STDEV 61565.84 4582.52 17499.8 70759.44 72165.68 72165.68 141824.88 91234.92

RMSE

MAX 589.42 123.94 292.24 647.48 647.81 1011.12 647.48 703.55

MIN 334.95 10.64 53.10424 377.34 357.71 689.53 360.10 355.73

AVERAGE 460.79 38.10 106.290 532.52 532.1968 871.6022 532.44422 5555.28564

STDEV 66.46276 39.91064 55.08328 67.28736 69.2664 82.8723 68.68918 82.62

R2

MAX 0.83 0.9 0.89 0.8 0.81 0.49 0.81 0.81

MIN 0.69 0.89 0.85 0.61 0.61 0.29 0.61 0.49

AVERAGE 0.75 0.89 0.89 0.71 0.71 0.39 0.71 0.69

STDEV 0.06 0.1 0.09 0.05 0.05 0.06 0.05 0.02
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constrained environments, it may not be practical, as it requires a lot of planning and documentation, 
which can be time-consuming and costly.

Conversely, the agile model is an iterative approach focusing on flexibility, adaptability, 
and collaboration between the development team and the client. It can be helpful in constrained 
environments, as it allows for changes to be made to the project scope and requirements based on 
client feedback, which can help save time and resources. However, estimating costs accurately in an 
Agile model can also be challenging, as the scope and requirements change frequently. The Hybrid 
model combines Waterfall and Agile elements, which can be beneficial in constrained environments. 
It allows for flexibility and adaptability, while maintaining some of the structure and planning of 
the Waterfall model. It can also be helpful in projects with evolving requirements and an uncertain 
scope. However, it can be challenging to estimate costs accurately in a Hybrid model, as it requires 
balancing the benefits of both Waterfall and Agile models, while accounting for their drawbacks. 
Cost estimation becomes critical to project planning and management in constrained environments. 
Cost estimation involves predicting the resources needed for a project, including time, money, and 
personnel. Accurate cost estimation is critical to ensure a project can be completed within the allocated 
budget and timeline. In practical terms, several factors should be considered when estimating the cost 
in constrained environments. One of the most important is the accuracy of the estimates. Estimation 
techniques, such as parametric estimation, analogous estimation, and expert judgment can be used to 
develop accurate cost estimates. It is also essential to consider the level of uncertainty in the estimates 
and to use contingency planning to account for unexpected events that may impact project costs. Other 
factors to consider are cost, scope, and schedule trade-offs. In constrained environments, it is often 
necessary to balance the resources available with the project’s scope and the completion timeline, 

Figure 5. Summary of fitting indicators for the eight models used: Mean absolute error (MAE), mean square error (MSE), and the 
square root of the mean of the square of all of the errors (RMSE)
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which requires making difficult decisions about project priorities, such as reducing the project scope 
or extending the timeline for completion. Finally, effective communication and collaboration among 
team members are essential for cost estimation in constrained environments. Project stakeholders, 
including team members, sponsors, and clients, must be involved in the estimation process and kept 
informed of any changes or updates to the estimates to ensure that everyone is on the same page and 
that there are no surprises later in the project lifecycle. In summary, cost estimation in constrained 
environments requires a careful balance between accuracy, scope, and timeline. Using effective 
estimation techniques, contingency planning, and communication and collaboration among team 
members, project managers can develop and manage cost estimates that help ensure their projects’ 
success.

Cost estimation using different software development models requires practical considerations in 
constrained environments. Constrained environments refer to limited resources, such as time, budget, 
or personnel. One practical consideration is carefully evaluating the chosen model’s ability to adapt 
to project scope or requirement changes. Agile and Hybrid development models are more suited to 
adapt to changes because they are iterative and focus on continuous improvement, allowing for more 
flexibility in cost estimation as the project progresses. Another consideration is to ensure that the 
estimated costs align with the project’s objectives and desired outcomes. In constrained environments, 
allocating resources efficiently and ensuring that the costs are not exceeding the available budget is 
crucial. Waterfall development models are typically more rigid and may not allow cost adjustments 
during the project’s lifecycle. Hence, it is essential to evaluate the project’s requirements carefully 
before choosing the model for cost estimation. Finally, in constrained environments, monitoring 
the project’s progress and adjusting the cost estimation is vital for implementing effective project 
management practices and tools that allow real-time tracking of project costs, risks, and timelines. 
Regularly updating and reviewing cost estimation using different software development models can 

Table 9. Software development mode

Software Dev. 
Mode

Learning Algo.

ANN SVM RF LR EN RR LSR RAN

MAE

HYBRID 3066.12 178.84 568.48 3336.08 3332 6258.04 3339.48 3461.88

WATERFALL 2795.58 163.06 518.32 3041.72 3038 5705.86 3044.82 3156.42

AGILE 3291.57 191.99 610.28 3581.38 3577 6718.19 3585.03 3716.43

MSE

HYBRID 216620.8 2995.4 14237.84 287949.4 287850.1 766379.7 288067.7 314946.8

WATERFALL 197507.2 2731.1 12981.56 262542.1 262451.6 698758 262650 287157.3

AGILE 232548.8 3215.65 15284.74 309122.2 309015.6 822731.2 309249.2 338104.6

RMSE

HYBRID 460.7865 38.09652 106.2909 532.5267 532.1968 871.6022 532.4442 555.2856

WATERFALL 439.9996 36.37792 101.496 508.5034 508.1885 832.2826 508.4247 530.2357

AGILE 471.63 38.99326 108.7929 545.0617 544.7241 892.1186 544.9773 568.356

R2

HYBRID 0.75 0.89 0.89 0.71 0.71 0.39 0.71 0.69

WATERFALL 0.76 0.91 0.9 0.72 0.72 0.4 0.72 0.7

AGILE 0.75 0.9 0.89 0.71 0.71 0.39 0.71 0.69
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help ensure the project remains on track and within budget. Evaluating the chosen model’s ability to 
adapt to changes, ensuring that the estimated costs align with the project’s objectives, and regularly 
monitoring the project’s progress are all critical factors to consider. With proper planning and project 
management, organizations can develop accurate cost estimates that align with their constraints and 
deliver successful projects.

The benefits of cost estimation using machine learning models for industries in developing 
countries with constrained environments are significant. Firstly, machine learning models can 
handle large volumes of data, enabling accurate cost estimation, which is instrumental to developing 
countries with limited resources. Data collection can be challenging due to inadequate infrastructure. 
Machine learning models can learn from available data and use this knowledge to make predictions, 
making it easier to estimate costs and make informed decisions. Secondly, machine learning models 
can help industries in developing countries optimize their resources and minimize costs significant 
in constrained environments, where resources are scarce and every resource is critical. Machine 
learning models can analyze data and identify cost-saving opportunities, helping industries make 
better decisions on where to allocate their resources and optimize their operations, reduce waste, 
and improve overall efficiency. Lastly, cost estimation using machine learning models can help 
industries in developing countries increase their competitiveness by accurately estimating costs and 
optimizing their resources. Industries can offer their products and services at competitive prices, 
making them more attractive to customers, helping industries grow, creating jobs, and contributing 
to the country’s economic development. In summary, cost estimation using machine learning models 

Figure 6. Summary of fitting indicators for the eight models used: Mean absolute error (MAE), mean square error (MSE), and the 
square root of the mean of the square of all of the errors (RMSE)
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can benefit industries in developing countries with constrained environments. By leveraging machine 
learning models, industries can accurately estimate costs, optimize their resources, and increase 
competitiveness, ultimately contributing to the country’s economic development.

5. CONCLUSION

In conclusion, this paper aimed to evaluate the performance of various regression models for software 
development cost estimation in constrained environments. The study utilized the SEERA dataset, 
representing economically and technically constrained software industries. The eight regression models 
evaluated were Elastic Net, Lasso Regression, Linear Regression, Neural Network, RANSACRegressor, 
Random Forest, Ride Regression, and SVM. The performance of these models was assessed using 
correlation coefficients and accuracy indicators. The results showed that SVM and Random Forest 
models best estimated software development costs in constrained environments. However, the Elastic 
Net, Lasso Regression, Linear Regression, Neural Network, and RANSACRegressor models also 
performed well. These findings provide insights into selecting appropriate regression models based 
on the specific software model and dataset used in the estimation process. The study highlights the 
importance of using relevant and quality datasets for accurate cost estimation in software development. 
The availability of datasets representing constrained environments is limited, and this paper fills a 
gap in the literature by using the SEERA dataset. The study also emphasizes software development 
industries’ challenges in constrained environments, such as limited resources, infrastructure, and 
expertise.

In conclusion, the study provides valuable insights into software development cost estimation in 
constrained environments. It can help project managers and developers select appropriate regression 
models for cost estimation in these settings. Further research can expand on this work by incorporating 
additional datasets and exploring the use of other machine-learning techniques for cost estimation 
in constrained environments.
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