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ABSTRACT

This paper aims to determine optimal aggregate production and distribution plans in a supply 
chain system that simultaneously achieve two business targets of total profit and total sales, with 
uncertain parameters, e.g., production rate during regular time and overtime, inventory holding 
costs for a manufacturer and distribution centers, and transportation cost. A fuzzy multi-objective 
linear programming (FMOLP) model is developed to represent the planning problem. The proposed 
method that minimizes maximum deviation from satisfaction targets of fuzzy profits and sales is more 
effective, compared with the method that maximizes minimum satisfaction of fuzzy profits and sale, to 
determine various compromised solutions, which are Pareto-optimal, and to allow a planner to select 
the most desirable solution based on his/her opinion. This paper has made a significant contribution 
since it is the first one that proposes the FMOLP approach to determine compromised solutions with 
two target-based objectives of simultaneously achieving total fuzzy profit targets and total sales target.

Keywords
Compromised Solution, FMOLP, Fuzzy Multi-Objective Linear Programming, Supply Chain, Production and 
Distribution Planning, Profit and Sales, Seasonal Demand, Target-Oriented, Uncertainty

1. INTRODUCTION

Aggregate production and distribution planning in a supply chain (APDP-SC) problem involves 
determination of production quantities, workforce levels, inventory levels for a manufacturer and 
distribution centers, and transportation quantities among supply chain members under seasonal 
demands over a planning horizon of 6 to 12 months (Nam & Logendran, 1992; Djordjevica et al., 
2019). Typically, APDP-SC is performed under seasonal demands and limited resources and it aims 
to best utilize the resources (Spitter et al., 2005).

Linear programming (LP) model is a popular technique to solve APDP-SC problem. It determines 
optimal production, inventory, and transportation quantities under limitations of materials, workforce, 
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and inventory spaces. For single-objective problems, it may aim to achieve a maximum profit or 
minimum cost. For multiple-objective problems, it may determine compromised solutions between 
two or more conflicting objectives, e.g., minimizing cost and maximizing customer satisfaction. The 
LP model for multiple objective problems is called multiple objective linear programming (MOLP) 
model. It has two or more objective functions and parameters in the model are constant parameters 
(Tavakkoli et al., 2010; Horng & Yenradee, 2020). Practically, it is difficult to accurately determine 
the values of some parameters as constants since the parameters are uncertain (Akkawuttiwanich, 
& Yenradee, 2020). In order to handle this situation, MOLP model is extended to fuzzy multiple 
objective linear programming (FMOLP) model by changing constant parameters to fuzzy ones (Su, 
2017; Azadeh et al., 2015; Rezakhani, 2012; Tansakul & Yenradee, 2020).

This research work is developed to satisfy real needs of small Thai industries with five 
characteristics as follows: First, many small Thai industries have limited production and distribution 
capacities, and investment budget. They cannot economically manage to completely satisfy demands 
of all customers. Thus, they accept to partially satisfy the demands, and the leftover demands are 
lost. Second, objectives of most available models are to minimize total related costs, or to maximize 
a total profit. These objectives are not practical in business. Real businesses are neither attempted to 
get the highest sales nor the highest profit. They want to achieve the sales target and the profit target 
simultaneously. They do not want to significantly achieve over the targets since the targets of the 
next year will be significantly increased too. Third, the total profit and total sales are not necessarily 
maximized at the same time because increasing sales volume may not always lead to an increase in 
profits. When a company increases its sales volume, it incurs additional costs to produce and market 
those products, which can include costs such as labor, materials, and advertising expenses. As a result, 
the marginal cost of each additional unit sold may be higher than the marginal revenue earned from 
selling that unit. In such cases, the company may be better off selling fewer units at a higher price, 
rather than increasing sales volume and incurring higher costs. At low production level, the profit and 
sales will grow together. But at high production level, to further increase sales, it may need excessive 
costly overtime and holding cost that may reduce the profit. In practice when sales and profit targets 
are high, achieving the sales and profit targets simultaneously may not be possible and compromised 
solutions are needed. Fourth, there are many compromised solutions and planning managers want to 
manipulate solutions. They want to generate a number of different solutions and personally select the 
one that they like most. Finally, some unit cost parameters are uncertain and should be represented 
by fuzzy numbers instead of constants. Therefore, the profit which is affected by the fuzzy unit cost 
parameters are also uncertain and should be represented by the fuzzy numbers.

To satisfy real needs with five characteristics, the APDP-SC model is developed to determine 
compromised solutions between achieving sales target and profit target where the demands can be 
partially satisfied. Some parameters, e.g., productivity rates under regular time and overtime, unit 
transportation cost, and unit inventory holding cost, are fuzzy numbers. Some techniques are developed 
to generate a number of different compromised solutions, and allow the planning managers to select 
the preferable compromised solution.

This paper considers a supply chain structure as shown in Figure 1. The supply chain has 2 stages 
of a manufacturer and distribution centers. The manufacturer makes two decisions of production and 
storage. The distribution centers make two decisions of storage and sales. Transportation decision from 
the manufacturer and distribution centers is also required. The manufacturer produces 2 product types.

This paper has specific objectives as follows:

1. 	 To develop the FMOLP model for APDP-SC problem to simultaneously achieve sales and profit 
targets.

2. 	 To propose some methods for defuzzification of fuzzy constraints and fuzzy objective function 
coefficients, and for determining compromised solutions for two target-oriented objectives of 
achieving sales and profit targets.
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3. 	 To demonstrate using a real case study in Thai industry that the proposed FMOLP model and the 
method for determining compromised solutions are effective to generate non-dominated (Pareto 
optimal) solutions.

The scope of this paper is as follows: It considers aggregate production and distribution planning 
in a two-stage supply chain with two product types. It does not consider detailed planning, scheduling, 
and purchased part planning. Some parameters including unit transportation cost, unit inventory holding 
cost, and regular time and overtime productivity rates are uncertain and are estimated by triangular fuzzy 
numbers. The customer demands are constant but the demands may be partially satisfied. Therefore, the 
proposed model is not restricted by the constant demands. It has similar effect to uncertain demands.

This paper has contributions as follows: First, the proposed FMOLP model is realistic and practical 
for APDP in supply chain because it is developed based on needs and normal practice of industries 
that have sales and profit targets to be simultaneously achieved. Second, the proposed methods to 
handle fuzzy constraints and multiple fuzzy objectives are effective to generate various compromised 
solutions and allow a planner select the most preferable one. Third, the profit from the model is a 
fuzzy number, which is more useful for the supply chain planner than a constant profit since the fuzzy 
profit warns the planner of a low profit under the pessimistic situation.

This paper is organized as follows: Review of previous works and how this paper is different 
from others are presented in the next section. Section 3 explains methodological steps for conducting 
this research, FMOLP model, and methods to defuzzify fuzzy constraints and handle fuzzy objective 
functions. Section 4 presents validation of results, solutions of single objective models, and 
compromised solutions. Finally, results are concluded in Section 5.

2. LITERATURE REVIEW

Table 1 compares previous works that are related to supply chain optimization problems in production, 
distribution, and transportation planning. The table presents types of objective function, objectives, 
decision variables, and solution methods. Note that LP, FLP, FMOLP, GP, and FGP stand for 
linear programming, fuzzy linear programming, fuzzy multi objective linear programming, goal 
programming, and fuzzy goal programming, respectively.

Figure 1. 
Supply chain structure
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Most previous research works related to aggregate production planning (APP) consider issues of 
customer demand, processing time, production quantity, labor level, inventory level, and lead time. 
Most APP models are linear that aim to reduce total costs, including production, inventory holding, 
labor, overtime, and other cost components (Nam & Logendran, 1992; Spitter et al., 2005; Geetha 
& Elizabeth Shanthi 2020).

For real-world problems, some parameters related to APP are uncertain and unable to predict 
or control exactly, such as, customer demand, productivity rates, and various related unit costs. 
(Djordjevica et al., 2019; Peidro et al., 2010; Wong & Lai, 2011). Most APP problems consider 
multiple products and multiple periods. (Wang & Liang, 2005).

Some APP models focus on only workforce capacity, which is not sufficient for managing related 
production processes because the production quantities are limited by material constraints and production 
resource capacity as well. Thus, an integrated planning for production and resource capacity is a key 
success factor in industries. This problem is more complicated because we need to manage many factors, 
and then mathematical models are suitable to determine the best possible combination of the capacity, 
workforce, and inventory for multi-product and multi-stage production system (Sivasundari et al., 2019).

In supply chain context, a distribution stage is as important as the production stage since it 
significantly affects the profit and costs of the supply chain. The distribution planning is important 
because this stage must receive the products to store in a distribution center for sales to customers. 
In the distribution stage, it usually considers all parameters that are related to distribution planning, 
such as, customer demand, inventory at the distribution center, holding cost, inbound and outbound 
transportation, lead time, and available warehouse space (Pongsathornwiwat et al., 2017; Alnaggar 
et al., 2020; Liang, 2006).

Most articles that focus on transportation planning tend to assume that the transportation cost is directly 
calculated from a unit transportation cost since it is easy to calculate the cost (Ali & Yang, 2012; Pant 
et al., 2018; Huynh & Yenradee, 2020). However, the unit transportation cost is difficult to be precisely 
estimated as a constant since it is dependent on economic and environmental conditions (Liu & Xin, 2011).

Related research works of APP model with fuzzy parameters suggest that these problems should 
be formulated as fuzzy linear programming models with fuzzy objective function or fuzzy constraints, 
or both (Spitter et al., 2005; Ren et al., 2015; Charongrattanasakul & Pongpullponsak, 2017). In 
order to determine optimal decisions of the APP, fuzzy constraints and fuzzy objective function are 
defuzzified by some techniques to be equivalent constraints and objective function with only constant 
parameters (Rommelfanger, 1996; Kaplanski et al., 2016; Nuchpho et al., 2019).

Some research works in APP consider multiple objectives, such as minimize total production 
cost, minimize rate of change in labor levels, minimize holding cost, minimize backorder cost, and 
maximize profit (Kabak & Ülengin, 2011). A subset of these works considers both multiple objectives 
and uncertain (fuzzy) parameters in objective function or constraints. Fuzzy parameters are, for 
example, forecasted demand and production capacity. Mathematical models for this type of problems 
are called FMOLP (fuzzy multiple objective linear programming) model (Wang & Liang, 2004).

For multiple objectives problems, the objectives are conflicting. It is not possible to achieve the 
best values for all objectives at the same time. When there are targets or goals to be achieved for each 
objective, a goal programming (GP) technique can be used to determine compromised solutions (Broz 
et al., 2019; Da Silva & Marins, 2014; Ighravwe & Oke, 2015). When decision makers consider that 
objectives have different weights, the compromised solutions can be determined by maximizing a 
weighted average of satisfactions of all objectives (Javadian et al., 2009). Note that the objective values 
are converted to a common scale from 0.0 to 1.0, which is called “satisfaction level”, to prevent the 
objective that has high value, such as sales, to dominate other objective with low value, such as profit.

Table 1 shows that previous research works do not consider maximizing sales. This paper is 
unique that it considers two objectives of maximizing total profits and total sales at the same time. 
Moreover, this paper determines compromised solutions by simultaneously achieving profit target 
and sales target.
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3. METHODOLOGY

In this section, methodological steps of this paper are presented, followed by mathematical models 
and data of a case study.

3.1. Methodological Steps
The methodological steps are presented in Figure 2. First, real business requirements of Thai supply 
chain are collected and FMOLP model is constructed based on the requirements. Second, methods 
to defuzzify fuzzy constraints and to handle multiple fuzzy objectives are developed to convert the 
FMOLP model to an equivalent single objective crisp LP model. Third, the model is verified and 
validated by determining the solution from the LP model that maximizes sales, and demonstrate that 
the solution is reasonable. Fourth, after the model is validated, the solutions from single objective 
models that maximize profit and maximize sales separately are determined. These solutions are 
extreme, not compromised one. Fifth, various compromised solutions between achieving profit target 
and sales target are determined by two methods. Finally, results are compared and the suitable method 
to determine the compromised solutions is recommended.

3.2. Notations
Indices, parameters, decision variables are defined as follows.

3.2.1. Indices

I: Set of products (i = 1,2,3,…,I)

Figure 2. Methodological steps
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J: Set of distribution centers (j = 1,2,3,…,J)
T: Set of time periods (month) (t = 1,2,3,…,T)

3.2.2. Parameters

TI : Maximum inventory capacity at the manufacturer (unit)
MW : Minimum workforce (person)
TW : Maximum workforce (person)
w

0
: Initial workforce level (person)

EC : Unit employee cost per period (Baht/person-period)
IC : Fuzzy unit inventory holding cost per period (Baht/unit-period)
OTC : Unit overtime cost per period (Baht/person-period)
HC : Unit hiring cost (Baht/person)
FC : Unit firing cost (Baht/person)
RU i : Fuzzy productivity rate during regular time for product i (unit/person)
OU i : Fuzzy productivity rate during overtime for product i (unit/person)
TC ijt : Fuzzy unit transport cost of product i to distribution center j in period t (Baht/unit)
D
ijt

: Demand of product i at distribution center j in period t (unit)
EI
i0

: Initial inventory of product i (unit)
EDC

ij 0
: Initial inventory of product i at distribution center j (unit)

p
i
: Selling price of product i (Baht/unit)
SM

i
: Safety stock of product i at manufacturer (unit)

SDC
ij

: Safety stock of product i at distribution center j (unit)
MDC

j
: Maximum inventory capacity of distribution center j (unit)

HDCC ij : Fuzzy unit inventory holding cost of product i at distribution center j (Baht/unit)

TPsat
p

 : Satisfaction target of total profit in pessimistic situation (unitless)

TPsat
m

 : Satisfaction target of total profit in most likely situation (unitless)

TPsat
o

 : Satisfaction target of total profit in optimistic situation (unitless)
TSsat : Satisfaction target of total sales (unitless)

3.2.3. Decision Variables

x
it
rt : Production quantity of product i in period t during regular time (unit)
x
it
ot : Production quantity of product i in period t during overtime (unit)
x
ijt

: Transport quantity of product i to distribution center j in period t (unit)
s
ijt

: Sales quantity of product i at distribution center j in period t (unit)
h
t
: Number of workers hired in period t (person)
f
t
: Number of workers fired in period t (person)
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3.2.4. Intermediate Variables

w
t

: Workforce level in period t (person)
EDC

ijt
: Ending inventory of product i at distribution center j in period t (unit)

EI
it

: Ending inventory of product i in period t at manufacturer (unit)
TS : Total sales (Baht)
TP : Fuzzy total profit (Baht)
TPp : Total profit in pessimistic situation (Baht)
TPm : Total profit in most likely situation (Baht)
TPo : Total profit in optimistic situation (Baht)
TS

sat
: Satisfaction of sales (unitless)

TP
sat
p : Satisfaction of total profit in pessimistic situation (unitless)

TP
sat
m : Satisfaction of total profit in most likely situation (unitless)

TP
sat
o : Satisfaction of total profit in optimistic scenario (unitless)

TP
sat
p

� ����
: Deviation from satisfaction target of total profit in pessimistic situation (unitless)

TP
sat
m

� ����
: Deviation from satisfaction target of total profit in most likely situation (unitless)

TP
sat
o

� ����
: Deviation from satisfaction target of total profit in optimistic situation (unitless)

TS
sat

� ����
: Deviation from satisfaction target of total sales (unitless)

TS
max

: Maximum total sales (Baht)
TPp

max
: Maximum total profit in pessimistic situation (Baht)

TPm
max

: Maximum total profit in most likely situation (Baht)
TPo

max
: Maximum total profit in optimistic situation (Baht)

TS
max

: Minimum total sales (Baht)
TPp

min
: Minimum total profit in pessimistic situation (Baht)

TPm
min

: Minimum total profit in most likely situation (Baht)
TPo

min
: Minimum total profit in optimistic situation (Baht)

3.3. Fuzzy Multi-Objective Linear Programming (FMOLP) Model
3.3.1. Objective Functions

Maximize total sales

The sales value represented by Eq. (1) is referred to as total sales. This encompasses the sales of all 
products across all distribution centers for all periods. It’s worth noting that total sales is a precise 
number, as the company can set the selling price exactly:

TS = 
i I j J t T

i ijt
p s

∈ ∈ ∈
∑∑∑ ⋅ 	 (1)

Maximize total profit
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Total profit is the difference between total sales and total costs including hiring cost, firing cost, 
regular employee cost, overtime cost, inventory holding cost at manufacturer, transportation cost, and 
inventory holding cost at distribution centers, as specified by Eq. (2). From Eq. (2), some parameters 
are fuzzy numbers therefore the total profit is also a fuzzy number:

TP = 
i I j J t T

i ijt
t T

t
p s HC h

∈ ∈ ∈ ∈
∑∑∑ ∑⋅ − ⋅

 
+FC·

t T
t
h

∈
∑  +EC·

t T
t
w

∈
∑  + OTC·

i I t T
it
otx

∈ ∈
∑∑  + 	

IC EI TC x HDCC
i I t T

it
i I j J t T

ijt ijt
i I j J t T

� � �⋅ ⋅+ +
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈
∑∑ ∑∑∑ ∑∑∑ iij ijt

EDC⋅ 	 (2)

3.3.2. Constraints

w w h f
t t t t
= + −−1

, ∀ ∈t T 	 (3)
w MW
t
³ , ∀ ∈t T 	 (4)

w TW
t
£ , ∀ ∈t T 	 (5)

EI
it
= x x EI x

it
rt

it
ot

it
j
ijt

+ + −− ∑1
, ∀ ∈ ∀ ∈i I t T, 	 (6)

i I
it

EI TI
∈
∑ ≤ , ∀ ∈t T 	 (7)

EI SM
it i
³ , ∀ ∈ ∀ ∈i I t T, 	 (8)

x w RU
it
rt

t i£  , ∀ ∈ ∀ ∈i I t T, 	 (9)

x w OU
it
ot

t i£  , ∀ ∈ ∀ ∈i I t T, 	 (10)
S D
ijt ijt

£ , ∀ ∈ ∀ ∈ ∀ ∈i I j J t T, , 	 (11)
EDC

ijt
= EDC x S

ij t ijt ijt( )− + −
1

, ∀ ∈ ∀ ∈ ∀ ∈i I j J t T, , 	 (12)

i I
ijt

EDC
∈
∑ ≤ MDC

j
, ∀ ∈ ∀ ∈j J t T, 	 (13)

EDC
ijt

³ SDC
ij

, ∀ ∈ ∀ ∈ ∀ ∈i I j J t T, , 	 (14)
x x w h f x
it
rt

it
ot

t i i ijt
, , , , , ³ 0 , ∀ ∈ ∀ ∈ ∀ ∈i I j J t T, , 	 (15)

x x w h f x int
it
rt

it
ot

t i i ijt
, , , , , Î , ∀ ∈ ∀ ∈ ∀ ∈i I j J t T, , 	 (16)

Constraint (3) is a workforce balance constraint. Constraints (4 and 5) limit minimum and maximum 
levels of workforce. Constraint (6) is inventory balance constraint at the manufacturer. Constraint (7) 
controls total inventory at the manufacturer not to exceed the available space. Constraint (8) maintains 
the safety stock at the manufacturer. Constraints (9 and 10) relate production quantities during regular 
time and overtime with the number of workers and productivity rates. Since the productivity rates are 
fuzzy numbers, these constraints are also fuzzy. Note that the overtime work will not be used until the 
production quantity during regular time reaches its capacity since the overtime work has additional 
cost. Constraint (11) ensures that the sales quantity does not exceed the demand, demand may not be 
satisfied, and unsatisfied demand is a lost-sales. Constraint (12) is the inventory balance constraint 
at the distribution centers. Constraint (13) controls total inventory at the distribution centers not to 
exceed the available space. Constraint (14) maintains the safety stock at the distribution centers. Non-
negativity and integer conditions are specified by constraints (15 and 16), respectively.



International Journal of Knowledge and Systems Science
Volume 14 • Issue 1

10

3.4. Defuzzification of Uncertain Constraints and How 
to Handle Multiple Uncertain Objectives
3.4.1. Defuzzification of Fuzzy Constraints
Constraints (9 and 10) are fuzzy constraints. They must be defuzzified before solving. Only right 
side of constraints (9 and 10) are fuzzy with fuzzy parameters of RU i  and OU i . A suitable method 
to defuzzify these fuzzy constraints is to defuzzify RU i  and OU i  to become constant of RU i  and 
OU i . Therefore, constraints (9 and 10) are defuzzified as constraints (9’ and 10’). Note that RU i  
is a fuzzy number with three components RU RU RU

i
p

i
m

i
o, ,( )  and RU RU RU RUi i

p
i
m

i
o= + +( )2 /4. 

Similarly, OU i  is a fuzzy number with three components OU OU OU
i
p

i
m

i
o, ,( )  and OU i =  

OU OU OU
i
p

i
m

i
o+ +( )2 /4. This defuzzification method is also applied by some research works 

(Nuchpho et al., 2019). Another well-known method for defuzzification of fuzzy constraint is a 
ranking method (Fortemps & Roubens, 1996). This method is suitable when both left- and right-hand 
sides of the constraint are fuzzy:

x w RU
it
rt

t i£ or x w
it
rt

t
£ RU RU RU

i
p

i
m

i
o+ +( )2 /4 (9’)	

x w OU
it
ot

t i£ or x w
it
ot

t
£ OU OU OU

i
p

i
m

i
o+ +( )2 /4 (10’)	

3.4.2. How to Handle Multiple Uncertain Objectives
This paper proposes two methods to handle multiple uncertain objectives, which are maximize 
minimum satisfaction method, and minimize maximum deviation from satisfaction targets method. 
Both methods involve two objectives with significantly different values. The total sales is much 
higher than the total profit. To prevent the objective that has higher value from dominating another 
objective, both total sales and total profit are converted to “satisfaction levels” with a common scale 
from 0.0 to 1.0, see constraints (22-25). There are four satisfaction measures, which are satisfactions 
of pessimistic profit, most likely profit, optimistic profit, and sales.

Method 1: Maximize minimum satisfaction method.

The concept of Method 1 is to avoid the lowest value in any satisfaction measures. It maximizes 
the minimum value among four satisfaction measures. This method is widely applied by previous 
works (Rubin, 1989). It is used to compared with the proposed method:
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and constraints (1, 3-8, 9’, 10’, and 11-16).
The objective function (17) and constraints (18-21) are applied to maximize minimum satisfaction 

of total sales and total profit under three fuzzy (pessimistic, most likely, and optimistic) scenarios. 
Constraints (22-25) transform the total sales and total profit to satisfaction levels with a common 
scale from 0.0 to 1.0, to prevent the total sales that has higher value from dominating the total profit 
that has lower value. Objective function (2) which is the fuzzy objective function is defuzzified into 
three constraints with constant parameters, which are presented by constraints (26-28).

Method 2: Minimize maximum deviation from satisfaction targets (proposed method).

Method 2 is proposed since the business practice under consideration sets targets of total sales 
and total profit. Although both targets are relatively high and fully achievement of both targets may 
be difficult, this method attempts to satisfy both targets as much as possible. “To satisfy targets as 
much as possible” has the same meaning as “to minimize maximum deviation from the targets”. This 
concept is similar to a non-preemptive goal programming concept where the target is the goal and 
the method tries to minimize the deviation from the goal. When there are multiple goals, the method 
minimizes maximum deviation from multiple goals. Moreover, the target of sales has higher values 
than the target of profit. To prevent one target from dominating another, the targets are converted to 
the satisfaction targets with a common scale from 0.0 to 1.0. Finally, this method minimizes maximum 
deviation from satisfaction targets.

Unlike Method 1 that can generate only one compromised solution, Method 2 can generate 
various compromised solutions by setting different sets of satisfaction targets, and allows the supply 
chain planner select the solution that is the most preferable based on his/her opinion. This proposed 
approach is novel:

Min z
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	 (29)
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z TPsat
m

2
³
� ���

	 (31)

z TPsat
o

2
³
� ���

	 (32)

z TSsat2
³
� ��

	 (33)

TP TP TPsat

p

sat

p

sat
p

� ��� �= − 	 (34)

TP TP TPsat

m

sat

m

sat
m

� ��� �= − 	 (35)

TP TP TPsat

o

sat

o

sat
o

� ��� �= − 	 (36)

TS TS TSsat sat sat

� �� �= − 	 (37)

and constraints (1, 3-8, 9’, 10’, 11-16, and 22-28).
The objective function (29) and constraints (30-33) are applied to minimize maximum deviation 

of satisfaction form target of total sales and target of total profits under three fuzzy (pessimistic, most 
likely, and optimistic) scenarios. Constraints (34-37) determine the deviation from targets of total 
profits and total sales.

3.5. Data of the Case Study
This section provides data of the case study including demand of each product in each period, 
production capacity that relates to workforce level, limit of inventory for the manufacturer and 
distribution centers, and transportation cost.

According to Table 2, the demands of both products are seasonal, which is common for real 
industrial demands. Each product has different peak period of demand. The customer demands are 
relatively high when compared with the production capacity. It may not be economical to satisfy all 
demands.

Table 3 shows safety stock, beginning inventory, and maximum inventory for the manufacturer 
and distribution centers.

Table 4 presents workforce parameters including minimum workforce, maximum workforce, 
and beginning workforce.

According to the Table 5, the productivity rate during regular time and over time for each product 
are presented. They are uncertain because labor productivity has variability. Therefore, the data are 
presented as fuzzy numbers under pessimistic, most likely and optimistic situations.

Table 2. Product demand in each period

Period
Product 1( D t1 ), (Units) Product 2 ( D t2 ), (Units)

Period 1 9,983 13,090

Period 2 5,345 20,716

Period 3 3,365 5,663

Period 4 16,005 3,491

Period 5 20,607 7,922

Period 6 5,605 16,910
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Table 6 presents regular labor cost, overtime cost, and hiring and firing costs. The overtime cost 
per piece of product is more expensive than the regular time cost for 10%.

Tables 7-9 show the transportation cost, manufacture inventory holding cost, and distribution 
center inventory holding cost, respectively. All costs are uncertain and represented by fuzzy numbers 
under pessimistic, most likely, and optimistic situations.

4. RESULTS AND DISCUSSION

In this section, model verification and validation are presented, followed by the result of single 
objective models, and the compromised solutions of multiple objective models.

4.1. Model Verification and Validation
The single objective model that maximizes total sales is used to verify that the model is correct and 
the results are reasonable. The model uses the objective function (1) and constraints (3-8, 9’, 10’, 

Table 3. Inventory capacity

Safety Stock 

SM SDCi ij/( ) , (Units)

Beginning 

EI EDCt tj0 0
/( ) , (Units)

Inventory 

TI MDC j/( ) , (Units)

Product 1 Product 2 Product 1 Product 2 For both products

Manufacturer Inventory 508 565 2,000 2,000 12,000

DC 1 Inventory 98 109 1,050 1,160 8,000

DC 2 Inventory 102 116 860 1,010 10,000

DC 3 Inventory 102 117 910 990 7,500

DC 4 Inventory 107 110 1,210 1,110 12,000

DC 5 Inventory 99 112 960 880 9,500

Table 4. Workforce capacity

Minimum (MW ) (Person) Maximum (TW ) (Person) Beginning ( wt ) (Person)

Workforce 50 300 75

Table 5. Production capacity

Product type (i) Productivity rates (Unit/Month-Employee)

Pessimistic Most likely Optimistic

Regular time RU i( ) Product 1 21 24 25

Product 2 19 22 23

Over time OU i( ) Product 1 10 12 13

Product 2 9 11 12
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and 11-16). The optimal decisions in each period from the model are summarized in Figures 3 and 
4 The sales and cost elements in each period are presented in Figures 5 and 6.

Figures 3 and 4 show that the demands of both products are seasonal with different peak periods. 
Since the model is to maximize total sales, the sales of both products for all periods are the same as 
the demands, except the sales of product 2 in period 1 that is lower than the demand. The production 
quantities are smoother than the demands that is highly seasonal. The optimal decisions from the 
model suggest that the inventory at the distribution centers is built up before the peak demand periods 
and it is used to satisfy the demands that is higher than the production quantities during peak demand 
periods. The inventory levels at the manufacturer are less than those at the distribution centers because 
the unit inventory holding cost at the manufacturer is more expensive than at the distribution centers. 
These observations convince that the model is correct and the results are reasonable.

Figures 5 and 6 clearly show that when the total sales is maximized, the sales in each periods 
of both products are highly fluctuated (similar to the demand fluctuations). The total cost is higher 
than the sales for some periods. This means that it has a loss in some periods. The regular labor costs 
(employee costs) are quite constant for all periods. The overtime labor costs (OT costs) are high for 
most periods, except for period 5 of product 2 since the production quantities are set at high levels to 

Table 6. Labor, hiring and firing costs

Cost (Baht)

Employee cost EC( ) , (cost/month-employee) 15,000

Overtime cost OTC( ) , (cost/unit-month) 725

Hiring cost HC( ) , (cost/employee) 10,000

Firing cost FC( ) , (cost/employee) 15,000

Table 7. Transportation costs

Transportation Cost (TC ijt
 ) (Baht/unit)

Product type Pessimistic Most likely Optimistic

DC 1
Product 1 69 60 51

Product 2 83.95 73 62.05

DC 2
Product 1 62.1 54 45.9

Product 2 77.05 67 56.95

DC 3
Product 1 56.35 49 41.65

Product 2 81.65 71 60.35

DC 4
Product 1 77.05 67 56.95

Product 2 73.6 64 54.4

DC 5
Product 1 82.8 72 61.2

Product 2 70.15 61 51.85
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satisfy most demands for maximizing total sales. The inventory holding costs at distribution centers 
are relatively high and fluctuated following the inventory levels at the distribution centers. These 
behaviors are reasonable for the model that maximizes the total sales.

Table 8. DC inventory holding costs

DC Inventory Cost (HDCCij
 ) (Baht/unit)

Product type Pessimistic Most likely Optimistic

DC 1
Product 1 104.5 95 85.5

Product 2 92.4 84 75.6

DC 2
Product 1 132 120 108

Product 2 100.1 91 81.9

DC 3
Product 1 148.5 135 121.5

Product 2 84.7 77 69.3

DC 4
Product 1 96.8 88 79.2

Product 2 102.3 93 83.7

DC 5
Product 1 89.1 81 72.9

Product 2 105.6 96 86.4

Table 9. Manufacturer inventory holding costs

Manufacturer inventory cost ( IC ) (Baht/unit)

Pessimistic Most likely Optimistic

Manufacturer Inventory cost 230 200 170

Figure 3. Optimal decisions related to product 1
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4.2. Results of Single Objective Models
From Section 3.3, there are two objective functions, namely, maximizing total profit and maximizing 
total sales. The total profit function (Eq. 2) is a triangular fuzzy number under pessimistic, most 
likely, and optimistic scenarios while the total sales function (Eq. 1) is constant. Thus, there are four 
single objective models that maximize pessimistic profit (Eq. 26), maximize most likely profit (Eq. 
27), maximize optimistic profit (Eq. 28), and maximize total sales (Eq. 1). All models have the same 
set of constraints (Eq. 3-8, 9’, 10’, and 11-16). The optimal objective values from all single objective 
models are presented in Table 9. From Table 9, when the objective is to maximize sales, the sales 
is 93.2 million Baht and the fuzzy profits range from 18.8 to 23.0 million Baht. When the objective 
is to maximize profits under three scenarios, the sales range from 76.6 to 71.7 and the fuzzy profits 
range from 31.5 to 34.1 million Baht. It clearly shows that the objectives of maximizing sales and 
maximizing profit are conflicting. It is not possible to get the maximum profit and maximum sales 
at the same time. The solutions from single objective models are extreme and are not compromised. 

Figure 4. Optimal decisions related to product 2

Figure 5. Cost elements and sales of product 1
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Practically, businesses prefer compromised solutions that offer “reasonably good” sales and profits at 
the same time. The compromised solutions from FMOLP models will be determined in Section 4.3.

The FMOLP models need some parameters to calculate the satisfaction levels of fuzzy profit 
and sales, which are maximum and minimum values of fuzzy profit and sales. These parameters can 
be determined by experiences of a supply chain planner based on historical data or determined from 
the results of single objective models. This paper applies the latter method where the maximum and 
minimum values in each column of Table 10 are used. Therefore, TPp

max
, TPp

min
, TPm

max
, TPm

min
, 

TPo
max

, TPo
min

, TS
max

, and TS
min

 are 31,508,665, 18,839,575, 32,775,894, 20,900,588, 34,060,026, 
22,961,600, 93,165,700, and 71,702,650, respectively.

4.3. Compromised Solutions
The compromised solutions from Methods 1 and 2 are presented in Table 11. The satisfaction 
measures are graphically shown in Figure 7. Method 1 does not need the satisfaction targets as inputs. 
It determines the compromised solution that maximize the lowest level of four satisfaction measures. 
From Table 10, the actual satisfaction of sales has the lowest level at 0.79 while the actual satisfactions 
of fuzzy profits are 0.86, 0.87, and 0.89. The satisfaction of sales is relatively low compared with 
those of fuzzy profits. Disadvantages of Method 1 are that it has only one compromised solution that 
cannot be controlled by the planner, and a satisfaction measure may be lower than others.

Method 2 needs the satisfaction targets of fuzzy profits and sales as inputs. When these satisfaction 
targets are set differently, the compromised solutions are also different. Table 11 shows that the actual 

Figure 6. Cost elements and sales of product 2

Table 10. Results from single objective models

Objectives Pessimistic Profit 
(Baht)

Most likely Profit 
(Baht)

Optimistic Profit 
(Baht)

Sales (Baht)

Maximize pessimistic profit 31,508,665 32,731,130 33,953,595 71,702,650

Maximize most likely profit 31,491,946 32,775,894 34,059,842 76,552,250

Maximize optimistic profit 31,491,762 32,775,894 34,060,026 76,552,250

Maximize sales 18,839,575 20,900,588 22,961,600 93,165,700
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satisfactions of Method 2 tend to be closed to the satisfaction targets. For example, Method 2 with 
satisfaction target set 1 (high satisfaction target of sales and low satisfaction targets of profit) has 
high actual satisfaction of sales and low actual satisfactions of profits. Figure 7 can clearly show that 
Method 2 with different sets of satisfaction targets have different levels of satisfaction of fuzzy profits 
and sales. There exists a clear trade-off between satisfactions of fuzzy profits and satisfaction of sales.

The supply chain planner can select the most preferable compromised solution form Method 
2. From Figure 7, when very high profit is needed but the sales can be tolerated, Method 2 with 
satisfaction target sets 4 and 5 should be applied. When very high sales is needed but the profit can 
be tolerated, Method 2 with satisfaction target set 1 should be applied. It is also possible to achieve 
a well balance between satisfactions of fuzzy profits and satisfaction of sales, which is shown by the 
compromised solution of Method 2 with satisfaction target set 2. Note that Method 2 with some sets 
of satisfaction targets may generate the same compromised solution as that of Method 1 (see Method 
2 with satisfaction target set 3).

The proposed method (Method 2) that minimize maximum deviation from satisfaction targets 
has advantages as follows: First, it allows the planner to generate various compromised solutions, and 

Table 11. Compromised solutions

Method Situation Satisfaction target Actual Satisfaction Value (Baht)

Method 1:

Pessimistic profit

None

0.86 29,684,666

Most likely profit 0.87 31,255,734

Optimistic profit 0.89 32,826,802

Sales 0.79 88,748,950

Method 2: Target 1

Pessimistic profit 0.75 0.78 28,738,784

Most likely profit 0.75 0.80 30,411,756

Optimistic profit 0.75 0.82 32,084,754

Sales 0.95 0.91 91,286,950

Method 2: Target 2

Pessimistic profit 0.80 0.82 29,217,239

Most likely profit 0.80 0.84 30,839,627

Optimistic profit 0.80 0.86 32,462,015

Sales 0.90 0.86 90,104,200

Method 2: Target 3

Pessimistic profit 0.85 0.86 29,684,677

Most likely profit 0.85 0.87 31,255,739

Optimistic profit 0.85 0.89 32,826,801

Sales 0.85 0.79 88,748,900

Method 2: Target 4

Pessimistic profit 0.90 0.89 30,096,238

Most likely profit 0.90 0.90 31,616,337

Optimistic profit 0.90 0.92 33,136,436

Sales 0.80 0.73 87,300,550

Method 2: Target 5

Pessimistic profit 0.95 0.91 30,421,955

Most likely profit 0.95 0.93 31,896,829

Optimistic profit 0.95 0.94 33,371,702

Sales 0.75 0.65 85,705,600
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select the most desirable one. Second, the compromised solution from Method 2 can be controlled 
by setting the satisfaction targets of fuzzy profits and satisfaction target of sales. Third, various 
compromised solutions from Method 2 are non-dominated solutions, which means that there is no 
compromised solution that is worse than another compromised solution for both profit and sales. 
Finally, Method 2 satisfies a need of real business that has targets of profit and sales to be achieved. 
Note that the targets of profit and sales can be converted to a common scale from 0.0 to 1.0, which 
is called the satisfaction targets.

5. CONCLUSION

In this paper, the aggregate production and distribution planning in a supply chain (APDP-SC) problem 
is considered and the appropriate fuzzy multi-objective linear programming model is developed 
with the aim of maximizing total sales and total fuzzy profits. To deal with uncertain parameters (in 
constraints and objective functions) and conflicting objectives, some methods to handle the fuzzy 
constraint and multiple fuzzy objectives are proposed. The methods include Method 1: maximizing 
minimum satisfaction method, and Method 2: minimizing maximum deviation from satisfaction targets 
method. Based on the experimental results of a case study, Method 1 provide only one compromised 
solution while Method 2 is effective to provide a number of different compromised solutions, and 
allows a supply chain planner select the most desirable compromised solution. The compromised 
solutions from Method 2 are responsive to the adjustments of targets of sales and fuzzy profits. This 
means that the actual satisfaction levels tend to be closed to the satisfaction targets.

The contributions of this paper are discussed. Theoretical contributions include:

1. 	 This paper is the first one that proposes the FMOLP approach to determine compromised 
solutions for APDP-SC problem with two target-based objectives of simultaneously achieving 
total fuzzy profit targets and total sales target. Although many real businesses have targets of 
sales and profit to be achieved, there is no previous work in this field that develops the models 
with the same objectives.

Figure 7. Comparison of satisfaction measures of methods 1 and 2
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2. 	 The Method 2: minimizing maximum deviation from satisfaction targets, which is proposed in 
this paper, is effective to determine various compromised solutions and allow the supply chain 
planner select the most desirable one. The compromised solutions have actual satisfactions that 
are closed to the satisfaction targets. Moreover, the compromised solutions are Pareto-optimal 
or non-dominated solutions.

Additionally, practical contributions of this paper include:

1. 	 The supply chain planner can manipulate the compromised solutions by adjusting satisfaction 
targets of fuzzy profits and sales. The compromised solutions will be changed following the 
targets. In practice, the model may not accurately represent the real situation. The planner needs 
the model that can generate various approximate solutions. The final decision is dependent on 
the planner. The proposed Method 2 satisfies the practical need of the planner.

2. 	 The total profit from the model is a fuzzy number, which is more useful for the supply chain 
planner than a constant profit since the fuzzy profits warn the planner that it has a possibility 
that the profit will not follow the target. Therefore, this paper allows the supply chain planner 
set three different targets for optimistic, most likely, and pessimistic profits.

Limitations of this paper and recommendations for further studies are represented as follows: 
The first limitation is that the proposed model in this paper is the aggregate planning model, which 
does not show details of production and distribution activities, such as, a workstation, raw material, 
a component of the product, production schedule, and operations in distribution centers. The second 
limitation is that this paper considers only production and distribution stage in the supply chain system. 
It does not consider retailers and suppliers. Further studies should consider some disaggregation 
models to determine detailed plans of operations in the supply chain. The scope of supply chain under 
consideration should be expanded to cover retailers and suppliers as well.
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