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ABSTRACT

Clustering is a commonly used tool for discovering knowledge in data mining. Density peak clustering
(DPC) has recently gained attention for its ability to detect clusters with various shapes and noise,
using just one parameter. DPC has shown advantages over other methods, such as DBSCAN and
K-means, but it struggles with datasets that have both high and low-density clusters. To overcome
this limitation, the paper introduces a new semi-supervised DPC method that improves clustering
results with a small set of constraints expressed as must-link and cannot-link. The proposed method
combines constraints and a k-nearest neighbor graph to filter out peaks and find the center for each
cluster. Constraints are also used to support label assignment during the clustering procedure. The
efficacy of this method is demonstrated through experiments on well-known data sets from UCI and
benchmarked against contemporary semi-supervised clustering techniques.
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INTRODUCTION

The goal of clustering is to group a collection of objects together in a way that maximizes similarity
within a cluster and dissimilarity between clusters (Ezugwu et al., 2022; Xu & Wunsch, 2005). It is
a popular machine learning technique used in various fields, such as image processing, text mining,
social science, and big data analysis, to mention just a few (Ezugwu et al., 2022; Krishnaswamy et al.,
2023; Saha & Mukherjee, 2021; Chen et al., 2022; Liang & Chan, 2021; Hoi et al., 2022). Clustering
can reveal the underlying structure of data, identify relationships between objects, and even detect
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outliers. Since it is an unsupervised learning task, clustering does not rely on prior data knowledge1
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Nevertheless, recent advances in machine learning have given rise to semisupervised clustering as a
promising research area. Semisupervised clustering algorithms can leverage side information, such
as labeled data or constraints, to enhance clustering quality and efficiency (Basu et al., 2008).

According to Jonschkowski et al. (2015), side information refers to additional data that are not
part of the input or output space but can be helpful in the learning process. It is also used in other
machine learning models, including support vector machines, multiview learning, and deep learning
(Jonschkowski et al., 2015; Geoffrey et al., 2011). Generally speaking, side information can be
expressed as constraints or labeled data, also known as seeds. In this paper, the following constraints
are used to guide the clustering process for a given data set X = {x, X, ..., X _}:

Must-Link: A Must-Link constraint between two data points x, and X; indicates that they must
be placed in the same cluster.

Cannot-Link: A Cannot-Link constraint between two data points x, and X; indicates that they
must be placed in separate clusters and should not be grouped together.

In Figure 1, a graphical illustration of the various types of side information that can be incorporated
for data classification is presented. Over the last 20 years, several semisupervised clustering techniques
have been developed in the literature. Typically, these methods are derived from unsupervised
algorithms and aim to incorporate side information to improve clustering performance. Some of the
significant techniques in this category include semisupervised K-means (Pelleg & Baras, 2007; Basu
et al., 2002, 2004; Bilenko et al., 2004; Davidson & Ravi, 2005), semisupervised fuzzy clustering
(Bensaid et al., 1996; Maraziotis, 2012; Abin, 2016; Grira et al., 2008), semisupervised spectral
clustering that has been investigated in various research papers (Mavroeidis, 2010; Wang et al., 2014;
Mavroeidis & Bingham, 2010), semisupervised density-based clustering (Bohm & Plant, 2008; Lelis
& Sander, 2009; Ruiz et al., 2010; Vu et al., 2019), semisupervised hierarchical clustering that has
been explored in Davidson and Ravi (2009), and semisupervised graph-based clustering (Kulis et
al., 2009; Anand & Reddy, 2011; Vu, 2018), to mention a few.

Density peak clustering (DPC) was first proposed in Rodriguez & Laio (2014) and has since
attracted considerable attention in Mehmood et al. (2016); Lin (2019, 2021); Chen et al. (2020);
Zhou et al. (2018); Sieranoja and Frinti (2019); and Wang et al. (2020). DPC stands out by its ability
to detect clusters of arbitrary shapes while maintaining robustness to noise (Vu et al., 2022; Xie et
al., 2016), making it superior to traditional clustering methods, such as DBSCAN and K-means.
Nonetheless, recent studies have indicated that DPC struggles when clusters have different densities
or local peaks (Ding et al., 2020b; Lin et al., 2020).

Figure 1. The four categories of machine learning: supervised (a), labeled (b), constrained (c), and unsupervised (d)

Note. The data points that have not been labeled are represented by dots, while circles, asterisks, and
crosses are used to represent labeled points. In the case of constrained learning (c), solid and dashed
lines are used to indicate the Must-Link and Cannot-Link constraints, respectively (Lange et al., 2005).
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Hence, our aim is to present a novel semisupervised density peak clustering method, called
density peak clustering with constraints (CDPCs), that addresses this limitation and demonstrates
commendable performance on data sets with varying densities. The key contributions of this work
can be outlined as follows:

To identify peaks in the clustering process, our method employs a k-nearest neighbor graph and
connected components constructed using the concept of a strong path. The distance between vertices
in the k-nearest neighbor (k-NN) graph is determined by shared nearest neighbor points, making it
unaffected by data density.

We efficiently embed constraint sets in the clustering process. Our approach utilizes constraints
not only in the k-NN graph but also in the label propagation to form clusters.

Based on these key ideas, we develop a novel method called CDPCs, which overcomes the
main limitations of DPC. As far as we are aware, CDPCs is the initial semisupervised density peak
clustering approach presented in the literature.

We performed thorough experiments on UCI and real-world data sets to showcase the efficacy
of our novel approach in comparison to contemporary semisupervised clustering techniques.

The subsequent sections of this article are structured as follows. Related Works offers an overview
of existing literature on semisupervised clustering techniques. Density Peaks Clustering With
Constraints is dedicated to the presentation of our innovative technique for semisupervised density
peak clustering with constraints, named CDPCs. Experimental Results details our experimental results,
and the Conclusion concludes the paper, outlining potential avenues for future research.

RELATED WORKS

Over the last two decades, there has been considerable interest in semisupervised clustering, a field
that employs supplementary data to enhance the quality of clustering. By utilizing a small set of side
information, clustering can be both improved and expedited (Basu et al., 2008). Currently, there exist
four approaches for integrating side information, namely, enforcing, penalty-based, metric learning,
and declarative methods.

To begin with, incorporating side information directly into the clustering process can be
achieved using the enforcing technique. This technique involves incorporating the side information
in various ways, such as conditioning data point allocation to clusters, initializing the centroids
at the start of the K-means algorithm, employing voting clustering algorithms, and so forth. For
example, one of the earliest semisupervised clustering algorithms (Wagstaff et al., 2001) integrated
constraints into the K-means clustering assignment loop, resulting in the COP-K-means method
outperforming the K-means algorithm. Another approach, presented in Basu et al. (2002), is a
seed-based clustering technique, where labeled data are used to calculate k centers in the first
phase of K-means. Despite its straightforward approach, the clustering results produced by seed
K-means were reliable and effective.

Additionally, the authors in Ruiz et al. (2010) introduced the constraint DBSCAN (C-DBSCAN)
technique. Initially, C-DBSCAN leverages a KD-Tree to divide the data space into denser subspaces
and generate a collection of initial local clusters. If KD-leaf tree nodes contain specific point groups,
they are separated to satisfy the Cannot-Link constraints associated with their contents. Following
that, density-based local clusters are merged by implementing Must-Link constraints. Finally, a
bottom-up approach is used to integrate the adjacent neighborhoods while applying the remaining
Cannot-Link constraints.

MCSSDBS, presented in Vu et al. (2019), is a significant development in the field of
semisupervised density-based clustering, as it was the first algorithm designed to incorporate
constraints and seeds into the clustering process. During the nearest-neighbors identification process,
MCSSDBS uses Must-Link and Cannot-Link constraints while constructing a minimum spanning tree
(MST) for a complete graph. The algorithm then enlarges the clusters from the seeds, but the authors
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hypothesized that the longest edge may not be a suitable cut point. Thereby, it uses an active learning
process to obtain a label from users for the pair (p,, p,,,) and employs Cannot-Link constraints. If no
information is available, the largest value (p,, p,,,) of the MST is utilized. In the final stage, Must-
Link constraints are employed again to combine isolated points that are connected to clusters, and
the remaining unassigned points are treated as outliers.

Additionally, Vu (2018) introduced a clustering approach based on graphs and seed points. The
method represents the data set using a k-NN graph and uses seeds in the partitioning stage to create
connected components, also known as principal clusters. Each connected component includes only
one type of seed. This approach is advantageous, as having seeds makes it easier to find the optimal
solution for partitioning the graph into clusters. By following this method, constraints were enforced
during the clustering process, leading to improved results compared to SSDBSCAN.

Another semisupervised clustering technique, agglomerative hierarchical clustering with
constraints (AHCCs), was introduced in Davidson and Ravi (2009). In AHCCs, constraints were
embedded in the distance matrix between every pair of points, and the shortest path strategy was
used to update the matrix distance. AHCCs is considered a practical method for semisupervised
clustering in literature.

The second strategy, referred to as penalty-based, recognizes that certain constraints may not be
satisfied during the clustering procedure. This is known as the soft constraints embedding process.
Several notable algorithms have been proposed in this approach. An algorithm called constrained vector
quantization error (CVQE) was introduced in Davidson and Ravi (2005) as a means of addressing the
limitations of existing clustering methods. CVQE is a semisupervised clustering algorithm that is built
upon the K-means algorithm. The algorithm begins by initializing the cluster centroids according to
the constraints and then iteratively refines them according to the traditional VQE process. The main
idea behind CVQE is to help guide the formation of clusters to satisfy certain requirements while
still maintaining the flexibility of unsupervised learning. This approach was seen as innovative and
has since been improved with methods such as LCVQE (Pelleg & Baras, 2007) and CVQE+ (Mai
et al., 2018). These improvements have further enhanced the algorithm’s performance, making it a
promising approach for clustering tasks.

In Basu et al. (2004), another variation of the K-means algorithm is proposed, which includes
constraints in the clustering process by giving weights to Must-Link and Cannot-Link constraints.
During the assignment process, the algorithm aims to ulfil as many constraints as possible to ensure
that the resulting clusters adhere to the given constraints.

In addition, AFCC, a constrained fuzzy C-means method, was introduced in Grira et al.
(2008). This algorithm embeds constraints in the membership matrix by utilizing an objective
function. The penalty for violating Must-Link and Cannot-Link constraints is adjusted based on
the membership values, which help ensure that the given constraints are satisfied to the greatest
extent possible. Furthermore, Antoine et al. (2012) proposed the constraints evidential C-means
(CECMs) algorithm, which includes a penalty term in the objective function that considers the
provided constraints.

The metric-based learning approach is the third strategy employed for integrating constraints
in clustering. This technique trains a metric using constraints to ensure that similar instances (as
specified by the Must-Link constraints) are placed closer to each other while dissimilar instances
(as specified by the Cannot-Link constraints) are placed further apart. Several distance metrics have
been used for this purpose. One such metric is the Jensen-Shannon divergence, which can be trained
using gradient descent, as described in Cohn et al. (2003).

Another approach involves modifying the traditional Euclidean distance by incorporating a
shortest-path algorithm, as discussed in Klein et al. (2002). Additionally, Mahalanobis distances,
which can be trained using convex optimization techniques, have also been employed, as described
in Eric et al. (2002); Bar-Hillel et al. (2003).
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Other methods include distance metric learning based on Discriminative Component Analysis
(MDCA) in Steven et al. (2006) and a nonlinear metric learning method that learns a completely
flexible distance metric via learning a nonparametric kernel matrix in Baghshah and Shouraki (2010).
Another example of a semisupervised K-means clustering method that integrates enforcement and
metric learning into a single framework is MPCK-means (Bilenko et al., 2004).

Finally, declarative methods offer a mathematical approach to solve clustering problems using
models like integer linear programming (ILP), SAT, and constraint programming. ILP-HC was
proposed in Gilpin and Davidson (2017), which is an ILP-based method for hierarchical constraint
clustering. It enforces dendrogram features as linear constraints and uses high-quality solvers like
CPLEX and Gurobi to find solutions and utilize multicore architectures. In Dao et al. (2017), a
comprehensive framework for constrained clustering was introduced that is declarative and based on
constraint programming. The suggested method makes use of several optimization criteria, including
diameter, split, within-cluster sum of dissimilarities, and within-cluster sum of squares, as well as
different types of user constraints, to address diverse constrained clustering problems. Moreover, a
two-cluster problem was introduced in Davidson et al. (2010). The authors have created an effective
clustering method by transforming both instance-level constraints, such as Must-Link and Cannot-
Link, and cluster-level constraints, such as maximum diameter and minimum separation, into a
2-satisfiability (2SAT) problem. Overall, these newly proposed algorithms represent a novel research
direction that requires further exploration in recent years.

DENSITY PEAKS CLUSTERING WITH CONSTRAINTS

Density Peak Clustering

Density peak clustering is a clustering method that utilizes the concept of density estimation. In
this method, given a data set X = {x, X, ..., X_}, the local density of a point /, represented by p,, is
computed using Equation (1):

p,=>x(d, —d), (1)

J

where di/, is the distance between the point i and point j, and d_ is a cutoff distance. y(x) = 1 if x <

0 and y(x) = 0 otherwise. The ¢, value, which is measured by computing the minimum distance
between the point i and any other point with a higher density, but, for the point with the highest
density, ¢, is set to maxj(di].). It is defined in Equation (2).

R : ©)
i max (di] ) , otherwise
s\

min (dv ), if 37 subject to D, >p,

The decision graph is constructed based on p, and 6, . Figure 2 illustrates an example of a decision
graph, where we can select the points located in the top-right corner as the cluster centers, and
subsequently assign each point in the data set to the cluster of its nearest neighbor with a higher
density. DPC has proven to be effective when compared to traditional clustering techniques, such as
K-means and DBSCAN. Nevertheless, DPC has a significant drawback when applied to data sets
where the density varies across different clusters. Figure 3 provides an example where DPC fails to
identify the correct peaks for two clusters.
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Figure 2. A data set (left) and its decision graph (right) (Rodriguez & Laio, 2014)
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Figure 3. Clustering results of DPC on the Jain data set (Ding et al., 2020a)
Note. The stars mark improper peaks found by the DPC algorithm.
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The k-Nearest Neighbor Graph

The k-NN graph is a graph-based machine learning algorithm used for classification and clustering
tasks. To create the k-NN graph for a data set X consisting of n data points, denoted as {x,, x,, ..., X, },
one must calculate the distance between each pair of data points using a specified distance metric, for
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example, the Euclidean distance. Subsequently, for each point, the K-nearest neighbors are identified
based on the computed distances, and edges are formed connecting the point to its nearest neighbors.

The weight of two vertices in the k-NN graph can be computed using different approaches. Given
NN(.) is the set of k-nearest neighbors for a specified point, one prevalent approach (Jarvis & Patrick,
1973) is to use the number of shared nearest neighbors between the two points, denoted as

‘NN(my)ﬂNN(xj)‘ , and the total number of neighbors of the two points, denoted as

‘NN (Iz) UNN (1’])‘ The weight can be calculated using Equation (3), also named as structural

Jaccard similarity:

NN (2) NN ()

“laz,)= ‘NN(:cj)uNN(xj) ' @

The Proposed Method CDPCs

As previously mentioned, one of the limitations of DPC is its inability to effectively handle data sets
with varying densities. In fact, each cluster may contain some local peaks, so it needs to be corrected
in the peak finding process. To address this issue, we introduce a new semisupervised graph-based
clustering algorithm called CDPCs (an abbreviation for Constrained Density Peak Clustering), which
incorporates constraints in peak finding. The main concept is to use a k-NN graph to represent data
and a set of constraints to improve the peak finding process. In cases where peaks appear in the same
region, we use the concept of a strong path proposed by Vu et al. (2012) to identify and label them
as the same region. The definition of a strong path in a k-NN graph is given in Definition 1, where
two vertices u and v are in the same region of density if there exists a strong path between them. It
should be noted that the distance between u and v is well-suited for clusters with varying densities
when utilizing the aforementioned k-NN graph. Our CDPCs algorithm utilizes the strong path for peak
propagation, merging peaks that share a strong path in the peaks filtering process. This approach is
inspired by the density-based clustering concept, where clusters are defined as high-density regions
separated by low-density regions.

Definition 1: (Adopted from (Vu et al., 2012)) Given a k-nearest neighbor graph (k-NNG) for a
data set X, a threshold 0, and a set of constraints Y (Y can be empty), a path from vertex u to vertex

v is defined as a strong path SP (u7 v, 9) if there exists a sequence of vertices (Zp Zyyeee zf) , such that

u=2z,v=2, and Vi =1...t—1: w(zl,zl+1> >0 or 2,7, +1 is a Must-Link constraint in Y.
The CDPC’s primary steps are displayed in Figure 4 and can be summarized as follows:

Step 1: Constructing a k-NN graph. This stage involves creating a k-NN graph that employs

constraints to determine the weights of the graph. The Must-Link and Cannot-Link constraints are

used in this process.

Step 2: Embed constraints to identify connected components. From the k-NN graph, we can identify

all connected components, which are then used in the next step of peak refinement (Steps 3-9). Peaks

within the same connected component are merged using the definition of the strong path.

Step 3: Computing p, 6, and identifying final peaks. Like the DPC, in this step, p and ¢ are

calculated and used to generate the decision graph, which is then employed to identify the final peaks.

A loop is utilized to find the peak set from the decision graph. Initially, the first peak is added, and

at each iteration ¢, a new peak will be added if there are no strong paths connected to the current set

of peaks. The loop is stopped by the users when they determine that the collected peaks are sufficient

for the clustering process.
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Step 4: Clustering process. Once the final peaks are identified, the original DPC method is employed
to detect clusters. During the label propagation step, unlabeled points receive the same label as the
point with the highest density, provided that it adheres to the Cannot-Link constraints. Importantly,
constraints can prevent errors that arise from this step. For example, in DPC, high-density points may
be assigned to the nearest neighbor point with higher density, but these points may actually belong
to different clusters. In these cases, the Cannot-Link constraints can prevent misclassification and
accurately identify the correct peak for these unlabeled points.

Algorithm 1 outlines the proposed CDPCs method, which involves constructing a k-NN graph
with a complexity of O(n?) or O(n X log(n)) for low dimension data as stated in Ertoez et al. (2003).
Step 2 of the algorithm, which involves extracting the connected components, has a complexity of
O(n X k), where k refers to the number of neighbors. Furthermore, the DPC has a complexity of O(n?),
resulting in an overall complexity of O(n?) for the CDPCs method.

EXPERIMENTAL RESULTS

Data Sets

Nine commonly used data sets from the Machine Learning Repository (Asuncion & Newman, 2015)
and one data set extracted from AWID intrusion detection data (Kolias et al., 2015) were utilized in
this study. Table 1 presents the characteristics of these data sets. It is worth mentioning that these

Algorithm 1. CDPC algorithm

Algorithm 1 CDPC Algorithm

Input: Data set X', number of neighbors k, a set of constraints C, d
Output: A partitioning of X'
Process:
: Construct the k-NN graph for A’
Embed constraints to obtain connected components
for all connected components having at cannot-link constraints do
t=1
repeat
All edges whose weights equal to ¢ will be deleted.
f=t+1
until Cannot-link violation = false
: end for
: Calculating p;, Vi = 1..m;
: Calculating d;, ¥i = 1..n;
: Constructing the decision graph;
: repeat
Finding the peak p; such that p; - 4; is being maximum;
Refinement of the peaks using the connected components;
Update the decision graph;
: until user_stop = true
: Running DPC (using constraints in the label propagation step) on the collected peaks
to obtain clusters of X.
: Return the results of partitioning of A",
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Figure 4 lllustration of our proposed method: CDPCs
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data sets were chosen due to their reputation as standard data sets for evaluating clustering algorithm
performance (Basu et al., 2008; Lelis & Sander, 2009; Abin & Vu, 2020).

Furthermore, in order to demonstrate the suitability of our proposed method across different data
sets, we have intentionally selected a variety of data sets. These data sets encompass not only those
with uniform density but also instances that exhibit varying density levels. For instance, as illustrated
in Figure 5, from the decision graph, it is challenging to determine the cluster centers (peaks) for
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Table 1. Details of the data sets utilized in experiments

ID Data #Objects #Attributes #Clusters
1 Iris 150 4 3
2 Glass 214 9 6
3 Protein 115 20 6
4 Soybean 47 35 4
5 Breast 568 30 2
6 Image 2,100 19 7
7 Wine 178 13 3
8 Balance 625 4 3
9 Sonar 208 60 2
10 AWID3 12,000 35 2

data sets such as Iris, Glass, and Sonar. This indicates that these data sets lack uniform density or
may have overlapping clusters.

Evaluation Method

The Rand Index (RI) serves as a measure of the similarity between two clustering results. It is a
popular measure of clustering performance due to its straightforward calculation and interpretation.
Given two sets of data points A and B, the Rand Index calculates the quantity of data point pairs
that are categorized as either true positives (in the same cluster in both sets) or true negatives (in
different clusters in both sets). This value is subsequently divided by the total number of possible
data point pairs.

It is computed in Equation (4) as follows:

_ TP +TN
TP +FP+FN+TN "’

“

where:TP (true positives) refers to the quantity of data point pairs that belong to the same cluster in
both sets. TN (true negatives) represents the number of data point pairs that are categorized as belonging
to different clusters in both sets.FP (false positives) refers to the number of data point pairs that are
categorized as belonging to the same cluster in set A but are deemed to be in different clusters in set
B.FN (false negatives) denotes the number of data point pairs that are categorized as belonging to
different clusters in set A but are deemed to be in the same cluster in set B.

The Rand Index varies between 0 and 1, where a higher value of the RI indicates a higher degree
of agreement between the two sets of clustering results. An RI of 1 signifies complete agreement
between the two sets of data points. Conversely, an RI of 0 means that the clustering results in both
sets are completely different. In our experiments, we reported the RI as a percentage.

Comparative Results

To demonstrate the effectiveness of our suggested CDPCs algorithm, we conducted a comparison
study with two well-known constrained clustering algorithms, MPCK-means and AHCC. Additionally,
we compared the results of CDPCs with those obtained by the original DPC algorithm. Randomly
generated constraints were utilized in our experimentation, and the results were averaged over 50

10
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Figure 5. The decision graph for iris, glass, soybean, and sonar
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runs. The k value is set to 4 for Iris, Glass, and Breast; 5 for Protein, Soybean, Breast, and Image; 6
for Wine, Balance, and Sonar; and 8 for AWID3.

While Figure 5 provides a decision graph that explains the peaks finding phase, RI results
obtained by the algorithms are displayed in Figure 6. Upon observing these graphs, it is apparent
that CDPCs performed better than AHCCs and MPCK-means in most cases. Although MPCK-means
and AHCCs outperformed the original DPC algorithm, CDPCs significantly enhanced the clustering
performance. This improvement by CDPCs can be attributed to the fact that DPC cannot correctly
identify the appropriate peaks for each cluster, as indicated by recent research (Ding et al., 2020b;
Lin et al., 2020). CDPCs, on the other hand, employ constraints and a k-NN graph to identify the
correct peaks for clusters, even when the density of clusters differs.

The proposed method, CDPCs, shows significant performance improvements compared to DPC.
This is particularly evident in the Iris data set, which consists of three clusters, with two clusters
exhibiting considerable overlap, as shown in Figure 5. While DPC only identifies two peaks in this
situation, CDPCs successfully detect three peaks by incorporating constraints and a k-NN graph,
leading to an optimal outcome. Similarly, for the Glass data set, as shown in Figure 5, DPC struggles
to accurately identify the number of peaks. Conversely, CDPCs achieve better results by utilizing
50 constraints.

The Soybean data set, which has four clusters, was also analyzed using a decision graph in Figure
5. Following the DPC condition led to a mistake, as the third and fourth identified peaks belonged to

1"
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the same cluster. However, CDPCs were able to identify the correct peaks for each cluster after the
peak-filtering process mentioned earlier, resulting in the detection of four peaks and demonstrating
a good performance.

Moreover, in the Protein, Breast, and Image data sets, CDPCs showcase slightly superior outcomes
than MPCK-means and AHCCs and notably outperform DPC. Additionally, Figure 6 illustrates that
CDPCs surpass AHCC, MPCK-means, and DPC on Wine, Balance, Sonar, and AWID3 data sets. For
instance, in the Sonar data set consisting of two clusters, the decision graph in Figure 5 demonstrates
that the DPC algorithm can only identify one peak candidate. In contrast, CDPCs enhance the
performance by 5% compared to DPC.

Overall, by incorporating constraints and a k-NN graph into the peak-finding process, CDPCs
effectively overcome the main limitation of DPC and successfully identify suitable peaks for clustering
purposes.

Selection of Constraint Sets

In CDPCs, the Must-Link and Cannot-Link constraints are utilized to support the peak finding
and clustering process. However, in our current work, the constraint sets are generated randomly,
which may result in the inclusion of noisy constraints. Consequently, the overall performance of the
algorithm for each run relies on the quality of the constraint set. To tackle this challenge, there are
generally two common approaches (Vu et al., 2012; Basu et al., 2004; Mallapragada et al., 2008;
Grira et al., 2008). The first approach leverages domain knowledge and prior information about the
data to identify the relevant constraints. Another approach is to incorporate optimization methods
in order to search for the optimal constraint sets. This involves defining an objective function that
quantifies the quality of the resulting clusters and then searching for the constraint sets that either
maximize or minimize this objective function. However, it is important to acknowledge that the
selection of constraint sets is still an ongoing research topic. As part of our future work, we plan to
expand our research to tackle this issue. We aim to investigate and propose strategies for selecting
constraint sets that are more effective.

CONCLUSION

The CDPCs, a novel semisupervised density peak clustering with constraints, was introduced in
this paper. It addresses a significant limitation of DPC, specifically when clustering in varying
densities. The proposed method utilizes constraints and a k-NN graph to accurately identify peaks.
By using the concept of strong path and constraints, the peaks are merged or left alone depending
on the propagation step, allowing for the detection of peaks in each region as a cluster. Experimental
results on various data sets indicated that the CDPCs algorithm surpasses well-known semisupervised
clustering algorithms in the literature, including MPCK-means and AHCC.

We intend to incorporate more supplementary side information, like seeds or obstacle/distance
constraints in the upcoming work and tackle the issue of selecting appropriate constraints for
density peaks clustering. Furthermore, it is essential to validate the proposed method in real-world
applications. Additionally, it is essential to validate the proposed method in real-world applications.
Our prior research (Vu et al., 2019) also delved into the examination of clustering methods utilizing
data sets associated with facial expressions. Notably, data sets such as FER2013 (Goodfellow et al.,
2013) exhibit significant diversity and offer abundant possibilities for evaluating the efficacy of
clustering algorithms.
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Figure 6. Comparison results on data sets among DPC, AHCC, MPCK-Means, and our CDPCs method
Note. The comparison is on data sets Iris, Glass, Protein, Soybean, Breast, Image, Wine, Balance,
Sonar, and AWID3, respectively.
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