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ABSTRACT

Heuristic algorithms are effective methods for solving complex optimization problems. The optimal 
algorithm selection for a specific optimization problem is a challenging task. Fitness landscape 
analysis (FLA) is used to understand the optimization problem’s characteristics and help select the 
optimal algorithm. A random walk algorithm is an essential technique for FLA in continuous search 
space. However, most currently proposed random walk algorithms suffer from unbalanced sampling 
points. This article proposes a Lévy flight-based random walk (LRW) algorithm to address this 
problem. The Lévy flight is used to generate the proposed random walk algorithm’s variable step size 
and direction. Some tests show that the proposed LRW algorithm performs better in the uniformity 
of sampling points. Besides, the authors analyze the fitness landscape of the CEC2017 benchmark 
functions using the proposed LRW algorithm. The experimental results indicate that the proposed 
LRW algorithm can better obtain the structural features of the landscape and has better stability than 
several other RW algorithms.
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1. INTRODUCTION

Evolutionary algorithms guided by heuristic principles have demonstrated their prowess in effectively 
addressing a multitude of real-world challenges (Zolpakar et al., 2021). In this dynamic landscape, the 
performance of diverse algorithms across distinct optimization problems exhibits notable variation. 
It is evident that a universal algorithmic solution capable of efficiently tackling all optimization 
problems remains an elusive aspiration (Singh et al., 2021). Regrettably, the present landscape of 
evolutionary algorithm research often overlooks the vital interplay between the specific optimization 
problem and the algorithmic approach adopted. Nevertheless, a promising avenue emerges through 
the analysis of an optimization problem’s fitness landscape, serving as a valuable compass in the 
design and tailoring of evolutionary algorithms (Lu et al., 2019).
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A fitness landscape takes form by compiling fitness values within the solution space, as 
highlighted by (Fragata et al. 2019). The tool of choice for unearthing the intricacies of optimization 
problems, Fitness Landscape Analysis (FLA), discerns essential attributes like entropy, neutrality, and 
smoothness. Scholars have been keenly focused on integrating FLA methodologies into evolutionary 
algorithms (Li et al., 2020). The exploration of landscape topologies has been pursued through 
various metrics, as evidenced by Malan et al.’s three-pronged approach (Malan et al., 2013). Similarly, 
Sallam et al. delved into landscape insights concerning diverse Differential Evolution (DE) operator 
selections (Sallam et al., 2017). Li et al. introduced dynamic fitness landscape analysis techniques 
to understand optimization problems comprehensively. Additionally, landscape characteristics are 
useful in assessing DE performance (Li et al., 2019). Among notable contributions, Huang et al. 
conceived a multi-objective differential evolution, titled Landscape Ruggedness Multi-Objective 
Differential Evolution (LRMODE), wherein information entropy informed the landscape’s structural 
examination, steering DE’s strategy selection (Huang et al., 2020). Tan et al.’s Fitness Landscape-
Based Differential Evolution (FLDE) stands out, leveraging fitness landscape features to train the 
K-nearest neighbors (KNN) algorithm. This approach aptly guides mutation strategy selection based 
on distinct optimization problems (Tan et al., 2021). Within this literature, the exploration of landscape 
topologies chiefly centers on dissecting the sample points gleaned from a random walk. Methods 
such as auto-correlation coefficients, entropic measures, and dispersion metrics have been explored 
in the context of simple random sampling, extracting pivotal landscape attributes tied to optimization 
problems (Lang et al., 2019).

A random walk (RW) is a technique employed in various fields, beginning from an initial point 
in the defined space, creating neighboring points through a mutation operator based on the initial 
point, selecting the next point randomly from these neighbors, and subsequently generating a new set 
of neighborhood points based on the chosen point. This process continues iteratively. An illustrative 
example includes the work of Flyvbjerg et al. (1992), who introduced a straightforward random walk 
(SRW) algorithm for landscape analysis. Expanding on this concept, Malan et al. (2014) introduced the 
progressive random walk (PRW) algorithm, which involves multiple walks to sample neighborhood 
structures in continuous space. Another approach Jana et al. (2018) proposed is the chaos-based 
random walk (CRW) algorithm, which leverages chaotic mappings to generate random numbers 
and gain insights into local landscape features. However, it’s important to note that the uniformity 
of sampling within the search space of a random walk algorithm significantly relies on the chosen 
sampling points. Consequently, the significance of RW algorithms or sampling methods is closely 
tied to landscape analysis (FLA), which offers valuable insights into the structural characteristics of 
the search space (Lang et al. 2020).

This paper introduces an innovative Lévy flight-based random walk (LRW) algorithm designed 
to extract essential fitness landscape features within a continuous search space. In the LRW approach, 
the Lévy flight mechanism governs both the step size and the directional changes of the random 
walk. The subsequent position of the walk is determined by the product of a random number and the 
adjustable step size. The LRW algorithm is compared against three other RW algorithms through 
a series of experiments to validate its effectiveness. Additionally, the proposed LRW algorithm is 
applied to analyze the landscape characteristics of the CEC2017 function set. The comprehensive 
experimental results unequivocally demonstrate the superior performance of the LRW algorithm in 
comparison to the other three RW algorithms.

The subsequent content of this paper is outlined as follows: In Section 2, we explore the simple 
random walk algorithm. Section 3 delves into an insightful discussion of several techniques tailored to 
analyze fitness landscapes. Transitioning to Section 4, we unveil the meticulously crafted framework 
underpinning our novel algorithm. The empirical findings and ensuing discussions are revealed in 
Section 5, shedding light on the experimental results. Summarizing the culmination of our study, 
Section 6 encapsulates the key takeaways and presents a prospective outlook on potential avenues 
for future research.
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2. SIMPLE RANDOM WALK ALGORITHM

A random walk embodies a stochastic process that involves sampling within a designated search 
space at specific step intervals. This approach finds application across various disciplines, serving as 
a fundamental model to elucidate the nature of stochastic activities and operational behaviors. Diverse 
random walk algorithms have been proposed to dissect combinatorial optimization problems, and 
research findings underscore the pivotal role of step size selection in these algorithms. Many studies 
have advocated employing a probabilistic distribution-based strategy to determine the random step 
distribution (Ochoa et al. 2019). The computation of a comprehensive global fitness landscape poses 
significant challenges. Typically, fitness landscapes are computed through sampling or by traversing 
the domain space through random walks. Algorithm 1 elucidates the workings of a specific instance, 
the random increasing walk algorithm.

A procedural outline for the random walk method unfolds: an initial landscape point is randomly 
generated within the domain space, and a specific walking strategy generates neighboring points, 
subsequently assessing whether these points fall within the defined problem bounds. The resulting 
sequence of the random walk is then established.

3. FITNESS LANDSCAPE ANALYSIS THEORY

The architecture of a fitness landscape encompasses an array of fitness values intricately woven within 
the solution space. These landscape characteristics serve as beacons illuminating the optimization 
problem’s intricacy, directing evolutionary algorithms in their quest for optimal solutions. A diverse 
array of features captures the essence of fitness landscape structures, including ruggedness, neutrality, 
deception, and evolvability. The realm of landscape analysis has birthed several metrics designed to 
scrutinize the intricacies of optimization problems. In the ensuing sections, we explore two widely 
employed methodologies for dissecting fitness landscapes, shedding light on their fundamental 
significance.

3.1 Fitness Distance Correlation
Jones introduced the pioneering concept of fitness distance correlation (FDC) to gauge optimization 
problems’ intricacies. Jones’ innovative approach posits that problem complexity can be quantified 
by analyzing the interplay between fitness values and the spatial separation of solutions from the 
optimal point (Jones et al. 1995). This dynamic relationship is succinctly encapsulated by the FDC 

Algorithm 1. Random increasing walk algorithm

Input: the problem’s dimensions (D) and domain (domain),
the walk steps (steps), and step size (size).
1. Initial an empty sequence walk =ϕ;
2. Initialize count = 1;
3. Generate a random number for a walk[1];
4. while count < steps do
5. for i=1,2,..,D do
6. Generate a random number (step) within [0, sizei];
7. Set walk[count+1]i = walk[count]i + step;
8. if walk[count+1]i >max(domain), then
9. Set walk[count+1]i =walk[count]i−domain;
10. end if
11. end for
12. count =count+1;
13. end while
Output: the random walk sequence walk.
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coefficient, which is a correlation measure that reveals the nuanced connection between fitness 
values and the proximity of solutions to the global optimum across the entire search space. The FDC 
coefficient is calculated as the correlation coefficient between fitness values and the distances to the 
nearest global optimum for all solutions within the search space. The fitness values in the model are 
determined by a sample of m solutions and the associated fitness value for each solution F={f1,f2,...,fm}. 
The Euclidean distance D={d1,d2,...,dm} is computed from each solution in the sample to the optimal 
solution in the model. The optimal solution is an ideal solution to a known problem. Thus, the FDC 
is defined as (Tan et al. 2022):

FDC
C
FD

F D
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d d
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where δF and δD are the variances of F and D, respectively, and ‾f and‾d are the mean values of 
F and D, respectively.

3.2 Ruggedness of Information Entropy
Information entropy is related to the number and distribution of locally optimal solutions. Malan et 
al. proposed a fitness landscape measurement method based on an information entropy theory (Malan 
et al. 2009). A random walk strategy is used to explore the character of a fitness landscape. Assume 
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the accuracy of the string S(ε) calculation depends on the parameter ε.
According to the definition of the string S(ε), the calculation of entropy H(ε) is computed as 

follows:
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where p and q are elements from the set {-1, 0, 1}, and p¹ q, the total number of different 
combinations [pq] is equal to 6. The probability P[pq] can be calculated by:
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where n[pq] is the number of the different combinations [pq] in the string S(ε).
The string S(ε) is sensitive to the size of parameter ε. By increasing the value of ε, the entropy 

H(ε) will become more prominent, which indicates the landscape is more straightforward. When the 
value of ε takes the maximum, the string S(ε) is the collection of 0, which is called the information 
stability and is also represented by ε*. Hence, the value of ε* would be equal to the most significant 
difference in fitness values. The ε* can be calculated by:

e∗ − =
= −{ }max f f

i i i

n

1 2
	 (6)

To depict the ruggedness of a fitness landscape more intuitively, a single value Rf is used to 
measure the ruggedness of information entropy:
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Therefore, the higher the Rf value, the more rugged landscape, while the value of Rf for a smooth 
landscape is small. The value of Rf captures the ruggedness, smoothness, and neutrality of landscapes. 
The ruggedness of information entropy is an effective measure index to estimate the complexity of a 
problem.

4. THE PROPOSED ALGORITHM

Fitness landscape analysis (FLA) serves as a critical tool for unraveling the inherent structural 
complexities of optimization problems. This intricate landscape structure is meticulously fashioned 
by deploying a Random Walk (RW) algorithm, which diligently generates an array of neighboring 
points. Thus, the efficacy of FLA is inherently intertwined with the characteristics of the chosen RW 
algorithm. The overarching objective lies in the development of an RW algorithm that comprehensively 
traverses the entire search space, thus enabling the algorithm to discern the defining attributes of 
the optimization problem. This endeavor is necessitated by the realization that the existing sampling 
points within the search space often fall short, undermining the thoroughness of landscape analysis. 
To address this limitation, we introduce the Lévy flight-based random walk algorithm. This innovative 
method harnesses the power of Lévy flights to furnish both the direction and the scaling factor for 
the step size of the walk. In the subsequent sections, we delve into an exposition of the Lévy flight 
concept and unveil the proposed algorithm’s intricacies.

4.1 Lévy Flight
Lévy flight is a distinctive flight pattern observed in numerous flying creatures in the natural 
world. This pattern involves an intriguing interplay of both lengthy and brief steps, adhering to the 
principles of the Lévy distribution (Kaidi et al. 2022). Nonetheless, the practical implementation of 
the Lévy distribution function presents certain complexities. To address this, Mantegna proposed 



International Journal of Cognitive Informatics and Natural Intelligence
Volume 17 • Issue 1

6

a methodology for simulating the Lévy distribution, enabling the computation of Lévy flight steps 
through the following formula (Jensi et al. 2016):
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where, Γ(λ) is the standard gamma function with an index λ, and significant steps (s>s0>0) which 
is generated by the following transformation formula:
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where u and v are two random samples drawn from a Gaussian normal distribution with a mean 
equal to zero, and standard deviations δս and δv can be expressed as:
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The parameter λ is set to 1.5. In fact, a Lévy flight diagram with 500 steps is shown in Fig.1.

4.2 LRW Algorithm
A D-dimensional random sampling point in the continuous search space can be denoted as X = {x1, 
x2,...,xi, xD }, and the domain of the search space for each sampling point is limited in x x

1 1
min, max{ } ,...,

x x
i i
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D D
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i
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xi. The initial end of the walk in the search space is generated by:
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where rand(0,1) is a uniformly distributed random number in [0,1]. First, generating a random 
point as a current point, the next point is obtained by disturbing each dimension of the current point, 
which uses a Lévy step size and the random number to generate the perturbing steps. The next point 
in the walk is generated recursively as:

x x s
j i j i, ,
= + ∗−1 d 	 (14)

where j=1,2,...,N. d ∈ −( )1 1, , s is the Lévy flight step size. Each random point in the walking 
process needs to be restricted to a search space boundary. The general framework of the proposed 
LRW algorithm is presented in Algorithm 2.
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In essence, the effectiveness of an RW algorithm is intricately tied to the judicious selection 
of its step size. Employing larger step sizes often results in seemingly random leaps across 
the search space, resembling abrupt shifts to arbitrary locations. Consequently, utilizing such 
leaps to estimate landscape metrics like ruggedness tends to lack meaningful interpretation. 
Conversely, adopting exceedingly small step sizes confines the walk to a minute region within 

Figure 1. A Lévy flight diagram with 500 steps

Algorithm 2. Lévy random walk algorithm

Input: the problem’s dimensions (D) and domain (domain), the walk steps (steps), and step size (size).
1. Initial an empty sequence walk =ϕ;
2. Initialize count = 1;
3. Generate a random number for a walk[1];
4. while count < steps do
5. for i=1,2,..,D do
6. Generate a random number (step) within [0, sizei];
7. Set walk[count+1]i = walk[count]i + step* δ;
8. if walk[count+1]i >domain then
9. Set walk[count+1]i =max(domain);
10. else
11. Set walk[count+1]i =min(domain);
12. end if
13. end for
14. count =count+1;
15. end while
Output: the random walk sequence walk.
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the search space, rendering a comprehensive understanding of the entire fitness landscape 
structure elusive. Hence, the decision regarding the RW algorithm’s step size must strike a 
balance, ensuring a reasonable proximity between successive points in the walk that, in turn, 
facilitates enhanced coverage of the search space. To this end, we consider four distinct RW 
algorithms including SRW, PRW, CRW, and LRW. Each comprising 200 steps characterized 
by various step sizes, namely 5, 10, and 15. These configurations are visually depicted in Fig. 
2, Fig.3, Fig.4, and Fig.5, respectively.

When contrasted with smaller step sizes, employing a step size of 15 yields a more uniformly 
distributed set of sampling points. Furthermore, Fig. 2 showcases how SRW tends to cluster 

Figure 2. One independent sample walk of 200 steps with variable step size by SRW; (a) s = 5, (b) s = 10, (c) s =15

Figure 3. One independent sample walk of 200 steps with variable step size by PRW; (a) s = 5, (b) s = 10, (c) s =15

Figure 5. One independent sample walk of 200 steps with variable step size by LRW; (a) s = 5, (b) s = 10, (c) s =15
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around two distinct angular regions for varying step sizes. Meanwhile, the step-increasing strategy 
employed by PRW leads to a concentration of random points along a single line, evident in Fig. 
3. The landscape coverage depicted in Fig. 4 reveals that CRW outperforms SRW and PRW in 
terms of overall coverage, albeit with an area surrounding the target space remaining unexplored. 
However, it is the LRW algorithm, as depicted in the visual representation (Fig. 5), that shines 
by offering a significantly broader coverage area. This observation leads us to conclude that the 
Lévy variable-step random walk strategy proves to be an effective means of comprehensive search 
space sampling. Empirical experiments corroborate these findings, revealing that a step size of 15 
yields satisfactory results in terms of search space coverage when employing the LRW algorithm 
for landscape analysis.

4.3 Coverage Testing Walks
The assessment of the coverage area within the continuous search space hinges on quantifying the 
deviation from a uniform sampling distribution. To accomplish this, a histogram serves as a tool to 
scrutinize the distribution of a selected set of points, facilitating the estimation of the probability 
distribution across the continuous search space. In our experimental context, Fig. 6 visually portrays 
the distributions of four walks comprising 10,000 points each within a two-dimensional space confined 
within the interval of [-100, 100]. This histogram encompasses 100 bins of equal dimensions, resulting 
in an average of 100 points allocated per bin.

An insightful observation drawn from Fig. 6 is the discernible deviation of frequencies obtained 
from SRW, PRW, CRW, and LRW, extending beyond the mean value of 100. Particularly striking 
is the distribution of sample points attributed to LRW, which notably achieves a more accurate and 
comprehensive search space coverage when juxtaposed with the other three random walk methods. 
The issue of clustering within the search space is vividly elucidated by the histogram representation 
of these walks.

5. EXPERIMENTAL RESULTS AND ANALYSIS

5.1 Benchmark Functions
To evaluate the efficacy of the proposed LRW algorithm, we employ both information entropy 
and fitness distance correlation (FDC) as analytical tools to scrutinize the landscapes of 
the CEC2017 benchmark functions, as outlined by Mohamed et al. (2017). This benchmark 
compilation encompasses a total of 30 functions, each characterized by distinct attributes. These 
problems are broadly categorized into four types: unimodal functions (f1-f3), basic multimodal 
functions (f4-f10), hybrid functions (f11–f20), and composite functions (f21–f30). The search space 

Figure 4. One independent sample walk of 200 steps with variable step size by CRW; (a) s = 5, (b) s = 10, (c) s =15
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for all these functions is defined within the domain of [-100, 100]D, following the specifications 
put forth by Wu et al. (2016).

During the experimental phase, a total of thirty independent walks were executed on each 
benchmark function, encompassing a total of 104

*D steps for each walk. The step size (s) was 
consistently set to 15 throughout the entirety of the experiment. The dimensions of the functions 
were considered as D=30 and 50, reflecting the varying complexities of the optimization landscapes. 
Moreover, for the purpose of comparison, the SRW, PRW, and CRW were pitted against the LRW. 
The yardstick for evaluating the performance of these algorithms in landscape analysis is the accuracy 
they offer. Specifically, the entropic measure (H) was computed based on the maximum value of ε 
for each individual walk.

5.2 The Results of FDC
The fitness landscape analysis results of FDC for 30D, and 50D are shown in Table 1 and 
Table 2. Three well-known random walk algorithms, including SRW, PRW, and CRW, are 
compared with the LRW algorithm. It can be observed from Table 1 and Table 2 that the 
FDC values are different for each benchmark function, and the mean values obtained by all 
algorithms are similar.

Figure 6. Histogram of four random walk algorithms for a sample of 10000 points
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When the problem’s dimensionality changes, the magnitude of the difference in the FDC 
value of each benchmark function is not very significant. As the number of problem dimensions 
increases, all algorithms’ stability worsens. For 30D optimization, LRW is significantly better 
than the other three algorithms, CRW demonstrates the worst performance, and PRW is slightly 
inferior to LRW. Fig. 7 visually represents the mean and standard deviation of the FDC for each 
benchmark function.

Table 1. The results of FDC for 30D

Functions SRW PRW CRW LRW

Mean Std. Mean Std. Mean Std. Mean Std.

f1 0.849 9.254E-02 0.829 4.875E-02 0.814 8.206E-02 0.827 3.439E-02

f2 0.146 1.608E-01 0.087 5.117E-02 0.106 1.001E-01 0.069 4.146E-02

f3 0.074 2.395E-01 0.042 1.242E-01 0.030 1.813E-01 0.052 8.461E-02

f4 0.592 2.704E-01 0.664 7.553E-02 0.626 1.648E-01 0.668 4.253E-02

f5 0.776 1.496E-01 0.818 3.885E-02 0.791 1.074E-01 0.813 3.017E-02

f6 0.648 9.961E-02 0.723 4.158E-02 0.691 8.446E-02 0.734 2.845E-02

f7 0.876 8.415E-02 0.872 3.145E-02 0.882 5.547E-02 0.870 2.266E-02

f8 0.756 1.115E-01 0.800 3.468E-02 0.795 7.726E-02 0.782 4.438E-02

f9 0.558 1.198E-01 0.646 4.098E-02 0.594 9.844E-02 0.656 3.638E-02

f10 0.060 6.437E-02 0.082 2.346E-02 0.081 7.732E-02 0.086 3.052E-02

f11 0.008 2.575E-01 0.139 1.143E-01 0.104 2.105E-01 0.114 8.496E-02

f12 0.640 2.162E-01 0.653 6.660E-02 0.625 1.608E-01 0.634 6.464E-02

f13 0.447 2.564E-01 0.475 1.224E-01 0.493 2.154E-01 0.490 7.744E-02

f14 0.116 2.574E-01 0.146 1.052E-01 0.041 2.523E-01 0.160 1.001E-01

f15 0.234 3.003E-01 0.236 9.472E-02 0.269 2.409E-01 0.253 8.650E-02

f16 0.307 3.577E-01 0.361 1.273E-01 0.399 1.792E-01 0.375 7.777E-02

f17 0.345 1.769E-01 0.232 8.007E-02 0.257 1.955E-01 0.284 7.402E-02

f18 0.107 2.783E-01 0.193 1.342E-01 0.233 2.464E-01 0.190 7.998E-02

f19 0.265 3.002E-01 0.238 1.303E-01 0.258 2.797E-01 0.244 8.798E-02

f20 0.158 8.698E-02 0.160 4.318E-02 0.148 9.205E-02 0.179 3.459E-02

f21 0.186 2.675E-01 0.064 1.269E-01 0.039 2.379E-01 0.085 1.022E-01

f22 0.019 1.251E-01 -0.015 6.807E-02 -0.007 7.529E-02 -0.008 5.286E-02

f23 -0.125 3.063E-01 -0.158 1.600E-01 -0.261 2.349E-01 -0.162 1.228E-01

f24 0.107 3.472E-01 0.127 1.558E-01 0.119 3.369E-01 0.122 1.171E-01

f25 0.404 2.332E-01 0.345 1.035E-01 0.350 2.174E-01 0.324 7.520E-02

f26 0.110 3.312E-01 0.119 1.328E-01 0.123 2.436E-01 0.124 8.516E-02

f27 0.042 3.319E-01 0.087 1.338E-01 0.134 2.910E-01 0.028 8.915E-02

f28 0.049 2.861E-01 0.012 1.149E-01 0.026 2.630E-01 0.006 1.239E-01

f29 0.053 2.480E-01 0.050 1.262E-01 0.107 2.007E-01 0.083 9.399E-02

f30 -0.038 3.558E-01 -0.054 1.688E-01 -0.062 3.046E-01 0.000 1.024E-01
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5.3 The Results of Entropy
The fitness landscape analysis results of information entropy for different dimensions are shown in 
Table 3 and Table 4. In the experiments, we only consider the maximum value of information entropy. 
Similarly, we can find from the Tables that the H values are different for each benchmark function. 
The information entropy value does not change much for optimization problems with different 
dimensions. The standard deviations of the values obtained by the four algorithms are all within 0.1 

Table 2. The results of FDC for 50D

Functions SRW PRW CRW LRW

Mean Std. Mean Std. Mean Std. Mean Std.

f1 0.824 1.246E-01 0.826 3.783E-02 0.842 8.639E-02 0.830 3.608E-02

f2 0.026 9.964E-02 0.018 3.279E-02 0.016 7.712E-02 0.021 2.825E-02

f3 -0.040 3.407E-01 0.029 1.208E-01 0.040 2.402E-01 0.056 7.850E-02

f4 0.621 2.256E-01 0.586 7.622E-02 0.592 2.360E-01 0.593 6.343E-02

f5 0.782 1.305E-01 0.821 3.512E-02 0.817 1.172E-01 0.818 3.775E-02

f6 0.630 1.355E-01 0.725 5.099E-02 0.675 1.075E-01 0.741 3.053E-02

f7 0.912 4.827E-02 0.872 2.730E-02 0.891 6.132E-02 0.879 2.576E-02

f8 0.751 1.303E-01 0.813 4.313E-02 0.781 1.114E-01 0.815 2.426E-02

f9 0.545 1.309E-01 0.663 4.568E-02 0.574 1.668E-01 0.645 4.561E-02

f10 0.073 1.033E-01 0.073 3.354E-02 0.070 1.030E-01 0.072 2.458E-02

f11 0.061 2.801E-01 0.058 1.027E-01 0.179 2.650E-01 0.046 1.006E-01

f12 0.627 2.212E-01 0.618 9.129E-02 0.599 2.241E-01 0.645 7.213E-02

f13 0.496 3.290E-01 0.492 1.057E-01 0.488 2.337E-01 0.507 6.549E-02

f14 0.034 3.388E-01 0.125 1.031E-01 0.229 2.539E-01 0.153 1.091E-01

f15 0.367 2.761E-01 0.293 1.276E-01 0.354 2.847E-01 0.338 9.557E-02

f16 0.272 3.786E-01 0.392 1.202E-01 0.339 2.739E-01 0.379 1.096E-01

f17 0.218 2.231E-01 0.135 1.012E-01 0.170 2.507E-01 0.145 9.004E-02

f18 0.183 3.019E-01 0.103 1.371E-01 0.131 3.320E-01 0.100 1.001E-01

f19 0.389 3.186E-01 0.394 1.201E-01 0.385 3.381E-01 0.351 8.705E-02

f20 0.165 1.014E-01 0.190 6.371E-02 0.155 1.407E-01 0.202 4.134E-02

f21 -0.210 3.858E-01 -0.135 1.312E-01 -0.155 3.296E-01 -0.176 1.042E-01

f22 0.030 1.195E-01 0.101 4.847E-02 0.116 1.473E-01 0.101 4.734E-02

f23 -0.059 3.732E-01 -0.045 1.569E-01 -0.016 3.397E-01 -0.084 1.219E-01

f24 -0.034 4.364E-01 -0.010 1.709E-01 0.001 3.631E-01 0.005 1.232E-01

f25 0.268 3.377E-01 0.055 1.133E-01 0.254 2.853E-01 0.101 9.899E-02

f26 0.009 3.957E-01 0.037 1.112E-01 0.245 2.663E-01 0.058 7.258E-02

f27 -0.025 3.744E-01 -0.007 1.215E-01 -0.052 3.701E-01 -0.043 1.035E-01

f28 0.191 3.153E-01 0.036 1.363E-01 0.110 3.206E-01 0.025 1.086E-01

f29 0.105 3.223E-01 0.049 8.742E-02 -0.032 3.058E-01 0.047 8.332E-02

f30 0.064 4.586E-01 -0.068 1.604E-01 0.001 3.042E-01 -0.056 9.783E-02



International Journal of Cognitive Informatics and Natural Intelligence
Volume 17 • Issue 1

13

with relatively minor variations, except the CRW algorithm deviates more than 0.1 on some functions. 
The overall performance of the LRW algorithm seems to have a clear advantage from the calculation 
results. The version of SRW and CRW is lower than PRW. The Fig. 8 shows the variation curve of 
each algorithm on different functions.

5. CONCLUSION

A random walk algorithm is an effective strategy for dissecting the landscape structure inherent to 
optimization problems. In this research endeavor, we introduce a Lévy flight-based random walk 
(LRW) algorithm tailored to characterize optimization problem attributes, including information 
entropy and fitness distance correlation (FDC). This novel algorithm capitalizes on the principles 
of Lévy flight, thereby enhancing its performance. The proposed LRW algorithm’s efficacy is 
meticulously assessed using the comprehensive CEC 2017 test suite. The empirical findings, acquired 
through experimentation on standard benchmark functions, unequivocally demonstrate the LRW 
algorithm’s proficiency in discerning essential landscape features like ruggedness and deception. 
The performance of the LRW algorithm notably surpasses its counterparts in terms of stability 
and accuracy. Future research endeavors will explore additional features, such as fitness cloud and 
auto-correlation, employing the proposed random walk algorithms as a basis for investigation. This 

Figure 7. Mean and standard deviation of FDC value for all random walk algorithms with different dimensions
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extension of our work promises to contribute to a more comprehensive understanding of optimization 
landscape characteristics.
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f21 0.817 2.210E-02 0.823 7.472E-03 0.527 7.700E-02 0.554 3.378E-02

f22 0.857 8.349E-03 0.396 4.099E-03 0.805 9.343E-03 0.803 1.089E-02

f23 0.834 1.178E-02 0.540 4.564E-02 0.844 7.229E-03 0.854 6.002E-03

f24 0.818 7.640E-03 0.801 8.094E-03 0.842 8.844E-03 0.866 6.859E-03

f25 0.795 1.246E-02 0.858 7.192E-03 0.831 1.117E-02 0.835 6.066E-03

f26 0.801 1.324E-02 0.865 8.985E-03 0.842 9.585E-03 0.856 5.139E-03

f27 0.819 1.161E-02 0.833 5.973E-03 0.857 1.112E-02 0.852 1.039E-02

f28 0.814 7.403E-03 0.860 9.434E-03 0.843 7.533E-03 0.867 6.878E-03

f29 0.415 2.908E-02 0.858 1.061E-02 0.540 7.372E-02 0.570 2.457E-02

f30 0.573 6.330E-02 0.870 6.880E-03 0.810 7.620E-03 0.826 6.491E-03
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Table 4. The results of entropy for 50D

Functions SRW PRW CRW LRW

Mean Std. Mean Std. Mean Std. Mean Std.

f1 0.817 7.357E-03 0.825 9.451E-03 0.809 8.637E-03 0.829 9.529E-03

f2 0.434 3.723E-02 0.405 7.924E-03 0.522 6.021E-02 0.404 5.655E-03

f3 0.593 8.280E-02 0.551 3.776E-02 0.562 8.650E-02 0.548 3.603E-02

f4 0.802 1.089E-02 0.811 8.017E-03 0.805 8.201E-03 0.812 1.028E-02

f5 0.847 7.508E-03 0.861 7.245E-03 0.836 8.232E-03 0.857 6.906E-03

f6 0.857 7.990E-03 0.868 5.704E-03 0.842 7.604E-03 0.867 7.272E-03

f7 0.845 8.156E-03 0.833 5.536E-03 0.837 8.643E-03 0.838 7.445E-03

f8 0.851 8.055E-03 0.857 6.420E-03 0.835 7.642E-03 0.829 9.529E-03

f9 0.864 7.546E-03 0.862 9.614E-03 0.809 8.637E-03 0.404 5.655E-03

f10 0.853 6.729E-03 0.869 6.332E-03 0.522 6.021E-02 0.548 3.603E-02

f11 0.817 7.357E-03 0.590 1.899E-02 0.562 8.650E-02 0.812 1.028E-02

f12 0.434 3.723E-02 0.822 8.416E-03 0.805 8.201E-03 0.857 6.906E-03

f13 0.593 8.280E-02 0.820 8.211E-03 0.836 8.232E-03 0.867 7.272E-03

f14 0.802 1.089E-02 0.825 9.451E-03 0.842 7.604E-03 0.838 7.445E-03

f15 0.847 7.508E-03 0.405 7.924E-03 0.837 8.643E-03 0.855 6.443E-03

f16 0.857 7.990E-03 0.551 3.776E-02 0.835 7.642E-03 0.861 8.204E-03

f17 0.845 8.156E-03 0.811 8.017E-03 0.864 9.205E-03 0.870 7.256E-03

f18 0.851 8.055E-03 0.861 7.245E-03 0.840 6.826E-03 0.590 2.234E-02

f19 0.864 7.546E-03 0.868 5.704E-03 0.570 9.260E-02 0.825 6.161E-03

f20 0.853 6.729E-03 0.833 5.536E-03 0.810 8.476E-03 0.829 9.529E-03

f21 0.589 7.352E-02 0.857 6.420E-03 0.809 8.141E-03 0.404 5.655E-03

f22 0.815 8.370E-03 0.862 9.614E-03 0.786 1.772E-02 0.548 3.603E-02

f23 0.813 6.709E-03 0.869 6.332E-03 0.811 1.158E-02 0.812 1.028E-02

f24 0.779 2.216E-02 0.590 1.899E-02 0.805 1.073E-02 0.857 6.906E-03

f25 0.811 8.366E-03 0.822 8.416E-03 0.658 1.037E-01 0.867 7.272E-03

f26 0.805 8.540E-03 0.820 8.211E-03 0.796 1.121E-02 0.838 7.445E-03

f27 0.672 6.059E-02 0.774 1.123E-02 0.809 8.191E-03 0.855 6.443E-03

f28 0.789 1.151E-02 0.824 7.365E-03 0.841 5.728E-03 0.861 8.204E-03

f29 0.813 8.597E-03 0.798 1.022E-02 0.813 1.327E-02 0.870 7.256E-03

f30 0.854 6.367E-03 0.568 8.213E-02 0.841 6.451E-03 0.590 2.234E-02
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Figure 8. Mean and standard deviation of entropy value for all random walk algorithms with different dimensions
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