
DOI: 10.4018/IJORIS.329240

International Journal of Operations Research and Information Systems
Volume 14 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Truck Fuel Consumption Prediction 
Using Logistic Regression and 
Artificial Neural Networks
Sheunesu Brandon Shamuyarira, National University of Science and Technology, Zimbabwe

Trust Tawanda, National University of Science and Technology, Zimbabwe*

 https://orcid.org/0000-0003-2665-9711

Elias Munapo, North West University, South Africa

ABSTRACT

Rising international oil costs and the transport industry’s recovery from the effects of Covid-19 
resulted in the efficient management of fuel by logistics companies becoming a significant concern. 
One way of managing this is by analyzing the fuel consumption of trucks so as to better utilize the 
costly resource. Twenty-three driving data variables were gathered from 210 freight trucks and 
analyzed this data. Relevant variables that impact truck fuel consumption were extracted from the 
initial 23 variables gathered using stepwise regression, and then a prediction model was built from 
the identified relevant variables utilizing a binary logistic regression model. In addition, a back 
propagation neural network was employed in this study to create a second model of truck fuel use, 
and comparisons between the two models were made. The outcomes showed that the binary logistic 
regression model and the back-propagated neural network model prediction accuracy were 68.4% 
and 77.2%, respectively.
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1. INTRODUCTION

The invasion of Ukraine by Russia has had a negative ripple effect in the global oil market. Russia 
has been one of the world’s largest oil producing country and now the war combined with economic 
sanctions on Russia, has had huge repercussions on the global economy as Ukraine and Russia are 
major players in the food, energy and mining sectors. Since Zimbabwe does not mine petroleum, 
it is a net importer and as such a price taker of the foregoing global oil prices, thus the efficient 
management of fuel by logistics companies has become a significant concern. One way of managing 
this is by analyzing the fuel consumption of trucks so as to better utilize the costly resource. The freight 
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industry in Southern Africa is largely dominated by road transport and there are many cross-border 
transporters with both domestic and international origins. Transportation networks have become the 
major lifeline of modern societies, not only by ensuring individual well-being, but by also fostering 
economic growth through fast and reliable transportation activities, Muriel-Villegas et al. (2019) 
Since freight trucks carry the majority of commodities by road, they often consume much more fuel 
than other kinds of vehicles because of their characteristics such as large loads and long distance 
travel. Zimbabwe does not mine petroleum, thus it is a net importer of fuel and as such a price taker 
of the ongoing global oil prices. Since Russia invaded Ukraine there has been a turbulence in the 
global petroleum market which has been causing global spikes in crude oil prices. To add on this, 
Zimbabwe has had the highest regional fuel prices thus there is need for management to address the 
increasing cost of operation rising from both high fuel consumption and high fuel cost. Moreover, to 
reduce emissions thus lowering the carbon footprint, as the sustainable growth of the environment 
and energy has become a requirement all over the world, particularly in the transportation sector.

2. LITERATURE REVIEW

The fuel consumption of freight trucks is influenced by a number of different factors. Fuel consumption 
can differ significantly from truck to truck, even when comparing two that are of the same make, 
model, year, and fuel type. There are a number of factors that may contribute to this. Some of them fall 
under many categories, including those relating to drivers, weather, traffic, travel, and vehicles, among 
others. Barbado and Corcho (2021) evaluated the literature on a number of factors that might affect 
a vehicle’s fuel consumption. Considering the effects related to travel factors, the authors identified 
eco-routing as a crucial element in reducing fuel consumption. By considering the optimum route, one 
could save fuel not only in terms of distance and travel time, but also in comparison to other viable 
routes. According to Faria et al. (2019), with regards to driver related factors, aggressive driving 
compared to calmer driving can account for up to 40% of a vehicle’s fuel consumption. A mesoscopic 
fuel consumption estimation model was created by, Chen et al. (2017), that took into account factors 
like the number of lanes and free-flow speed that had previously received little attention. The study’s 
findings demonstrated that these elements had an effect on motor vehicle fuel consumption as well. 
Freight transport companies now employ telematics services to track their trucks and keep an eye 
on variables like fuel usage in an effort to minimize the costs connected with fuel consumption. The 
data gathered by this state-of-the-art digital monitoring and collection technology is more diverse and 
accurate than manual recording. It is crucial for fleet managers to process and make use of the data 
generated by the fleet intelligent management system. By carefully examining the data and learning 
the rule of fuel consumption during truck operation, it is possible to lower the fuel consumption of 
trucks to a certain extent. Malekian et al. (2016) developed a wireless on-board diagnostic system 
(OBD II) fleet management system. The system was aimed at measuring speed, distance, and fuel 
consumption of vehicles for tracking and analysis purposes. The findings demonstrated that the 
system could successfully read a variety of parameters and analyze, transmit, and display readings. 
In order to anticipate the fuel consumption of diesel buses, Sun et al. (2021) computed the relevant 
fuel consumption model utilizing real-time driving and fuel consumption data collected by on-board 
sensors. Based on the mobile phone terminals and on-board diagnostic system (OBD) installed in 
taxis, Yao et al. (2020) extracted driving behavior and fuel consumption data and were able to predict 
vehicle fuel consumption based on mobile phone data. Many scholars have volunteered their time to 
estimate and calculate the fuel consumption of trucks in an effort to identify the best driving behaviors 
that can reduce both fuel consumption and greenhouse gas emissions. These can be divided into two 
categories namely historical models and modern data driven models. Examples of historical models 
include Vehicle Specific Power (VSP) Model, Comprehensive Modal Emission Model (CMEM), and 
Emissions from Traffic (EMIT) Model. Zhang et al. (2023) by using vehicle acceleration and jerk as 
the defining parameters, created a unique computational model for the volatile condition (defined by 
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acceleration and jerk) and classified it into eight varieties. They discovered that the percentage and 
level of contribution of each form of jerk to fuel usage varied. Additionally, they compared their model 
to the VSP and VT-Micro models and discovered that their model offered more precise estimates for 
new routes. An EMIT model was proposed by Cappiello et al. (2002) to forecast the fuel consumption 
and emissions for light-duty vehicles. The performance of this model was comparable to CMEM. 
Examples of the modern data driven models include the decision tree models, random forest models, 
artificial neural network models and others. Ma et al. (2014), evaluated the impact of driving behavior 
on the fuel of urban buses during acceleration using the C4.5 decision tree. With fewer training data 
and a good capacity for generalization, this model had a prediction accuracy of more than 85%. In 
order to estimate car fuel consumption based on environmental, driver, and vehicle views, Li et al. 
(2022) suggested a multi-view deep neural network (MVDNN). To create several perspectives of 
the driving scenario, they employed many sorts of data, including weather, road conditions, traffic 
flow, driver behavior, vehicle speed, acceleration, etc. They then integrated these observations using 
a fusion layer and sent them into a deep neural network to forecast the fuel use. They discovered 
that MVDNN performed better than other approaches like linear regression and the random forest 
model. The best approach for predicting truck fuel consumption relies greatly on a variety of factors.

There is no one strategy that is always the best. What is best depends on the specifics of the 
problem, the data structure, the characteristics employed, the degree to which those features can be 
used to distinguish the classes, as well as the classification’s goal. Logistic regression and neural 
networks are two common methods for predicting vehicle fuel consumption based on driving cycle 
data. An empirical comparison of logistic regression and neural networks in predicting vehicle 
fuel consumption can reveal their strengths and weaknesses in terms of accuracy, robustness, 
interpretability, and computational efficiency. However, such a comparison is not very common in 
the literature. Most studies focus on either logistic regression or neural networks, but not both. For 
example, Capraz et al. (2016), used logistic regression to classify driving cycles into high or low fuel 
consumption categories based on speed and acceleration features. Topic et al. (2022), used neural 
networks to predict vehicle fuel consumption based on speed, acceleration, and road slope inputs. 
Both studies reported good performance of their models, but they did not compare them with other 
methods. Therefore, a possible research gap is to conduct a comprehensive and systematic comparison 
of logistic regression and neural networks in predicting vehicle fuel consumption using real-time 
driving cycle data. Such a comparison can provide insights into the advantages and disadvantages 
of each method, as well as the factors that affect their performance, such as data quality, feature 
selection, model complexity, parameter tuning, validation method, etc. A comparison can also help 
management to identify the best method for different applications and scenarios, such as eco-driving, 
eco-routing, transport planning, etc.

3. DATA AND METHODS

This study examined the fuel consumption characteristics of freight trucks from a medium sized freight 
company in Zimbabwe. The company’s fleet management system was used to collect information 
for 210 trucks between January 1 and January 31, 2023. This web-based system, interfaces to truck-
mounted mobile tracking technology. It carries out positioning monitoring in real time and provides 
back statistics. The hardware also keeps track of the truck’s cargo at each stage of the route, the number 
of stops it makes, the amount of fuel utilized, etc. Figure 1 shows the set of independent variables 
collected from the fleet management system.

3.1 Data Summary Statistics
The variables shown in Table 1 were used throughout the analysis and construction of the models with 
fuel consumption being the dependent variable which is a dichotomous variable and 23 independent 
variables as indicated in the summary of naturalistic data.
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3.2 Binary Logistic Regression
According to Maalouf (2011), statisticians and researchers use logistic regression as it is one of the 
most significant statistical and data mining approaches for the analysis and classification of binary 
and proportional response data sets. It belongs to the class of generalized linear models (GLMs), 
which are commonly known as linear regression models for continuous response variables given 
continuous or categorical predictor variables. This modeling and analysis technique is based on fitting 
nonlinear relationships and is used to study the interactions and dependencies between independent 
and dependent variables. Multinomial logistic regression and binary logistic regression are the two 
models that make up logistic regression. Binary logistic regression was selected because the outcome 
is a dichotomous variable, or one that can only take the values 0 or 1. Therefore, for the purpose of 
this research study, 0 represented normal fuel consumption and 1 represented high fuel consumption. 
This method was also adopted in this research study because it is much easier to set up and train 
unlike other machine learning models and because it does not assume how classes are distributed in 
feature space. However, multinomial logistic regression allows the dependent variable to be categorized 
into multiple groups, and this is typically utilized for cases or issues that are more complicated. It is 
important to remember that dichotomous variables can also be created from multi-categorical ones. 
Below is how to derive the probability, P

i
, of fuel consumption beginning from the log of odds. The 

model of predicted probabilities is as follows:
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Figure 1. Independent variables collected
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3.3 Neural Network
Artificial neural networks (ANNs), also known as “neural networks” or “neural nets” (NNs), are 
computer models that replicate how nerve cells in the human brain function. By allowing a computer 
to learn from observational data, recognize patterns, and make predictions, these biologically inspired 
programming methods can help make sense of confusing, contradicting, or fuzzy logic. There are three 

Table 1. The summary of naturalistic data collected

Variable Name Definition

Total Score (SC) Represents each truck’s total performance score

Truck Rating Represents truck performance rating derived over time

CO Emissions (kg) Represents each truck’s carbon dioxide emissions

Top Driving Speed Represents the average driving speed in open road

Time (Hrs) Represents the time the truck was on the road

Anticipation Score Represents the truck’s anticipation and braking score

Profile Name Represents the type of the truck (Long Haul or Construction Rough)

Distance Represents the total distance traveled by the truck

Gear Utilization Score Represents the truck’s gear utilization score

Speed Adaptation Represents the truck’s speed adaptation score

CO2 (t) Represents the truck’s carbon monoxide emission

HC Emissions (kg) Represents the truck’s hydrocarbon emissions

PM Emission (kg) Represents the truck’s particulate matter emissions

NOX Emission (kg) Represents the truck’s nitrogen emission

Coasting Speed (km/h) Represents the truck’s coasting speed

Cruise Control Speed (km/h) Represents the truck’s cruise control speed

Avg diesel engine (l/100km) Represents the truck’s average diesel engine on (l/100km)

Avg Driving (km/h) Represents the truck’s overall average driving speed

Idling (l) Represents the truck’s idling

Above Economy Speed (km/h) Represents the truck’s above economy fuel consumption speed

Within Economy Speed (km/h) Represents the truck’s within economy fuel consumption speed

Engine Load Speed (km/h) Represents the truck’s engine load speed

Standstill (SC) Represents the truck’s standstill score

Fuel consumption Fuel consumption per hundred kilometers for each trip
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or more interconnected layers in a neural network. Input neurons make up the first layer. The input 
neurons send information to the second layer, also known as the hidden layer(s), which then sends 
information to the third layer, also known as the output layer, as the final output data. Because they 
can adapt to internal and external data, neural networks are flexible systems. The neural network life 
cycle comprises two stages: the training phase and the prediction phase. The procedure of determining 
the weight and bias values takes place throughout the training stage. In the prediction phase, the neural 
network model processes the input data and generates predictions. A back-propagated feed-forward 
neural net was employed for the analysis in this study. Data in a feed-forward neural network only 
travels in one direction, forward, from the input nodes through the hidden nodes to the output node(s). 
The neural networks can modify their output results by accounting for errors through a technique called 
back-propagation, Ma et al. (2018). By doing this, information is transmitted backward each time a 
training-phase error is made. Then, each weight is adjusted proportionally to the degree to which it 
contributed to the inaccuracy. In order to account for the discrepancy between the desired and actual 
outcomes, the error is utilized to recalibrate the weight of the unit connections of the neural network, 
Yao et al. (2020). The neural network model was adopted in this research study because it has the 
ability to detect complicated nonlinear correlations between dependent and independent variables and 
also because it requires less formal statistical training. Figure 2 shows an illustration of a neural net.

4. DATA ANALYSIS

4.1 Binary Logistic Regression Model
The first step before conducting any analysis was to check for sampling bias or data imbalance, because 
to build a strong model, the proportion of high and normal fuel consumption trucks needed to be 
statistically balanced, and for this data set, 51.4% of the trucks were high fuel consumers, while the 
remaining 48.6% were normal consumers. The data was then randomly separated into two sets, the 
training set and the testing set, using R software package instructions with a split ratio of 0.8. The 
model was created using the data from the training set, and it was validated using the data from the 
testing set. The observations’ composition after the random split is shown in Table 2.

4.1.1 Stepwise Regression
The backward elimination approach was utilized to identify the variables important to the investigation. 
Backward elimination is a step-wise regression technique that starts with a full model that includes 
all predictor variables and gradually removes variables to obtain a smaller model that best fits the 
data. The variable that considerably improved the AIC (Akaike Information Criterion) value was 

Figure 2. Neural net illustration
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then removed before moving on to the next step. The model initially included all 23 explanatory 
variables. The step-wise method was chosen because it decreased the number of predictors, solved 
the over fitting issue, and minimized the multi-collinearity issue. The AIC value was chosen as 
the criterion for variable removal because the analysis was done in R software package. Since the 
objective was to create a model with the lowest AIC value possible, the variable that significantly 
reduced the AIC value was then eliminated. On the first step 1, the full model including all the 
theoretical explanatory variables had an AIC value of 257.84. Tables 3 and 4 show all the 19 steps 
of the backward elimination procedure.

Truck Rating, Carbon Emission, Top Driving Speed, Time (Hrs), and Idling were found to be the 
most important variables after a successful elimination operation, since the removal of any of these 
led to a weaker model with higher AIC values. Out of a total of 23 predictors, only 5 were found to 
be significant to the model.

4.1.2 Model Estimation
The fitted logistic regression model is summarized in Table 5 below, and the model’s coefficients 
were estimated using the R statistical software. The table has seven columns, and the co-efficient 
column lists the estimated value of each independent variable’s coefficient. The log chances of the 
outcome for a one unit increase in the predictor variable are given by the logistic regression coefficients. 
The z statistic (also known as the Wald z statistic) and the standard errors of the coefficients are also 
included in the table along with their p-values. The odds ratio is shown in the second from last column 
and is calculated using exp(b

i
), where b

i
 is the estimated regression co-efficient of the variable c

i
.

The intercept is the average log of odds of a truck having a high consumption when all the 
explanatory factors are taken into account. Without taking into account any of the truck’s features, 
travel information, or emissions statistics, the odds ratio of 0.0000000327 approximately 0 from Table 
5 represents the likelihood that a truck will consume more fuel than budgeted. Any truck has a high 
likelihood of consuming normal fuel when no other features are known because the coefficient’s 
value is negative and the odds are close to zero.

•	 Truck Rating: At the 1% level, it was determined that the variable was significant (p = 0.00203). 
The coefficient’s negative value, as shown in Table 5, indicates that there is an inverse correlation 
between truck rating and likelihood of being a high fuel-consumption truck. Since truck rating has 
an odd ratio of 0.5405 when all other factors are assumed to be constant, the chance of utilizing 
more fuel than necessary decreases by a factor of 0.5405 for every unit increase in truck rating. To 
put it another way, highly rated trucks are less likely to be high fuel-consumption vehicles. This is 
because a higher truck rating indicates that the vehicle is in better condition, is well-maintained, 
and is operating efficiently, which lowers the likelihood that it would use more fuel on any journey.

•	 Carbon Emissions: The observed carbon emissions were determined to be statistically significant 
at the 1% level (p = 0.00167). The estimate is positive, which suggests that the likelihood that 
the truck will be a high fuel-consumption vehicle will grow as carbon emissions rise. While the 
estimates exponential was calculated, an odd ratio of 1.2135 was found. This means that, while 
all other factors are held constant, the likelihood of consuming more fuel increases by a factor 

Table 2. Data grouping

High Fuel Consumption Normal Fuel Consumption % of High Fuel Consumption Total

Training 90 82 52.3% 172

Testing 18 20 47.4% 38

Total 108 102 51.4% 210
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of 1.2135 for a unit increase in the average carbon emission output. In other words, a truck is 1.2 
times more likely to use more fuel for every additional unit of carbon it emits.

•	 Top Driving Speed: With a p-value of 0.003562, it was determined that this variable was 
statistically significant at the 5% level. The estimate’s positive value suggests that there is a 
relationship between the top driving speed and the log of the probability of using more fuel. 
Therefore, the chance of consuming more fuel is 1.2 times higher with every rise in the average 
top driving speed. This is due to the fact that a faster truck would burn more fuel, and according 
to this model, a unit increase in average speed results in a 1.202 increase in fuel consumption 
for the truck, all other factors remaining constant.

•	 Time (Hrs): With a p-value of 0.00587, this variable was determined to be significant at the 1% level. 
The estimate is positive, indicating that the likelihood of the truck consuming more fuel will rise as 
the number of hours it spends on the road increases. In this case, an additional hour spent driving 
will increase the likelihood of using more fuel by a factor of 1.2195. This is mostly caused by the 
fact that longer travel times result in longer travel distances, as well as potential delays and traffic, 
which cause the truck to use more fuel than necessary without traveling an equivalent distance.

•	 Idling: The predicting factor with a p-value of 0.00459 was shown to be statistically significant 
at 1%. The co-efficient indicates that there is a positive correlation between the likelihood of 
consuming more and an increase in truck idling. Therefore, for trucks that idle the most, there is 
a ratio of 1.3302 higher chance of consuming more fuel than usual. In other words, if all other 
factors remain unchanged, a unit increase in idling increases the risk of using fuel by 1.33 times.

4.1.3 Model Evaluation: Likelihood Ratio Test
In general, three tests can be utilized: the likelihood ratio test, score test, and Wald test. According 
to Menard (1995), the likelihood ratio test was employed, and the results are displayed in Figure 3 
below. Due to the statistical significance of the difference (p < 0.05), it can be concluded that the 
estimated model offers a better fit for the data than the null model since it has more parameters and 
can predict the output more accurately than the null model.

4.1.4 Goodness of Fit Test: Hosmer-Lemeshow Test
This test employs the Pearson chi-square method to determine whether the observed proportion of 
events is similar to the predicted probabilities of occurrence in subgroups of the dataset. With this 
strategy, the assumption that the model adequately describes the data is tested. Small chi-square 
values with high p-values lead to the rejection of the null hypothesis, which leads to the conclusion 

Table 5. Parameter estimates for the fitted logistic regression model

Co-efficient Standard Error Z-Value P-Value Odds Ratio Sig

Intercept -17.23456 8.11601 -2.124 0.03371 0.000 000 0327 *

Truck Rating -0.61525 0.19942 -3.085 0.00203 0.5405 **

C0_Emissions 0.19348 0.06155 3.144 0.00167 1.2135 **

TopDrivingSpeed 0.18401 0.08757 2.101 0.03562 1.2020 *

Time (Hrs) 0.19841 0.07202 2.755 0.00587 1.2195 **

Idling 0.28536 0.10067 2.835 0.00459 1.3302 **

Sig Codes: ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05
Null deviance: 238.07 on 171 degrees of freedom
Residual deviance: 219.35 on 166 degrees of freedom
AIC: 231.35
Number of Fisher Scoring iterations: 4
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that there is insufficient evidence to demonstrate the model’s poor fit, hence the fitted model offers 
a good fit. On the other hand, large values with p-values below 0.05 suggest a poor fit.

Since the null hypothesis was rejected by the chi-square value of 0.94876 from Figure 4 above 
and the corresponding p-value more than 0.05 (p = 0.8136), we deduced that the developed model 
offers a strong fit to the data.

4.2 Design of the Neural Network Model
The statistical program R was used to train the network in this section. The neural network was 
fitted using the same variables that were used to estimate the logistic regression model for the sake 
of comparison. As a result, it follows that the classification problem’s input layer, which is made up 
of the independent variables, would likewise contain five nodes (input neurons), which would be the 
same number of variables as those employed in the modified logistic regression model.

It is important to choose the number of hidden layers as well as the hidden layer(s) neuronal 
population. Even though they are not directly connected to the outside world, the hidden layers have 
a significant impact on the outcome, thus they must be carefully examined. In order to create a better 
network architecture, trial and error was done with neurons ranging from 1 to 5. The best architecture 
for the model was chosen based on the mean square error (MSE) and misclassification rate. The below 
formula was used to determine the misclassification rate:

Rate = 1−










C rrectly Predicted

All Cases

o  

 
	 (3)

The mean square error formula used was:

MSE = 1
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j
=
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j j
=
∑ −( ) 	 (4)

Figure 3. Likelihood ratio test results

Figure 4. Hosmer-Lemeshow test results
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where t
j

 and Y
j
 are the target value and the network output for the testing case respectively and N 

was the number of testing cases.
The trial and error criteria were used to select the network that offered the best model fit. 

Table 6 shows that a single hidden layer neuron with three hidden neurons had the lowest rate of 
misclassification and the second-best mean square error, making it the ideal design for fitting the 
neural network based on the data used in this study.

4.2.1 Model Summary
The variables and model details are summarized in Table 7 above. Five independent variables and 
three hidden neurons were combined into one hidden layer. In order to generate an output with a 
range of 0 to 1, the sigmoid activation function, which gives the model non-linearity, was used. Cross 
entropy was also employed as the error function because it is generally preferred to sum of squared 
errors in classification issues.

The variables and model details are summarized in Table 7 above. Five independent variables 
and three hidden neurons were combined into one hidden layer. In order to generate an output with 
a range of 0 to 1, the sigmoid activation function, which gives the model non-linearity, was used. 
Cross entropy was also employed as the error function because it is generally preferred to sum of 
squared errors in classification issues.

An overview of the neural network model, including run time, error, and the total number of 
training steps, is given in Table 8.

The model was fitted in 8702 steps, as shown in Table 8 above, and the cross entropy error was 
determined to be 16,597. A mean square error of 0.2668 was discovered in the identical situation, 

Table 6. Trial and error results

Number of Hidden Neurons Misclassification Rate MSE

1 0.421 0.262

2 0.5 0.341

3 0.395 0.267

4 0.421 0.359

5 0.526 0.341

Table 7. Network information

Input Layer Covariates Truck Rating, CO Emissions, Top Driving Speed, 
Time (Hrs), Idling

Number of Neurons 5

Rescaling Methods for Covariates Min-Max Normalization

Hidden Layer Number of Hidden Layers 1

Number of Hidden Neurons 3

Activation Function Sigmoid

Output Layer Dependent Variable Fuel Consumption

Number of Neurons 1

Activation Function Sigmoid

Error Function Cross Entropy
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indicating relatively minor discrepancies between the anticipated output and the actual result based 
on the training data set. The software package’s automation and the training method (resilient back-
propagation) made fitting the model simple and straightforward. Following model construction, 
predictions based on training data produced a misclassification rate of 39.5%.

The neural network built with R is shown in Figure 5, along with the weights given to each 
synapses that link any two neurons.

4.3 Empirical Comparisons
The end objective of the study was to empirically compare the two fuel consumption forecasting models. 
The two models were compared using the receiver operator characteristic (ROC) curve and its related 
area under the curve (AUC). Figure 6 displays the ROC curves for the two models created using binary 
logistic regression and an artificial neural network. An area under the curve of 0.8 denotes an excellent 
prediction by the model, 0.9 denotes an extraordinary prediction, and 0.7 denotes a subpar prediction. 
Since the ROC curve for the neural network had a larger area under the curve (AUC) value of 0.772 
(approximately 0.8) than the logistic regression model’s AUC value of 0.684 (approximately 0.7), it 
is clear from Figure 6 that the neural network outperformed the latter. As a result, the neural network 
model accurately forecasted the data while the logistic regression model did so just fair.

Table 8. ANN model summary

Error 16.597

Steps 8702

Training time 0.05 seconds

Mean Square Error (MSE) 0.2668

% of incorrect predictions 39.5%

Figure 5. Neural network model for fuel consumption
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5. CONCLUSION

The purpose of this research study was to address the issue of increased cost of operation due to high 
fuel consumption and high fuel cost by developing fuel consumption prediction models. By using the 
driving data acquired by the fleet management system, the study showed how to analyze the fuel usage 
of freight trucks. In this study, machine learning and conventional statistical methods were merged. A 
similar study on predicting the fuel consumption of heavy duty diesel trucks was conducted by Gong et 
al. (2021) By employing logistic regression in a manner akin to that used in this work, they were able 
to isolate the important variables influencing vehicle fuel usage and create models for predicting it. In 
this study, it was found that truck rating, carbon emissions, top driving speed, time, and idling were 
the most important variables influencing truck fuel use. As a result, the findings of this study imply 
that neural networks offer a more exact and accurate method of predicting truck fuel use than logistic 
regression. This research raised knowledge about how to manage pollution from trucks and lower exhaust 
gas emissions, which could also help to achieve the goal of decreasing cost and enhancing efficiency 
of truck driving. Neural networks are a viable option for businesses interested in forecasting truck fuel 
use as identified in this research study. Below are some of the recommendations to management on 
why they should adopt the use of neural networks in forecasting fuel use:

•	 Neural networks can be used to predict fuel consumption because of their high degree of accuracy. 
As a result, they can be used to improve routing, scheduling and driver behavior, all of which 
can lead to reduced fuel costs.

•	 Telematics systems together with the information obtained from the neural network model, can 
be used to monitor driver behavior, such as speed, acceleration and braking. This information 
can be used to identify drivers who drive inefficiently and then provide them with training on 
how to improve their driving habits.

Figure 6. ROC curves and AUC values
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•	 A fuel management program can be implemented that could help organizations track their fuel 
usage, identify areas where they are wasting fuel as companies and implement changes to reduce 
their fuel costs.

•	 Organizations might look into the prospect of using alternative fuels. If this is viable, alternative 
fuels such as natural gas, electricity or propane can cost less than traditional fuels such as diesel. 
Switching to alternative fuels can help to reduce fuel costs.

•	 Drivers can have a big impact on fuel consumption, thus educating them about fuel efficiency 
is important. By educating them about fuel efficient driving practices, the organization can help 
them to reduce their fuel usage.

It is possible that other characteristics are also utilized to forecast truck fuel usage in addition 
to those included in this study. As a result of data mining’s cutting-edge nature and methodological 
intricacy, there is still considerable space for improvement in this study, as several elements including 
the impact of the weather and traffic on fuel use were overlooked. Additionally, there is room for 
improvement through the application of various extra machine learning models. Future studies will 
expand the type and volume of data collected under the presumption that the data are reasonable 
and accurate. Trying different data mining techniques will increase the model’s predictive accuracy. 
Future changes to the sample size, the prediction model, and the relevant factors extracted will allow 
for the weighting of various indicators.
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