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ABSTRACT

This study aims to optimize the visual interaction design of AR-HUD and reduce cognitive load in 
complex driving situations. An immersive driving simulation incorporating eye-tracking technology 
was utilized to analyze objective physiological indices and measure subjective cognitive load using the 
NASA-TLX. Additionally, a visual cognitive load index was integrated into a BP-GA neural network 
model for load prediction, enabling the derivation of an optimal solution for AR-HUD design. The 
optimized AR-HUD interface demonstrated a significant reduction in cognitive load compared to the 
previous prototype. The experimental group achieved a mean total score of 25.63 on the WP scale, 
whereas the control group scored 43.53, indicating a remarkable improvement of 41.1%. This study 
presents an innovative approach to optimizing AR-HUD design, effectively reducing cognitive load 
in complex driving situations. The findings demonstrate the potential of the proposed algorithm to 
enhance user experience and performance.
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INTRODUCTION

Augmented Reality-Head Up Display (AR-HUD) technology has gained considerable traction in the 
field of driving assistance due to its capacity to present dashboard information while allowing the 
driver to maintain their focus on the road ahead. By overlaying virtual information onto the driver’s 
field of view, the transparent AR-HUD display offers vital data such as speed, navigation instructions, 
and vehicle alerts. Consequently, this technology holds the potential to enhance driving safety by 
alleviating cognitive load (Cao et al., 2022). The realm of interactive design for AR-HUD systems has 
witnessed substantial advancements in recent years, and it has had a primary objective of enhancing 
user experience and minimizing distractions during driving. A pivotal challenge in AR-HUD system 
design revolves around presenting information in a manner that is easily comprehensible and that does 
not divert the driver’s attention from the road. To address this challenge, researchers have devised 
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various interactive design strategies tailored specifically for AR-HUD systems. One prominent 
strategy involves employing color and brightness adjustments to emphasize crucial information while 
mitigating distractions. By utilizing appropriate color schemes and brightness levels, the display can 
become more user-friendly and visually appealing. For instance, employing visually comfortable 
colors like blue and green (Gabbard, J. L. et al., 2020) can effectively present information in a way 
that does not monopolize the driver’s attention. Another crucial facet of AR-HUD interactive design 
is the integration of audio and haptic feedback. Audio feedback enables the provision of important 
updates, such as speed or navigation information, to the driver without necessitating visual diversion. 
Similarly, haptic feedback, in the form of vibrations or touch, offers a tangible response to significant 
cues like speed limit alerts or lane changes. Moreover, the incorporation of machine learning algorithms 
has emerged as a valuable component in AR-HUD interactive design. These algorithms can analyze 
the driver’s behavior and context to anticipate what information they might need to see next. This 
predictive capability allows the system to adjust the display content in real-time, presenting the 
most relevant information in the most effective way. This not only reduces cognitive load but also 
enhances driving safety. Additionally, the use of machine learning algorithms improves the accuracy 
of the AR-HUD system, thereby reducing the likelihood of errors or false alerts. In recent years, a 
noticeable trend has emerged in the field of AR-HUD systems that focuses on the development of 
highly customizable and personalized solutions. These advanced systems grant drivers the ability to 
tailor the display to their specific preferences and driving habits. Customization options encompass 
adjustments in information size and position and provide the freedom to select which information to 
display. By affording such customization features, AR-HUD systems effectively mitigate cognitive 
load by presenting solely pertinent information to the driver, thus optimizing the user experience 
(Zhang & Zhou, 2018).

The study is organized as follows: The introduction section (Section 1) provides a comprehensive 
overview of the research topic, outlining the underlying motivations driving the study. In the related 
work section (Section 2), an extensive review of pertinent literature and previous studies related to 
AR-HUD interfaces and cognitive load is presented. The methods section (Section 3) delineates the 
theoretical framework of AR-HUD visual perception intensity, expounds upon the design of the HCI 
prototype for the AR-HUD experiment, elucidates the experimental equipment employed, describes 
the experimental methodology implemented, and outlines the data collection methods employed. 
Moving forward, the results section (Section 4) delineates the outcomes derived from the eye-tracking 
experiment, details the algorithm integrating GA and BPNN, presents the optimized mathematical 
model predicated on cognitive load and visual intensity, elucidates the case study involving the AR-
HUD interface, and provides in-depth insights into the chromosome coding, topological structure, 
model parameters, and genetic algorithm utilized in the neural network model. The discussion 
section (Section 5) critically evaluates the limitations inherent in the current research and proposes 
potential avenues for future investigation and improvement. Lastly, the conclusion section (Section 6) 
succinctly summarizes the pivotal findings of the study and offers concluding remarks to encapsulate 
the overall research endeavor.

RELATED WORK

In recent years, a substantial increase in research efforts has been observed in the field of Augmented 
Reality-Head Up Display (AR-HUD) systems. This surge in research is primarily driven by the 
immense potential of AR-HUD systems in enhancing driving safety and efficiency. This section 
provides a comprehensive review of the existing literature pertaining to AR-HUD systems, with a 
specific focus on the development of AR-HUD interfaces and the evaluation of their performance. 
Furthermore, the integration of machine learning methodologies within AR-HUD systems is also 
explored, as this represents a promising area of research with potential implications for improving 
the functionality and effectiveness of AR-HUD technology.
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AR-HUD systems have found extensive application in various domains, including navigation 
aids, speed monitoring, and alert mechanisms. Previous research efforts have primarily focused on 
the development of AR-HUD interfaces and their impact on driver behavior. For instance, Park and 
Kim (2014) proposed an AR-HUD system that would be integrated into vehicles and that would be 
capable of identifying critical driving data and presenting it within the driver’s field of view. Bark 
et al. (2015) demonstrated that AR-HUD-assisted navigation facilitates quicker responses to turns. 
In a different study, Lee et al. (2016) introduced a novel approach to evaluating driver gaze patterns, 
situational awareness, self-confidence, and cognitive workload in regards to AR-HUD systems. In the 
context of China, Fang (2016) employed Human-Machine Interaction (HMI) techniques to inform the 
design of AR-HUD interactions from the user’s perspective, which resulted in natural and intuitive 
user experiences. Sun et al. (2019) analyzed eye-tracking data, including gaze trajectories and heat 
maps, to assess an enhanced AR-HUD layout, proposing tiered design concepts as a reference for safe 
driving design. Additionally, Li et al. (2017) applied Kansei Engineering to evaluate the effectiveness 
of the AR-HUD system, affirming its optimization potential through the development of a prototype.

In addition to interface development, the integration of machine learning algorithms has 
emerged as a prominent area of research in enhancing the capabilities and adaptability of AR-HUD 
systems. Abu-Khadrah et al. (2022) introduced an adaptive algorithm recommendation system that 
leverages computer vision and depth neural networks to improve the design of head-up display 
(HUD). By enhancing object detection speed in multi-layer smart city environments, this system 
reduces processing time, errors, and computational requirements. Murugan et al. (2022) propose 
a machine learning-driven AR-HUD system for autonomous vehicles, aiming to enhance driving 
safety and alleviate driver workload. This system utilizes object detection and data classification, 
employing a deep neural network to assess the vehicle’s status and categorize moving objects. With 
an impressive F-1 score of 86%, the system demonstrates high accuracy and precision, thus validating 
its effectiveness in promoting driving safety. Furthermore, Abdi and Meddeb (2017) put forth a fast 
object detection method based on intelligent algorithms. This method enables the identification of 
various road obstacle types and facilitates the comprehension of complex traffic scenes. The study 
also discusses the potential advantages and disadvantages of employing the dynamic conformal 
method AR-HUD to enhance driving safety.

Despite profound progress made in the field of AR-HUD systems, previous research has not 
fully exploited the potential of machine learning algorithms nor extensively explored the cognitive 
load and mental states of drivers. The cognitive burden experienced by drivers is influenced not only 
by the functionality of the AR-HUD system itself but also by the driver’s cognitive and emotional 
states. Therefore, it is imperative to adopt a more comprehensive approach that takes into account 
the driver’s cognitive load and psychological state in order to effectively refine the AR-HUD system 
and optimize its performance.

To bridge the existing research gaps, this study presents a novel approach aimed at optimizing 
the visual interaction design of AR-HUD systems. The proposed technique integrates cognitive load, 
mental state assessment, and machine learning algorithms to determine the most appropriate adaptation 
mode for AR-HUD design. The primary objective is to minimize cognitive load and enhance driving 
safety by tailoring the AR-HUD design to accommodate the driver’s cognitive status, mental state, 
driving behavior, and physiological signals. By considering these multifaceted factors, the study 
strives to achieve an optimal AR-HUD configuration that harmonizes with the driver’s individual 
characteristics, thus promoting improved usability and driving performance.

The proposed methodology encompasses an immersive driving simulation coupled with eye-
tracking technology to analyze objective physiological indices, including eye-tracking patterns and 
visual resource allocation. Subjective cognitive load is measured using the NASA-TLX test method, 
a well-established assessment tool for cognitive workload (Hart & Staveland, 1988). To quantify the 
driver’s cognitive burden during the driving task, a visual cognitive load index is formulated. In order 
to predict the visual cognitive load, the study employs a BP-GA (genetic algorithm based on neural 
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network optimization) approach. This involves developing a neural network model that integrates the 
visual cognitive load prediction, which is then incorporated into the genetic algorithm’s fitness function 
to obtain the optimal solution for AR-HUD visual interaction design. The reliability of the algorithm 
is assessed using the Cooper-Harper Scale (CH), a recognized measure for evaluating the usability of 
cockpit designs. Through this rigorous methodology, an optimal AR-HUD visual interaction scheme 
is derived. By adopting this research methodology, the study presents a novel perspective on visual 
interaction design for human-machine interfaces utilizing augmented reality technology.

In summary, while previous research has primarily focused on the design and evaluation of AR-
HUD interfaces and their impact on driving behavior, these studies have not thoroughly addressed 
the driver’s cognitive load and mental state. Moreover, the potential of machine learning algorithms 
in enhancing AR-HUD technology has not been fully explored. Consequently, this study introduces 
a pioneering approach aimed at optimizing AR-HUD visual interaction. By integrating cognitive 
load assessment, analysis of eye-tracking data, and the application of machine learning algorithms, 
the study aims to ascertain the optimal adaptation mode for the AR-HUD interface. Through this 
innovative method, the study seeks to enhance the user experience and improve driving performance 
associated with AR-HUD technology.

METHODS

AR-HUD Visual Perception Intensity Theory
The fundamental principle of AR-HUD technology revolves around the utilization of a semi-reflective 
and semi-transparent curved mirror, as illustrated in Figure 1 (Smith et al., 2017). This innovative 
design facilitates the magnification of the image source’s display, resulting in a virtual projection on 
the windshield. As such, drivers can conveniently access essential driving information through the 
projected image situated directly within their field of view, eliminating the necessity of diverting 
their gaze towards the conventional dashboard or interior of the vehicle.

Scientific research has revealed that receptor cells in the retina do not exhibit a uniform distribution 
pattern. Specifically, cone cells, which are responsible for detecting bright visual stimuli, display 
an uneven distribution across the retina. Notably, the highest density of cone cells is concentrated 
within a 1-degree range from the center of the visual field. As the eccentricity from this central point 
increases, the number of cone cells progressively diminishes, subsequently leading to a decline in 
human visual perception ability (Zhang et al., 2016).

Figure 1. Principle of augmented reality head-up display
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Porat and Zeevi’s (1988) theory of cone perception introduces a framework in which the planar 
region is divided into a multitude of elementary square segments, each characterized by a side length 
of ‘a’, as illustrated in Figure 2. In this segmentation process, incomplete edges of the segments are 
disregarded. Subsequently, each segment is assigned a visual perception intensity level based on its 
positioning within the field of visual perception. Notably, as illustrated in Figure 3, when segments 
lie on the boundaries of different regions, their selection is determined by their respective area 
proportions in the distinct regions (Blignaut & Beelders, 2007; Ding, 2017; Halit et al., 2015; Liu & 
Huang, 2021; Chen, Y., 2013; Shic et al., 2008; Zhang et al.).

AR-HUD Interface Design and Layout
The placement of the AR-HUD follows both AR-HUD design guidelines and considerations of human 
vision characteristics. It is positioned in the lower right section of the windshield, strategically located 
within the driver’s central visual zone, as exemplified in Figure 4. The visual information displayed 
by the AR-HUD is confined within a specific range of binocular vision, which is determined by the 
vehicle’s speed. When the speed is below 75 km/h, the data are presented within 85° of binocular 
vision. In the speed range of 75 km/h to 100 km/h, the data occupy less than 65% of binocular vision. 
For speeds exceeding 100 km/h, the data are limited to 40° of binocular vision. The layout of the AR-
HUD consists of six distinct components, as depicted in Figure 5. These components are as follows: 
A) driving condition and gear data, B) alert information zone, C) velocity figures, D) navigational 
information including directions and additional driving indicators, E) RPM display section, and F) 
other driving assistance information.

Figure 2. Regional division of HCI perception intensity visual intensity map

Figure 3. Regional division of HCI perception intensity division of visual perception area of interface
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Experimental Equipment
The visual layouts utilized in the experiment were carefully crafted by incorporating insights from 
a meticulous examination of established AR-HUD systems and industry norms. To ensure the 
authenticity and practicality of the selected layouts, a panel of experts consisting of automotive 
engineers and human-machine interface (HMI) designers was convened. Their expertise and 
knowledge were instrumental in ensuring that the chosen layouts accurately represented real-world 
AR-HUD systems. The 21 representative AR-HUD interfaces were thoughtfully selected, taking 
into account their potential impact on cognitive load and driving safety. The variations encompassed 
diverse aspects such as color, brightness, layout, and content. This comprehensive range of design 
possibilities allowed for a comprehensive exploration of the effects of different visual configurations 
on the driver’s cognitive load and overall driving experience.

The driving simulation and eye-tracking examination in this research are conducted using the HTC 
VIVE head-mounted display apparatus. The experimental setup involves a computer system connected 
to appropriate ports for the steering wheel, pedals, and gears. To create a realistic and interactive 
driving experience, the Unity3D engine is employed to develop a driving assistance evaluation system 
on a virtual reality (VR) platform. This entails writing logical code to simulate various vehicle actions 
and provide an immersive driving environment. In addition, the Unity3D framework is enhanced 
with eye-tracking analysis functionality to facilitate eye-tracking examinations. By integrating the 
eye-tracking analysis software development kit (SDK), comprehensive gaze duration data for both 
the left and right eyes are captured as raw data. To ensure accurate synchronization of eye-tracking 
information, the system incorporates external TTL (Transistor-Transistor Logic) event signals received 
through the input port. The system architecture is illustrated in Figure 6.

Figure 4. AR-HUD design scheme AR-HUD interface design

Figure 5. AR-HUD design scheme AR-HUD interface layout
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The study recruited a sample of 31 individuals. The inclusion criteria for participation in the 
study were that the individuals had to be healthy volunteers. The average age of the participants 
was 25.36 years, with a standard deviation of 4.97, indicating a relatively young and healthy 
group of participants.

Before the participants were allowed to take part in the study, they underwent a thorough screening 
process. This process was designed to ensure that all participants were in good mental health, which 
is crucial for participating in a study that involves driving simulation and the use of virtual reality 
technology. The screening process likely involved a series of questionnaires or interviews to assess 
the mental health status of the participants. During the testing phase of the study, the participants 
were closely monitored for any signs of discomfort or adverse effects associated with the use of the 
virtual reality (VR) simulation. The VR simulation can sometimes cause side effects such as dizziness 
or nausea in some individuals, so it was important to ensure that the participants were comfortable 
throughout the testing process. Fortunately, none of the participants reported experiencing any such 
issues during the study.

Another important criterion for participation in the study was that all participants had to possess 
a valid driver’s license. This was to ensure that the participants had a basic understanding of driving 
and could realistically engage with the driving simulation. Furthermore, the participants had an 
average of over 5 years of driving experience. This level of experience suggests that the participants 
were not only familiar with the basics of driving but also had a significant amount of real-world 
driving experience, which could potentially influence their interaction with the AR-HUD system. By 
carefully selecting and screening the participants, the study ensured that the results would be relevant 
and applicable to the general population of drivers.

Figure 7 showcases the simulation platform utilized in this study; it encompassed a replica car 
cockpit, an interactive display screen, and an AR helmet equipped with eye-tracking capabilities. To 
create a realistic driving environment and target scenes for visual search and exploration, the Unity3D 
simulation software was employed. This software not only enables the construction of a dynamic 
driving environment but also captures real-time data on vehicle operations and driving behavior. The 
availability of this comprehensive data allows for in-depth analysis and examination of the driving 
simulation, contributing to a more thorough understanding of the experimental outcomes.

Figure 6. Structure of AR-HUD driving assistant test system
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Experimental Method
This research investigates a range of visual design patterns in typical AR-HUD information interfaces 
and aims to assess their impact on user cognitive load. In order to minimize potential biases and 
order effects, a randomized sequence of the 21 representative AR-HUD interfaces was employed 
during the experiments. By randomizing the order in which the visual schemes were presented to 
each participant, the study ensured that each individual experienced a unique sequence, reducing the 
influence of any systematic biases and order-related factors.

Figure 8 presents a detailed description of the experimental procedure employed in this study. 
Participants were randomly exposed to 21 distinct AR-HUD visual schemes to assess their visual 
cognitive load. During the experiments, the experimental vehicle was driven in a lane alongside 
another car located 100 meters ahead, both traveling in the same direction. Participants maintained 
a constant speed of 40 km/h and a minimum distance of 50 meters from the leading car. Each test 
session involved driving tasks with different visual layouts of the AR-HUD interface, and these layouts 
were presented in a randomized order. Participants actively scanned the AR-HUD for information 

Figure 7. Experimental environment and equipment

Figure 8. Experimental process
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during each task and subsequently reported verbally the content displayed in each section of the AR-
HUD interface. The driving eye-tracking data of the experimental participants were systematically 
collected after test completion. The simulation experiments were conducted on city roads under 
favorable weather conditions and moderate traffic. Prior to the experiments, participants underwent 
a 15-minute operation training session to familiarize themselves with the simulator’s functionalities, 
including visual search techniques, target warnings, and driving modes. Subsequent to each test, 
participants utilized the NASA-TLX cognitive load assessment form to subjectively evaluate their 
cognitive load associated with the AR-HUD interface (Hart & Staveland, 1988; Miyake & Kumashiro, 
1993; Nakamura et al., 1991; Rubio et al., 2004).

Data Collection Methods
During the driving tasks, participants were instructed to track the vehicle continuously until they 
were instructed to stop. To facilitate eye-tracking calibration, six distinct regions of interest (AOIs) 
were established. The determination of these regions was based on a careful consideration of several 
factors, including the layout of the AR-HUD, the characteristics of the road, and the need to ensure 
a balanced distribution of relevant information for the drivers. The boundaries of these regions were 
precisely defined, taking into account parameters such as the size of the AR-HUD, the spacing between 
its elements, and the visual field of the road. The selection of these specific regions aimed to ensure 
that the AOIs encompassed both the AR-HUD elements and the road environment, thereby enabling 
a comprehensive analysis of participants’ eye movements during the experiment. In order to quantify 
the change in the frequency of eye-tracking data collection, the average and standard deviation of the 
data were calculated for each participant. The algorithm formula for calculating gaze coordinates is 
provided in equation (1) (Li et al., 2021; Prichard, 2021), and it has been employed in relevant studies 
and serves as a reliable method for analyzing eye-tracking data.

cosθ
ij

d di j

di dj

=
→→

→ →| | |
	 (1)

In equation (1), θ
ij

 represents the angle between the gaze vectors of two arbitrary fixation points 
I and J. The vectors →

di
and →

dj
 represent the gaze direction vectors for fixation points I and J, 

respectively (Li et al., 2021; Prichard, 2021).
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In equation (2), d
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RESULTS

Eye-Tracking Experiment Results
The study utilized a comprehensive set of four metrics, as outlined in Table 1, to examine drivers’ 
eye-tracking behavior and assess visual cognitive load during visual search and target detection 
tasks. To ensure consistency, a fixed time frame of 10 seconds was provided for drivers to visually 
search and identify target materials. During this time, eye-tracking data segments were captured, and 
relevant variables were extracted once the target was identified. The resulting eye-tracking heat-map 
is visualized in Figure 9, offering a spatial representation of drivers’ gaze patterns. Additionally, 
Figure 10 illustrates the eye-tracking trajectory, providing a temporal depiction of the sequence of 
eye movements during the task.

The objective of this study is to investigate the relationship between driver attentiveness attributes 
and visual search characteristics. Participants were instructed to engage in a visual search task 
within a specified 10-second time frame. Eye-tracking data were collected for 10-second intervals 
both before and after the participants engaged in a visual search task. This task involved identifying 
specific targets within the simulated driving environment. By collecting eye-tracking data before and 
after this task, the study aimed to accurately assess how the participants’ visual attention and search 
patterns changed in response to the task. The eye-tracking variables derived from the NASA-TLX 
test exhibited values within the normal range. The Shapiro-Wilke test confirmed that the variances 

Table 1. Statistical results of measurements indexes of eye-tracking experiment

NUM Gaze /ms Glance /ms Reaction/ms NASA-TLX P

1 0.42 0.36 2.38 12.1 0.02

2 0.66 0.55 2.48 12.6 0.02

3 0.53 0.13 1.14 5.5 0.03

4 0.63 0.46 0.85 4.1 0.05

5 0.66 0.49 1.4 6.9 0.03

6 0.91 0.48 1.93 9.7 0.02

7 0.64 0.37 2.25 13.4 0.01

8 1.09 0.89 2.18 11.3 0.02

9 0.66 0.84 1.82 9.1 0.02

10 0.31 0.27 2.57 13.1 0.01

11 0.49 0.28 1.82 9.1 0.02

12 0.51 0.37 2.23 11.3 0.01

13 0.57 0.35 2.74 14.2 0.01

14 0.64 0.95 1.38 6.8 0.03

15 0.47 0.15 1.14 5.5 0.03

16 0.56 0.74 1.63 8.18 0.02

17 0.21 0.17 2.38 12.1 0.01

18 0.3 0.18 1.63 8.12 0.02

19 0.41 0.27 2.04 10.3 0.02

20 0.41 0.25 2.55 13.1 0.01

21 0.54 0.85 1.19 5.88 0.03
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in the four sets of eye-tracking data followed a normal distribution (0.05), satisfying the prerequisite 
for parametric testing. Consequently, drivers’ eye-tracking changes during visual search and target 
recognition were evaluated using paired t-tests. The statistical outcomes and paired t-test results for 
visual search and 10-second target detection are presented in Table 1. These findings demonstrate 
significant alterations in eye-tracking indicators across different visual arrangements of the flat display. 
They suggest that visual search tasks redirect the driver’s focus to the control loop and increase 
awareness of potential hazards.

The participants’ perceived workload during the eye-tracking experiment was evaluated 
using the NASA-TLX test. The test encompassed six dimensions: performance, mental demand, 
physical demand, temporal demand, effort, and frustration. Participants were required to rate each 
dimension on a scale ranging from 0 to 100, where 0 indicated the lowest perceived workload and 
100 indicated the highest. To obtain an overall workload score for each participant, the average 
score across these six dimensions was calculated. To explore the relationship between the NASA-
TLX test outcomes and the analysis of eye-tracking data, the participants’ overall workload scores 
were compared with their eye movement patterns, including gaze duration, glances, and reaction 
times. This analysis aimed to identify potential correlations between cognitive load and visual 
search and target recognition behaviors.

An Algorithm for Integrating GA and BPNN
A model for dividing perception intensity zones in the human-computer interaction (HCI) interface 
was initially developed, and it aligned with the criteria employed for human cone perception cells. 
To establish an appropriate time constraint for drivers to visually search and locate target materials, 
the study drew upon insights from previous research and conducted pilot testing. Prior studies have 
indicated that time constraints of approximately 10 seconds strike a balance between task difficulty 
and participant engagement while minimizing potential fatigue (Smith et al., 2017). Moreover, pilot 

Figure 9. Eye-tracking analysis eye-tracking trajectory thermogram

Figure 10. Eye-tracking analysis eye-tracking trajectory diagram
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testing specific to this study confirmed that the 10-second time constraint provided participants with 
ample opportunity to interact with the AR-HUD interface while still presenting a challenge to their 
visual search abilities. Then, subsequently, an initial population of chromosomes was generated to 
represent tentative solutions for different HCI design plans, considering the perceptual intensity of the 
HCI and the significance index of perceptual components. In order to determine the optimal solution, 
a cognitive load neural network model was employed as the fitness function, drawing from relevant 
literature (Burch, 2019; Li et al., 2021; Prichard, 2021; Reichle & Liversedge, 2011; Wagner et al., 
2009). By constructing a genetic algorithm and performing numerous simulation calculations, the 
optimal layout for the human-machine interface based on visual intensity is identified.

Optimal Mathematical Model Based on Cognitive Load and Visual Intensity
As discussed previously, the placement of visual perception elements within the human-computer 
interaction (HCI) interface takes into account the visual characteristics of cone cells. The calculation 
of the Z index for the AR-HUD visual elements is determined according to the following equation 
(4): (Ding, 2017; Liu & Huang, 2021; Zhang et al., 2016):

Z i S P O
j

n

j j
j

n

j( ) = ⋅ +( )+ ⋅
= =
∑ ∑
1 1
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	 (4)

where α_1 and α_2 are the relative coefficients of position. The equation (5) for α_1 and α_2 is given as:
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Z represents the visual cognitive load index. t represents NASA-TLX values of each 
interface section t ={t,t2,…,tn}, the NASA-TLX set of each partition; s: NASA-TLX values 
of each interface section SQ={sq1, sq2,…,sqn}; x represents the vision perceived intensity 
level set X={x1,x2,…,xn} assigned to each partition of HUD, representing all visual intensity 
settings; q represents the perceived area set of HCI intensity level Q={q1,q2,…,qn }is the set 
of all areas (Chen, Y., 2013).

In the context of HCI design, it’s beneficial to position components with higher visual 
frequency in easily visible locations. This strategy helps to minimize fatigue from frequent 
operations and enhance usage efficiency. To achieve this, we create a usage frequency matrix 
and compute the visual frequency weight for each constituent region, denoted by P

j
, based on 

prior eye-tracking experiments.
As presented in Table 2, the aggregated operational sequence values for each component area 

were normalized to calculate the operational sequence weights for each HUD module area during the 
encoding experiment, following the methodology outlined by Liu and Huang (2021):
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In equation (10), O
j
 represents the operational sequence weight for each HUD module area. The 

operational sequence weight is calculated by dividing the value of β
j
 for a particular HUD area by 

the sum of β
j
 values for all HUD areas. The β

j
 values are calculated using equation (11), which is 

explained below.
The size of the combined operation sequence for each component area was determined by 

dividing the sum of ordinal numbers by the square of the usage frequency of the component area. 
This calculation was performed as part of the layout encoding experiments, as detailed in the studies 
conducted by Liu and Huang (2021), Ding (2017), and Zhang et al. (2016). The calculation is performed 
according to the following equation (11):

β
j
= ( )

= =
∑ ∑( ) /
i

n

ij
i

n

ij
f c c
1

2

1

	 (11)

Table 2. Operation sequence under different component layout coding experiments

HUD Name Module A Module B Module C ……

HUD 1 2 0 3

HUD 2 1 2 0

HUD 3 0 3 1

……
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If c
i

n

ij
=
∑ =
1

0,  then β
j
= 0 . β

j
 represents the operational sequence weight for each HUD module 

area.-This weight indicates the importance or priority assigned to each component area based on 
eye-tracking experiments and usage frequency.

The function f c
ij( ) denotes the usage frequency of the component area c

ij
within the HUD 

module. This function quantifies the frequency with which a particular area of the interface is accessed 
or interacted with by the user during their interaction with the HUD module.

Case Study of AR-HUD Interface
Once the visual index z of the AR-HUD is computed, the interface is partitioned into six sections 
using an 800x600 resolution. By defining the radius r and adopting a basic unit length of 1.57mm, 
a fundamental unit grid is established. Taking into account the intensity of visual perception, the 
model is further divided into six modules, and the significance of each basic HUD module unit was 
ascertained using a priority-based approach.

Chromosome Coding of Visual Cognitive Load Model
Table 3 presents the six discrete variables, namely GA, GB, GC, GD, GE, and GF, which were 
previously encoded as 24-bit binary strings during the construction of the neural network model. Each 

Table 3. Chromosome coding of VR-HUD visual model

Element 
Code Content Chromosome Coding and Interpretation

GA Overall arrangement

GB Navigation

GC Speed table

GD Dashboard

GE Driving simulation

GF Driving information
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binary character within the 24-bit string represents a gene, and these variables are all 4-bit binary 
values. In the integration of neural networks and genetic algorithms, the binary-coded chromosome 
input is initially converted into a floating-point form. The floating-point value is then transformed 
back into binary form to match the input. The conversion rules for this process are as follows: a 4-bit 
binary code is translated into a floating-point number that continuously varies within the range of 
[0,4]. Values falling within the intervals [0,1), (1,2), (2,3), and (3,4] will be decoded as 1000, 0100, 
0010, and 0001, respectively (Hill et al., 1992).

For the purpose of developing a cognitive load prediction model for AR-HUD, this research 
created a training sample set. The input of the model consisted of the identification numbers of the 
sensor elements, which were encoded as gene segments of the solution chromosome. On the other 
hand, the output of the model represented the average Z-score assigned by users to evaluate the 21 
AR-HUD prototypes. With the data properly organized, the initial input and output information for 
the neural network model was established, as illustrated in Table 4.

Topological Structure of BP Neural Network
In consideration of real-world constraints and requirements, the topological structure of the neural 
network is meticulously defined, comprising three distinct layers. The input layer is composed of 
six neurons, representing the encoded sensor elements, while the output layer consists of a single 
neuron, denoting the desired output (i.e., the Z index). By leveraging a heuristic method proposed 

Table 4. Chromosome coding and visual intensity index mapping table of GA

Number Chromosomal Code Z-Index

1 001010000100100001010110 4710

2 001001000100010010011001 4892

3 001000101010000100100110 4928

4 001000011001001000101001 4383

5 000110000100010100100101 4613

6 000101000100101000101010 4625

7 000100101001000001010101 4686

8 000100011010000010011010 4867

9 000100011010010010011010 4843

10 000100011011010010011010 4480

11 000101000100010010011001 4928

12 000100011001001000101001 4480

13 100001000100101010001010 4468

14 010000010001001000101001 4674

15 010000101001000010010101 4637

16 001001000100101000101010 4904

17 010000101001000001010101 4746

18 100000011010000010011010 4892

19 000100011010010010011010 4553

20 100000101011010010011000 4323

21 001001000100010010011001 4904
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by Nie (2021), the optimal number of neurons in the hidden layer is determined, resulting in a final 
count of 15 neurons. Ultimately, the topological structure is established for the BPNN of the head-up 
display and the Z index.

Neural Network Model Parameters
The neuron activation function is an essential aspect of BP neural networks, as it necessitates 
differentiability along with a continuous derivative. In this investigation, the log-sigmoid activation 
function {logsig} was opted for as the BPNN activation function. During the BP network modeling 
training phase, the {Levenberg-Marquardt} BP algorithm training function {trainlm} was utilized. 
The neural network was set with a maximum iteration of 1000, a training target error of 10, a learning 
rate of 0.1 and displayed its progress every five training cycles. Unmodified parameters retained the 
system’s default values. After multiple training and weight adjustment iterations, the best validation 
performance index was achieved in the 17th generation, with a value of 0.17327, leading to the 
cessation of training. The results are displayed in Figures 11-14.

Genetic Algorithm
To optimize the design of the interface prototype, the objective function is formulated based on the 
Z-Index, denoted as F(X), which establishes the relationship between the design variables and the 
corresponding Z values using an equation, with the preference determined by X (Zhang et al., 2016). 
The GA is employed to assess the fitness of individuals or solutions within the population. A design 
code and Z-index relationship model are constructed and optimized for practical application. The GA 
incorporates the Backpropagation Neural Network (BPNN) model into the fitness function, while 
the GA parameters are fine-tuned through the GA function (Hill et al., 1992). The initial population 
consists of 21 AR-HUD interface prototypes. To determine the optimal solution, the genetic algorithm 
is executed with a population size of 50 individuals. The algorithm undergoes 1000 iterations, with 

Figure 11. Training results of BP Neural Network Training Performance Chart
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Figure 12. Training results of BP neural network training state diagram

Figure 13. Training results of BP neural network error histogram
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a crossover probability of 0.5 and a mutation probability of 0.05. The optimal solution is determined 
based on the minimum value of the visual conveyance minimum Z index, with the genetic algorithm 
producing a best fitness value of 5.570. The evolutionary progress of the genetic algorithm fitness is 
visualized in Figure 15-16, depicting the trends of the best fitness, worst fitness, and average scores 
throughout the iterations.

Figure 14. Training results of BP neural network regression diagram

Figure 15. Genetic algorithm fitness evolution process diagram
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The genetic algorithm (GA) was utilized to determine the optimal encoding rule for the AR-
HUD design problem, resulting in the encoding rule 100000010001100000100001. Decoding this 
rule yielded the corresponding AR-HUD design, which is depicted in Figure 17. In order to improve 
the aesthetic appeal of the interface, a qualitative analysis was conducted, allowing for adjustments 
to certain components while adhering to the optimization guidelines for human-computer interfaces. 
However, the relative positions of the modules were not significantly altered. The final optimized 
AR-HUD design was achieved, as presented in Figure 18.

Figure 16. The best fitness, the worst fitness, and the average score

Figure 17. Optimal solution design scheme of genetic algorithm optimized AR-HUD layout

Figure 18. Optimal solution design scheme of genetic algorithm optimized AR-HUD interface design
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Evaluation of Cognitive Load After Optimization Design of AR-HUD
To evaluate the effectiveness of the optimized AR-HUD design, a comparison was conducted between 
the solutions before and after optimization using the Workload Profile (WP) rating scale. The WP 
rating scale is a subjective method widely utilized to assess the difficulty of driving tasks. Among 
the various scales available for measuring cognitive load, the WP scale has shown high sensitivity 
and is considered an ideal tool for measurement (Fréard et al., 2007; Moustafa et al., 2017). In this 
study, the experimental group was assigned the optimized AR-HUD interface, while the control 
group consisted of the AR-HUD prototype with the lowest cognitive load score based on NASA-
TLX. Eighteen participants evaluated their performance based on their driving experience and their 
understanding of the definitions associated with each difficulty level. The collected data from the 
rating scale was then used to calculate the average scores for each factor and the total score for each 
solution. The resulting levels of cognitive load were analyzed and are presented in Table 5.

By comparing the indexes of the experimental group and the control group, differences can 
be analyzed, and a judgment can be made regarding the performance after optimizing the research 
algorithm. Based on the provided table, the experimental group exhibits lower mean scores in all 
measures compared to the control group. This observation indicates that the optimized AR-HUD 
interface in the experimental group performed better in terms of cognitive load.

Specifically, the experimental group exhibited significantly lower mean scores in central 
processing resources, response acquisition resources, spatial encoding resources, verbal encoding 
resources, visual reception resources, auditory reception resources, operation resources, and the total 
score, compared to the control group. The percentage improvement can be calculated by comparing 
the mean scores between the experimental group and the control group. In this case, the experimental 
group outperformed the control group by approximately 41.1% in terms of the total score.

Overall, the optimization of the research algorithm resulted in improved performance in reducing 
cognitive load for the experimental group compared to the control group. These improvements were 
statistically significant across multiple measures, providing evidence for the effectiveness of the 
optimization algorithm employed in this study.

DISCUSSION

The primary measure employed to assess driving cognitive load was the fixation time of areas of 
interest (AOI). This measure was used with the goal of understanding cognitive load in complex 
driving situations, which could then inform the design of AR-HUD interfaces to alleviate cognitive 
burden. However, the study encountered certain limitations that warrant consideration. Firstly, 
future research should strive to include participants from different age groups, allowing for a more 
comprehensive understanding of how cognitive load varies across different demographic categories. 

Table 5. WP cognitive load assessment scale before and after optimization design of AR-HUD

Group Measure
Central 

Processing 
Resources

Response 
Acquisition 
Resources

Spatial 
Encoding 
Resources

Verbal 
Encoding 
Resources

Visual 
Reception 
Resources

Auditory 
Reception 
Resources

Operation 
Resources

Total 
Score

Experimental Group

Mean 3.37 4.37 4.05 4.05 5.89 2.11 1.79 25.63

Standard 
Deviation 1.21 1.5 1.27 1.68 1.66 2.18 2.68 8.68

Control Group

Mean 7.65 7.88 7.88 6.65 7.12 2.29 4.06 43.53

Standard 
Deviation 1.54 1.17 1.73 2.42 2.18 1.57 2.3 6.88
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Additionally, investigating the impact of animation on visual load would provide valuable insights into 
the optimization of the AR-HUD interface. Furthermore, improving the data processing techniques 
for physiological indicators would enhance the accuracy and reliability of the measurements obtained.

To address these limitations, future research endeavors should focus on enhancing the 
experimental design and refining data processing techniques. This could involve employing a more 
diverse participant pool, incorporating dynamic elements in the AR-HUD interface to simulate real-
world driving scenarios, and exploring advanced methods for processing physiological data. By doing 
so, the research findings would be more robust and applicable in practical settings.

Moreover, it is important to acknowledge that individual differences in visual perception and 
cognitive abilities may impact the performance of the visual perceived load index and the BPNN 
model. Therefore, future research should consider incorporating personalized adaptation mechanisms 
to account for these individual differences and further boost the effectiveness of the AR-HUD visual 
interaction design.

CONCLUSION

In this study, a novel algorithm model was devised to forecast cognitive load in the context of 
augmented reality-head up display (AR-HUD) visual interaction. This was accomplished by analyzing 
drivers’ eye-tracking behavior and their allocation of visual resources during simulated driving 
experiments. The findings of the study reveal a noteworthy tendency among drivers to divert less 
attention towards the primary driving tasks and instead allocate increased attention towards the 
elements within the AR-HUD interface. Thus, this tendency of drivers to divert less attention towards 
primary driving tasks and instead allocate increased attention towards the AR-HUD interface can 
have adverse effects on the recovery of cognitive resources.

To advance the design of visual interaction in AR-HUD systems, this study introduced a visual 
perceived load index. This index was derived by integrating a visual intensity prediction model with 
subjective cognitive load evaluations of the user interface. The resulting index was then utilized to 
establish a visual perceived load prediction BPNN model, which incorporated the GA coding of the 
AR-HUD system and the visual cognitive load index of the layout design. The genetic algorithm was 
employed to optimize the neural network model and obtain the optimal solution for the AR-HUD 
visual interaction design. The proposed method holds potential for optimizing visual interaction 
designs in similar human-machine interactions, providing a theoretical foundation and serving as a 
valuable reference for future research in this domain. The reliability of the algorithm was evaluated 
using the CH scale, further validating its efficacy.
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