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ABSTRACT

Failure mode and effects analysis (FMEA) is a powerful risk management tool and engineering 
technique for eliminating potential failures. This paper aims to improve FMEA by introducing the 
calibrated linguistic semantic (CIS) and a consensus reaching process with minimum adjustment cost. 
CIS can effectively solve the problem that different individuals may have different understandings 
of the same term, and the consensus reaching process can reduce the potential inconsistency and 
conflict to make the result of rank more accurate and convincing. A novel criteria weight allocation 
method based on the performance of alternatives is used to obtain the relative weights of risk factors 
(RF), which is not only based on the function framework but also can obtain the relative weight of 
RFs through the evaluation matrix directly. Then, the proposed FMEA framework is applied to the 
industrial internet platform. Finally, the comparisons between the proposed and other methods are 
presented to demonstrate the effectiveness and advantages of the new method.
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INTRODUCTION

In response to the new industrial revolution, General Electric (GE) developed the first industrial Internet 
platform, Predix, to meet its large-scale industrial analytics (Chen et al., 2018). Subsequently, more 
and more industry Internet platforms have been produced, such as Bosch IoT Suite, Kaa IoT Platform, 
and COSMOPlat. However, as industry Internet platform is a new product, most research mainly 
focuses on opportunities, challenges, factors, etc. (Chen et al. 2018; Sisinni et al. 2018). However, 
the research on the risk management of the industrial Internet platform is limited. Therefore, in this 
paper, we will introduce the framework of FMEA to reduce the problems and challenges.
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FMEA, developed by NASA in the 1960s, is a useful risk management tool and engineering 
technique to manage the quality and reliability of products (Baykasoglu et al., 2020; Liu et al., 
2018). FMEA was introduced into the automobile industry in the 1970s (Zhou et al., 2016). After 
many standardization efforts, such as International Organization for Standardization (ISO) 9000 
series, FMEA has become one of the most important risk management and reliability analysis tools 
(Baykasoglu et al., 2020). Nowadays, it has been widely utilized in industrial systems, designs, 
and production to identify and solve potential failures (Kutlu et al., 2012). Unlike other reliability 
management tools that look for solutions after failures occurred, FMEA can previously identify and 
eliminate known or potential failures in a system and prevent them from happening (Huang et al., 
2017; Liu et al., 2018b). Owing to its advantages, FMEA has been widely applied to various fields, 
such as marine (Bashan et al., 2020; Chang et al., 2021), aircraft (Daneshvar et al., 2020), cold-chain 
logistics management (Wu et al., 2021), healthcare services (Liu et al., 2018c), new energy resources 
(Duan et al., 2019; Karatop et al., 2020), and semiconductor manufacturing (Jee et al., 2015; Kerk 
et al., 2017).

The traditional FMEA mainly includes the following several stages: (1) Identify known or potential 
Failure Modes (FMs); (2) Confirm the cause and effect of every FM by DMs; (3) Calculating the 
Risk Priority Numbers (RPNs) of FMs, the product of three RFs: Occurrence (O), Severity (S) and 
Detection (D); (4) Rank the FMs according to the RPNs by descending order; (5) Take remedial 
actions for the high-risk FMs (Liu et al., 2018c; Huang et al., 2020; Liu et al., 2015).

Related Work
FMEA has made a huge number of contributions in many fields. However, there are still some 
drawbacks to the traditional FMEA method.

As a form of multi-attribute decision-making, conventional FMEA requires decision-makers 
(DMs) to assess FMs about RFs with crisp numbers, while it is rather difficult for DMs to describe 
their views by accurate values (Huang et al., 2017). DMs are inevitably hesitant or uncertain in the 
evaluation due to various subjective and objective factors.

To deal with this problem, many risk assessment methods have been reported, mainly including 
Fuzzy Set theory, Evidential Reasoning theory, and extended approaches based on the 2-tuple 
linguistics (Liu et al., 2019). The introduction of Fuzzy Set allowed DMs to assess FMs and the relative 
weights of RFs in linguistic terms to improve accuracy of evaluation (Hadivencheh et al., 2013); 
the use of Evidential Reasoning theory can increase the effectiveness and flexibility of subjective 
information processing in FMEA framework (Qin et al., 2020; Wu et al., 2020; Zhou et al., 2016).

Compared with these methods, linguistic assessment method can accommodate DMs’ lack of 
sufficient knowledge and fuzziness of human thinking process (Li et al., 2022). 2-tuple linguistic 
model and its extended methods are more popular because of their similarity to natural language 
(Huang et al., 2017). Since the concept of computing with words (CW) was proposed by (La, 1996) 
and the 2-tuple linguistic representation model was initiated by (Herrera et al., 2000), a huge number 
of extended methods based on the 2-tuple linguistic model have been greatly developed (Huang 
et al., 2017; Nie et al., 2018; Zhang et al., 2014). Linguistic distribution assessment allows DMs 
to evaluate with semantic intervals rather than individual semantics to reflect their opinions more 
exactly and reduce information loss (Huang et al., 2017; Nie et al., 2018). Probabilistic hesitant fuzzy 
language was developed to solve the problem that DMs can be hesitant when facing some relatively 
close options in evaluation (Huang et al., 2019). Double hierarchy hesitant fuzzy linguistic term sets 
expand linguistic expression scales, allowing DMs to evaluate problems and alternatives with much 
more intuitive expression (Duan et al., 2019).

However, an issue still needs to be considered: different DMs may have different understanding of 
the same term and each individual can have own risk attitude or word preference. Thus, an optimization-
based Personalized Individual Semantic (PIS) model was designed to achieve linguistic calibration 
for different DMs (Li et al., 2017). However, the PIS model needs to suppose that the preferences 
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of DMs are as consistent as possible, and it is not suitable for the multi-attribute decision-making 
when the numbers of alternatives and criteria are larger. On the other hand, CIS proposed by Wu et 
al. based on 2-tuple linguistic and membership calibration can well solve these problems (Wu et al., 
2022). Therefore, we introduce CIS as an evaluation method in this paper.

In addition, the calculation of RPN or the weight allocation of RFs in traditional FMEA is 
criticized (Almashaqbeh et al., 2019). Conventional FMEA has not considered relative importance 
among RFs, which can cause RPN distortion problems that a FM may be more serious, though its 
RPN value is lower than other FMs (Park et al., 2018). For example, let RPN

1
 of FM

1
 be 

54 9 3 2= × ×  and RPN
2

 of FM
2

 be 56 4 4 4= × × . According to the calculated RPN value, the 
risk of FM

2
 is higher than that of FM

1
, while it is hard to get the conclusion that FM

2
 is more 

serious after observing the OSD  value of each FM. The reason is that three RFs are given the same 
importance or equally weighted, and the multiplicative calculation used in RPN will amplify the 
effect of little change of individual RF.

The AHP method was used to obtain the relative weight of RFs to solve the problem (Almashaqbeh 
et al., 2019). Park et al. proposed a new risk assessment method by using the importance risk priority 
number (IRPN), which not only overcame the shortcomings of RPN distortion in conventional FMEA, 
but also could be useful for assessing the structural risks that involve functional influence between 
risks (Park et al., 2018). Qin et al. developed a new approach combining Interval Type-2 Fuzzy Sets 
(IT2FSs) with Evidential Reasoning method to allocate relative weight to the RFs (Qin et al., 2020b). 
In this paper, a weight allocation method based on the performance of alternatives is introduced, in 
which the relative weight of the RFs can be obtained only according to the evaluation matrix provided 
by the DMs and function calculating.

Contributions
The main work of our paper can be summarized as follows. First, we introduce CIS to deal with 
DMs’ personal understanding and expression habits. Second, the consensus reach process handles 
the probable inconsistencies of DMs based on minimum adjustment cost. Third, a novel weight 
allocation method based on the performance of alternatives is used to obtain the weights of RFs to 
solve the problem that different OSD values can get the same RPN value. The main advantages of 
the proposed method are as follows:

1. 	 CIS can improve the accuracy of FMEA evaluation and decision quality by collecting and 
calibrating the individual semantic expression concisely.

2. 	 The introduction of consensus reach process with minimum adjustment cost can effectively deal 
with the potential conflict or inconsistency, which promote the implement of decision better.

3. 	 The novel weight allocation method makes the proposed framework of FMEA effectively solve 
the potential RPN distortion, which makes the final FMEA ranking more convincing.

The rest of this paper is organized as follows. Section 2 introduces the preliminaries of the 
2-tuple linguistic, consensus-reaching process, and weight allocation method. Section 3 describes a 
novel framework of FMEA in detail based on a weight allocation method based on the performance 
of alternatives and a consensus-reaching process. Section 4 applies the proposed method to a case on 
Industrial Internet. Section 5 gives comparisons between the proposed and related FMEA methods 
to discuss their advantages. Finally, Section 6 concludes this paper and points out future directions.

PRELIMINARIES

The concepts of the CIS model, consensus reach process with minimum adjustment cost, and weight 
allocation method based on alternatives performance are provided below.
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Calibrated Linguistic Semantic Model
As mentioned, it is sometimes difficult for a DM to quantify his/her assessment as an exact value by 
crisp numbers. Thus, many methods have been reported to deal with the uncertainties of evaluation 
information (Liu et al., 2019). Heterogeneous multi-attribute group decision-making (HMAGDM) with 
preference deviation is a kind of complex and important problems in many decision situations (Yu et 
al., 2018). However, it is seldom to consider the effect of evaluation that the word understanding and 
preference of different DMs. CIS model proposed by Wu et al. can effectively overcome this issue, 
which is based on 2-tuple linguistic and calibration of membership function (Wu et al. 2022). The CIS 
model mainly includes three steps: (1) design a linguistic calibration experiment with graphics;(2) 
linguistic term collection based on the areas of graphics, and (3) the calibration process of linguistic 
terms; the process of CIS is shown in Figure 1.

First, a linguistic calibration experiment is designed to measure word preference. There are u  
sets of graphics G i u

i
= …( )1 2, , ,  with g  figures F j g

j
= …( )1 ..., , and f i m g

ij
… …=( ), ,..., , ,...,2 1 2  

denotes j-th figure in set G
i
, with properties.

1. 	 The area of each figure must be random.
2. 	 There are total g  figures with area t  in the u  sets.

Second, … =( )k l1 2, ,...,  have to evaluate the graph sets by 2-tuple linguistic term set S =…  
and provide the answer sets A k lk =( )1 2, ,..., . The concept of 2-tuple linguistic model is described 
in La (1996) and Herrera (2000). 

Third, the answer sets of DMs are matched with the real areas of figures, and the CIS of each 
DM can be obtained.

DMs are required to use 2-tuple linguistic to evaluate the designed graph set and provide answer 
sets. Herrera and Martinez proposed the 2-tuple linguistic model, and La (1996) provided a detailed 
process of it. This model is a classical approach to solving assessment uncertainties, and it has been 
widely used in various fields as a linguistic representation model (Herrera et al., 2000).

Definition 1. Let A ak
yx
k

u g
= ( )

×
 be the integrated answer set provided by DM k l

k
= …( )1 2, , , , 

where a
yx
k  is a 2-tuple linguistic term assessment. The CIS of DM

k
 about each linguistic term s

t
 

can be calculated as follows.

Figure 1. 
The CIS process
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CIS s
u

a k lk
t

y

u

yx
k( ) = ( ) = …

=

−∑
1

1 2
1

1” , , , ,� 	 (1)

Here, CIS s CIS sk
t

k
t( ) < ( )+1 . If CIS s CIS sk

t
k

t( ) ≥ ( )+1 , there may exist wrong information provided 
by DMs or the design of the experiment is wrong or unreasonable, thus, DMs must update their 
evaluation, or the experiment should be adjusted.

Let V v k lk
ij
k

m n
= ( ) = …( )

×
1 2, , ,  be the initial evaluation matrices provided by DM

k
. Next, V k  

can be transformed into an individual numerical evaluation matrix E e k lk
ij
k

m n
= ( ) =( )

×
1 2, ,..,  by 

the CIS s k lk
t( ) = …, , , ,1 2 . Then, the collective numerical evaluation matrix Ec  can be defined as 

follows.
Definition 2. Let E e k lk

ij
k

m n
= ( ) =( )

×
1 2, ,..,  be the individual numerical evaluation matrices, 

the collective numerical evaluation matrix E ec
ij
c

m n
= ( )

×
 can be calculated.

e e w
ij
c

k

k

ij
k k= ⋅

=
∑
1

	 (2)

Where wk  denotes the weight of DM
k

.

Feedback Recommendation with Minimum Adjustment Cost
Identification of Inconsistent Elements
In group decision-making, we usually assign experts from different departments associated weights 
to solve the impact of educational background, work experience, and preference. However, weight 
allocation cannot completely deal with potential conflicts, while group consensus methods can 
effectively improve decision quality (Wang et al.,2022). Therefore, many Consensus Reaching Process 
(CRP) methods have been reported (Cao et al., 2021; Zhang et al., 2019; Zhang et al., 2014b; Zhang 
et al. 2022).

The consensus-reaching process with a minimum adjustment cost feedback mechanism was 
proposed by Wu et al. (2018), based on a consensus model in a social network (Wu et al. 2015), which 
could let DMs reach the threshold value of group consensus incurring a minimum modification of 
their opinions or adjustment cost. Once the collective evaluation matrix based on the CIS model is 
calculated, we can express the consensus degree at three levels for each team member as: (1) elements 
level; (2) FMs level; (3) decision matrix level.

Definition 3. The consensus degree of a FMEA team member with the group at the three different 
levels of the relation is defined next:

Level 1. The consensus degree of FM
i
 for RF

j
 provided by DM

k
 is calculated as:

CE d v v
v v

g
k l

ij
k

ij
k

ij
c ij

k
ij
c

= − ( ) = −
−

= …1 1 1 2, , , , ,� 	 (3)

Level 2. The consensus degree of FM
i
 provided by DM

k
 is calculated as:



International Journal of Fuzzy System Applications
Volume 12 • Issue 1

6

CF
n
CE k l

i
k

j

n

ij
k= = …

=
∑
1

1 2
1

, , , ,� 	 (4)

Level 3. The consensus degree of DM
k

 at decision matrix is calculated as:

CM
m

CF k lk

i

m

i
k= = …

=
∑
1

1 2
1

, , , ,� 	 (5)

Then, DM
k

 with consensus degree at decision matrix lower than the threshold value g  are 
identified:

EXPCH k CMk= <{ | }g 	 (6)

For the identified DM
k

, their FMs with a consensus degree CF
i
k  lower than the threshold g  

are identified:

ALT k i k EXPCH CF
i
k= ( ) ∈ ∧ <{ , | }� � g 	 (7)

Finally, the evaluation elements need to be replaced are those with a consensus degree CE
ij
k  

under the threshold g .

APS k i j k i ALT CE
ij
k= ( ) ( ) ∈ ∧ <{ , , | , }� � g 	 (8)

Recommendation and Adjustment
Generation of recommendation advice with boundary feedback parameter: The feedback mechanism 
generates advice to the inconsistent team members and for the preference values previously identified 
in APS containing the new preference values for a higher consensus state.

For all k i j APS, ,( ) ∈ , the following rule is feedbacked to the corresponding team member: 
“Change your evaluation elements v

ij
k  to a value closer to rv

ij
k ”. The rv

ij
k  can be calculated as follow:

rv v v
ij
k

ij
k

ij
c= −( )⋅ + ⋅1 d d 	 (9)

Where d ∈ 

0,  is a feedback mechanism parameter to control the acceptable degree of recommendation 

advice.
The original evaluation matrices are divided into two groups: the most inconsistent expectation 

matrix V p lp ∈ …{ }( )1 2, , ,  and other expectation matrices V o l o po ∈ … ≠{ }( )1 2, , , , . After the most 

inconsistent decision maker DM
p

 adopts the recommendation advice, we obtain that 

{ | , , ;RV rv rv v v i j APS rv vp
ij
p

m n ij
p

ij
p

ij
c

ij
p

i
= ( ) = −( )⋅ + ⋅ ∈ =

×
1 d d

jj
p i j APS, , }∉  be the new decision 
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making matrix after adoption, and RV v o l o po
ij
o

m n
= ( ) = … ≠

×
, , , , ,1 2  be the set of unchanged 

decision making matrices. Then, the adjustments cost of the most inconsistent matrix V p  can be 
obtained by the model (10) as follows.

Min v v
p i j APS

ij
p

ij
c

, , ∈
∑ −d 	

s t

CM RV RV

CM

p p c

o. .

,( ) ≥ g

RRV RV o l o p

RV DTWA RV RV RV

o c

c p l

, , , , , ,

, , ,

( ) ≥ = … ≠

= …( )
g 1 2

1 �������











	 (10)

By resolving the above model, we can determine the boundary feedback parameter d
min

, and 
then the minimum adjustments cost can be provided to the inconsistent decision maker DM

p
. If 

there is still any inconsistent decision maker, return to step 2. Once all FMEA team members achieve 
consensus, the final collective expectation matrix is obtained.

Weight Allocation Based on Performance of Alternatives

Let X x x x n
n

= …{ } ≥( )1 2
2, , ,  and C c c c m

m
= …{ } ≥( )1 2

2, , ,  denote the sets of finite alternatives 

and criteria, respectively. c c c
j j mj1 2
, , ,…{ }  are the individual performance values of the alternatives 

X  on the set of criteria C . There exists a function h : , ,0 0 1+∞
 ) →  )  with properties (Wang et 

al., 1997).

1. 	 h 0 0( ) = , (boundary condition);
2. 	 x y h x h y≤ → ( ) ≤ ( ) , (non-decreasing).

Definition 4. Function h derives the weight of a criterion c
k

 based on its variability h v v w
k k k( ) = : . 

Since the total sum of the weights is 1, therefore the weight of a criterion w
k
 can be defined as:

w
h v

h v
k

k

i

m

i

=
( )
( )

=∑ 1

	 (11)

Definition 5. Let h x x( ) = . The standard variability v
k

 of the weight and the weight w
k
 of a 

criterion can be represented as:

v c c
k

r

n

s

n

kr ks
= −

= =
∑∑
1 1

	 (12)

w
c c

c c

v

v
k

r

n

s

n

kr ks

k

m

r

n

s

n

kr ks

k

k

m

k

=
−

−
== =

= = = =

∑ ∑
∑ ∑ ∑ ∑

1 1

1 1 1 1

	 (13)
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the Proposed framework of Failure Mode and effect analysis
This section presents the framework of the proposed method utilized in this paper. We introduced 

the proposed methodology and provided algorithmic steps. The proposed methodology comprises 
the following process, as shown in Figure 2.

Collecting the Evaluation and Calibrated Linguistic Semantic Process

There are m  failure modes FM i m
i
= …( )1 2, , ,  with n  risk factors RF j n

j
= …( )1 2, , ,  as the 

objects of evaluation and l  decision makers DM k l
k
= …( )1 2, , ,  are invited to be FMEA team 

members to participant. Each DM is required to provide individual evaluation matrix 
V v k lk

ij
k

m n
= ( ) = …( )

×
1 2, , ,  by using 2-tuple linguistic terms set S s s s

g
= …{ }1 2

, , ,  according to 
listed FMs with RFs.

Then, the CIS s k l t gk
t( ) = … = …( )1 2 1 2, , , ; , , ,  of each DM can be obtained by semantic test 

performed on all DMs according to Eq. (3). After that, numerical individual evaluation matrices 

E e k lk
ij
k

m n
= ( ) = …( )

×
1 2, , ,  are obtained. Let EW ew ew ew

l

T
= …( )1 2

, , ,  be the relative weight of 

FMEA team members, with ew ew
k

k

l

k
≥ =

=
∑0 1
1

, . Next, numerical individual evaluation matrix 

E ec
ij
c

m n
= ( )

×
 can be calculated through Eq. (4).

Consensus Measure and Feedback Recommendation
Once the collective evaluation matrix is calculated, the consensus degree at three levels for DMs can 
be calculated. First, the consensus degree on the decision matrix level and preset consensus threshold 

Figure 2. 
The proposed FMEA framework
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g  are used to judge whether DMs reach consensus. The final collective expectation matrix is obtained 
if all DMs have reached consensus. Otherwise, the inconsistent members will be identified, and we 
will activate the feedback mechanism to produce recommendations for them to achieve a higher 
consensus level.
Step 1. 	 Consensus measure

Let E e k lk
ij
k

m n
= ( ) = …( )

×
1 2, , ,  and E ec

ij
c

m n
= ( )

×
 be the individual and collective numerical 

evaluation matrices as mentioned above, respectively. Then, CE CF CM k l
ij
k

i
k k, , , , ,= …( )1 2  are 

calculated by Eq. (3) to Eq. (5).
Step 2. 	 Identifying inconsistent DMs and elements

According to the preset consensus threshold g  and CM k lk = …( )1 2, , , , the inconsistent DM
k

 
can be identified. Next, elements in evaluation matrix need to be adjusted APS  are selected by Eq. 
(6) to Eq. (8).
Step 3. 	 Feedback recommendation and opinion adjustment

First, feedback recommendations re
ij
k  with minimum feedback parameter d  are provided for 

DM
k

 who needs to modify his/her opinion, according to Eq. (11). Second, by calculating the Model 
(10), the parameter d  can be obtained. Third, check whether all consensus levels of DMs have 
exceeded the threshold. If all DMs have reached a consensus, the updated collective numerical matrix 
RE rec

ij
c

m n
= ( )

×
 is obtained and then go to stage 3, otherwise return to step 1.

Calculating the Weights of Risk Factors and Ranking Failure Modes

Based on the performance variability of FMs in final collective expectation matrix REc , the relative 

weights W w w wrf rf rf
n
rf
T

= …( )1 2
, , ,  of RFs are calculated as follows.

var re re
j

r

m

s s r

m

rj
c

sj
c= −

= = ≠
∑ ∑
1 1,

	 (14)

w
var

var
j n

j
rf j

j

n

j

= = …

=∑ 1

1 2, , , ,� 	 (15)

The detail process in shown in Algorithm 1.
Algorithm 1: Weight Allocation based on performance of FMs 
Input: Adjusted Collective Evaluation Matrix RVc

Output: Weight Vector Wrf  of RFs 
m n,( ) ←  the size of RVc

Var Zeros n← ( )1,  

W Zeros nrf ← ( )1,  

Sum ¬ 0  
for j ¬  1 to n  do
      for r ¬  1 to m  do
            for s ¬ 1 to m  do

                    Var j Var j abs V r j V s j


 ←




 +




 −




( ), ,

            end for 
      end for 
end for 
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for j ¬  1 to n  do
      Sum Sum Var j← + 





end for 
for j ¬  1 to n  do
      W j Var j Sumrf 



 ←




 /

end for
According to the final collective evaluation matrix REc  and the relative weights of RFs 

W w w wrf rf rf
n
rf
T

= …( )1 2
, , , , the RPN values of FM i m

i
= …( )1 2, , ,  can be calculated by Eq. (16) 

and then the rank of FMs are sorted in descending order based on the RPNs.

RPN re w i m
i

j

n

ij
c

j
rf= ⋅ = …

=
∏
1

1 2, , , ,� 	 (16)

APPLICATION TO THE INDUSTRIAL INTERNET PLATFORM

Rapid development of information and communication technology has not only radically changed the 
landscape of many industries, but also reshaped the research agendas in economics and management 
(Li et al., 2021). Since General Electric established the first industrial Internet platform Predix 
(Menon et al., 2019), more and more industrial Internet platforms, such as Bosch IoT Suite, Kaa 
IoT Platform, and COSMOPlat, have been developed to deal with the new round of industrial 
revolution (Sisinni et al., 2018). The construction and application of Industrial Internet Platform 
have attracted more and more attention, while the study on the risk management of industry Internet 
platforms is still limited.

Table 1. 
FMEA table of top six FMs on industrial internet platform

No. Failure Modes Causes Effects

FM
1

Protection for individual 
privacy is insufficient

There are defects in security management 
of private information, or safeguard cannot 

cover all processes

The risk of privacy leakage has 
increased dramatically

FM
2

Lack of contingency plan 
for security accident

Lack of experience or insufficient plans in 
handling emergency information security 

incidents

Inability to deal with information 
security incidents in time

FM
3

Network protection 
technology is backward

There are only passive protection and 
active defense measures is limited

The network security of the platform 
is low and vulnerable to attacks

FM
4

The technology of 
safeguards for data 
storage is limited

Lack of emergency preparedness, such as 
cloud backup or remote disaster recovery

Data storage is difficult to recover in 
the event of accidental damage

FM
5

Backward technology of 
data modeling

Digital models and algorithms based on 
big data intelligent analysis are not enough

Reduced efficiency and 
effectiveness in business

FM
6

Poor data visualization Too much emphasis on design and 
functionality leads to overly flashy data 

visualization

Inability to effectively communicate 
ideas, concepts, and information
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This paper uses relevant data from our previous studies, and the top six FMs with the highest 
RPN are selected from 15 FMs as a case study. The data are provided in Table 1, and a complete data 
table can obtained from Wu et al. (2022).

Collecting Evaluation and Calibrated Linguistic Semantic Process

Five DMs are invited to provide their risk evaluation matrices V V V1 2 5, , ,…{ }  of FM i
i
� , , ,= …( )1 2 6  

regarding three RF
j
, including Occurrence (O), Severity (S), and Detection (D), using linguistic 

terms set S  = {s
1
= ‘extremely little’; s

2
= ‘very little’; s

3
= ‘little’; s

4
= ‘moderate’; s

5
= ‘large’; 

s
6

= ‘very large’; s
7

= ‘extremely large’}, as follows.

V

FMs O S D

FM s s s

FM s s s

FM s s s

FM s s s

FM s s s

FM s

1

1 7 5 3

2 6 4 3

3 5 6 4

4 6 4 4

5 6 5 5

6

=

77 6 6
s s





































V

FMs O S D

FM s s s

FM s s s

FM s s s

FM s s s

FM s s s

FM s

2

1 5 5 3

2 4 5 6

3 6 5 5

4 4 6 3

5 6 5 3

6

=

77 5 3
s s





































V

FMs O S D

FM s s s

FM s s s

FM s s s

FM s s s

FM s s s

FM s

3

1 4 6 6

2 5 6 6

3 6 6 6

4 3 7 4

5 6 6 6

6

=

33 6 2
s s





































	

V

FMs O S D

FM s s s

FM s s s

FM s s s

FM s s s

FM s s s

FM s

4

1 3 5 4

2 3 4 4

3 3 4 3

4 3 3 4

5 4 4 4

6

=

33 3 3
s s





































V

FMs O S D

FM s s s

FM s s s

FM s s s

FM s s s

FM s s s

FM s

5

1 4 6 4

2 4 6 4

3 4 6 5

4 5 6 5

5 5 7 4

6

=

55 7 5
s s





































	

The test answers of DMs are integrated as A A A A A1 2 3 4 5, , , ,{ }  and CIS of each DM can be 
calculated by Eq. (3), as shown in Table 2.

Table 2. 
The CIS numerical scales for different DMs

CIS sk
t( ) t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

k = 1 1.2 2 3.2 4.4 5.2 5.4 6.6

k = 2 1.6 2.6 3.4 4 4.4 5.2 5.6

k = 3 1 2 3.2 4 5 5.8 7

k = 4 1 2 3 4.2 5.2 6 6.6

k = 5 1.2 2.4 3.4 4.4 5.4 6.2 7



International Journal of Fuzzy System Applications
Volume 12 • Issue 1

12

A

s s s s s s s

s s s s s s s

s s s s s s s

s s s s s s s

1

2 3 4 4 4 6 6

1 2 3 4 5 6 5

2 3 4 4 5 4 6

1 2 2 4 4 5

=

66

2 3 4 4 4 5 5
s s s s s s s





























A

s s s s s s s

s s s s s s s

s s s s s s s

s s s s s s s

2

1 2 3 4 6 6 6

1 2 3 4 6 6 7

1 2 3 5 5 4 7

1 2 2 4 4 5

=

77

1 1 3 5 5 5 7
s s s s s s s





























	

A

s s s s s s s

s s s s s s s

s s s s s s s

s s s s s s s

3

1 2 3 3 5 6 7

1 2 4 4 5 6 7

1 2 3 5 6 6 7

1 2 3 4 4 5

=

77

1 2 3 4 5 5 7
s s s s s s s





























A

s s s s s s s

s s s s s s s

s s s s s s s

s s s s s s s

4

1 2 3 4 5 6 6

1 2 4 5 6 6 7

1 2 3 4 5 7 7

1 2 3 4 4 5

=

66

1 2 3 4 4 6 7
s s s s s s s





























	

A

s s s s s s s

s s s s s s s

s s s s s s s

s s s s s s s

5

1 2 4 5 6 7 7

1 2 4 4 5 6 7

1 3 3 4 5 6 7

1 2 3 5 5 6

=

77

2 3 4 4 6 6 7
s s s s s s s





























	

Then, according to the Initial evaluation matrices of DMs V V V V V1 2 3 4 5, , , ,{ }  and CIS of each 

DM, the calibrated evaluation matrices of DMs E E E E E1 2 3 4 5, , , ,{ }  can be obtained.

E 1

6 6 5 2 3 2

5 4 4 4 3 2

5 2 5 4 4 4

5 4 4 4 4 4

5 4 5 2 5 2

6 6 5 4 5 4

=

 . . .

. . .

. . .

. . .

. . .

. . .





























=E 2

4 4 4 4 3 4

4 4 4 5 2

5 2 4 4 4 4

4 5 2

. . .

. .

. . .

. 33 4

5 2 4 4 3 4

5 6 4 4 3 4

4 0 5 8 5

3

.

. . .

. . .

. .































=E

..

. . .

. . .

.

. . .

. . .

8

5 0 5 8 5 8

5 8 5 8 5 8

3 2 7 4

5 8 5 8 5 8

3 2 5 8 2 0

































	

E 4

3 0 5 2 4 2

3 0 4 2 4 2

3 0 4 2 3

3 0 3 4 2

4 2 4 2 4 2

3 0 3 0 3 0

=









. . .

. . .

. .

. .

. . .

. . .


























=E 5

4 4 6 2 4 4

4 4 6 2 4 4

4 4 6 2 5 4

5 4 6 2

. . .

. . .

. . .

. . 55 4

5 4 7 4 4

5 4 7 5 4

.

. .

. .

































	

Consensus Measure and Feedback Recommendation

The weights of the five DMs are assigned as W w w w w w
T T

= ( ) = ( )1 2 3 4 5
0 23 0 23 0 18 0 18 0 18, , , , . , . , . , . , .  

based on their positions and work experience. Then, the collective calibrated evaluation matrix Ec  
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can be aggregated by individually calibrated evaluation matrices E E E E E1 2 3 4 5, , , ,{ } , according to 
Eq. (4), as follows.

E c =

4 58 5 30 4 11

4 39 4 94 4 52

4 77 5 17 4 58

4 25 5 12 4 24

5 41 5 2

. . .

. . .

. . .

. . .

. . 77 4 57

4 89 5 10 3 90

.

. . .

































	

Subsequently, the three levels of consensus indexes of DMs are obtained, as follows. The consensus 
indexes on element-level of DMs are:

CE 1 =

0 66 0 98 0 85

0 83 0 91 0 78

0 93 0 96 0 97

0 81 0 88 0 97

0 97 0

. . .

. . .

. . .

. . .

. .999 0 90

0 71 0 95 0 75

0 97 0 85 0

.

. . .

. .































=CE 2

..

. . .

. . .

. . .

. . .

. .

88

0 93 0 91 0 89

0 93 0 87 0 97

0 96 0 99 0 86

0 99 0 86 0 81

0 88 0 888 0 92

0 90 0 92 0 72

0 90 0 86 0

.

. . .

. .

































=CE 3

..

. . .

. . .

. . .

. . .

79

0 83 0 90 0 80

0 83 0 69 0 96

0 90 0 91 0 80

0 72 0 88 0 68

































	

CE 4 =

0 74 0 98 0 99

0 77 0 88 0 95

0 71 0 84 0 74

0 79 0 65 0 99

0 83 0

. . .

. . .

. . .

. . .

. .882 0 94

0 68 0 65 0 85

0 97 0 85 0

.

. . .

. .































=CE 5

..

. . .

. . .

. . .

. . .

. .

95

0 99 0 79 0 98

0 84 0 83 0 86

0 81 0 82 0 84

0 97 0 71 0 97

0 92 0 668 0 75.

































	

Then, the consensus indexes on FMs level of DMs are:

CF

FMs k k k k k

FM

FM

=

= = = = =1 2 3 4 5

0 83 0 90 0 85 0 90 0 92

0 84 0 91 0 8
1

2

. . . . .

. . . 55 0 86 0 92

0 95 0 92 0 84 0 76 0 88

0 89 0 94 0 82 0 81 0 81
3

4

. .

. . . . .

. . . . .

FM

FM

FM
55

6

0 95 0 89 0 87 0 86 0 88

0 80 0 89 0 76 0 73 0 78

. . . . .

. . . . .FM





































	

The consensus indexes on the decision matrix level of DMs are:

 CM CM CM CM CM
1 2 3 4 5

0 878 0 908 0 831 0 821 0 867, , , , , . , . , . , . , .( ) = ( )� . 	
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Based on the identification rules and given consensus threshold g = 0 85. , DM
3

 and DM
4

 are 
inconsistent. The CI of DM

4
 is lower, so DM

4
 is firstly chosen and the set of inconsistent elements 

is such that:

APS = ( ) ( ) ( ) ( ) ( ) ( ) (4 1 1 4 2 1 4 3 1 4 3 2 4 3 3 4 4 1 4 4 2, , , , , , , , , , , , , , , , , , , , )) ( ) ( ) ( ) ( ){ }, , , , , , , , , , , ,4 5 1 4 5 2 4 6 1 4 6 2 	

According to Model (12), the minimum adjustment cost feedback parameter for DM
4

 is solved 
as d

4
0 23= . . Then, RE 4  the adjusted expectation matrix of DM

4
 and first updated collective 

numerical risk evaluation matrix REC 1  can be obtained as follows:

RE 4

3 36 5 20 4 20

3 32 4 20 4 20

3 41 4 42 3 36

3 29 3 49 4 20

4 43 4

=

. . .

. . .

. . .

. . .

. .445 4 20

3 43 3 48 3 00

4 65 5 30

1

.

. . .

. .































=REC

44 11

4 45 4 94 4 52

4 84 5 21 4 65

4 30 5 21 4 24

5 25 5 31 4 57

4 97 5

.

. . .

. . .

. . .

. . .

. .. .18 3 90

































	

Then, the consensus level of DM
3

 have to be recalculated after the collective expectation matrix 
has been adjusted, to determine whether DM

3
 needs feedback recommendation. According to 

calculating, the new consensus level of DM
3

 CM
3
0 834' .=  is lower than the preset threshold. 

Therefore, DM
3

 also must accept feedback recommendations, and the set of inconsistent elements 
is such that:

APS = ( ) ( ) ( ) ( ) ( ) ( ) (3 1 3 3 2 3 3 3 1 3 3 3 3 4 1 3 4 2 3 5 3, , , , , , , , , , , , , , , , , , , , )) ( ) ( ){ }, , , , , ,3 6 1 3 6 3 	

According to Model (12), the minimum adjustment cost feedback parameter for DM
3

 is solved 
as d

3
0 1= . . Then, RE 3  the adjusted expectation matrix of DM

3
 and second, updated collective 

numerical risk evaluation matrix REC 2  can be obtained as follows:

RE 3

4 00 5 80 5 51

5 00 5 80 5 58

5 64 5 80 5 60

3 36 6 70 4 00

5 80 5

=

. . .

. . .

. . .

. . .

. .880 5 59

3 50 5 80 2 32

4 65 5 30

2

.

. . .

. .































=REC

44 06

4 45 4 94 4 49

4 81 5 21 4 61

4 33 5 16 4 24

5 25 5 31 4 53

5 03 5

.

. . .

. . .

. . .

. . .

. .. .18 3 95

































	

After the feedback mechanism, the new CMs of DMs are calculated as

CM CM CM CM CM CM'' '' '' '' '' '', , , , . , . , . , .= ( ) =1 2 3 4 5
0 883 0 906 0 851 0 8550 0 871, .( ) . 	
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Since the CM of each DM in FMEA team has reached the consensus threshold, the final stage 
is activated to rank FMs.

Calculating the Weights of Risk Factors and Ranking Failure Modes

Once the updated collective expectation matrix REC 2  is obtained, the relative weight w
j
 of RFs 

can be calculated through algorithm 1.

w w w w
j S S D
= ( ) = ( ), , . , . , .0 47 0 17 0 36 	

Through REC 2  and the relative weight of RFs w
j
, the RPN values of FMs are calculated by 

Eq. (16), shown in Table 3, and the FMs are sorted in descending as:

FM FM FM FM FM FM
5 3 6 1 2 4
> > > > > .	

This article postulates that the prior weightage assigned to DMs is contingent upon their role 
and expertise; however, an exhaustive elucidation of these methods surpasses the this paper’s limits. 
Furthermore, in the managerial practice of the proposed methodology, more interesting techniques 
can be introduced to extend the entire FMEA framework.

COMPARISONS AND DISCUSSIONS

A comparative study of consensus level between the proposed method and traditional Failure Modes and 
Effects Analysis (FMEA) without Criticality Index System (CIS) is visualized in Figure 3. We find that the 
individual understanding and preference of evaluation terms will affect the eventual result and consensus 
measure that consensus levels can be increased or decreased. Using CIS can reduce the distortion caused 
by factors including the DMs’ psychological scale, word preference, and decision-making attitudes.

Second, to demonstrate the effect of the proposed method of FMEA, a comparison analysis is 
performed between different weight methods of RFs.

The conventional FMEA method has not considered the relative weight of RFs, so the relative 

weight of RFs is W w w wc
S S D

= ( ) =










, , , ,
1

3

1

3

1

3
. According to the updated collective expectation 

matrix REC 2  and relative weight Wc  of RFs, the RPNs of FMs based on conventional FMEA can 
be calculated, as shown in Table 4. The rank of FMs is: FM FM FM FM FM FM

5 3 6 1 2 4
> > > > > .

The entropy method is one of the most popular methods to obtain weight. Therefore, the entropy 
method is also adopted in this paper to obtain the weight of RFs for comparison. The relative weight 
of RFs obtained by the Entropy method (Yalcin et al., 2021) is W w w wE

S S D
= ( ) = ( ), , . , . , .0 35 0 33 0 32 . 

According to WE  and REC 2 , the RPNs of FMs based on the Entropy method can be calculated, as 
shown in Table 4. The rank of FMs is: FM FM FM FM FM FM

5 3 6 1 2 4
> > > > > .

Table 3. 
The RPNs of FMs

FMs
FM

1
FM

2
FM

3
FM

4
FM

5
FM

6

RPN 4.40 4.01 4.97 4.49 5.20 5.02
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The technique of RF weight allocation method will affect the final rank of FMs by comparing 
the RPNs and ranking results of FMs, whose differences can be attributed to the weights of RFs 
obtained by the performances of collective evaluation. Based on Table 4 and Figure 4, we can find 
a similar result between the proposal method and other methods in the ranking of FMs with RPNs, 
demonstrating that our approach is feasible and effective.

Figure 3. 
Consensus levels of DMs in different risk assessment methods

Table 4. 
The RPNs of FMs based on different weight allocation methods

Rank Proposed 
Method

RPNs Conventional 
Method

RPNs Entropy 
Method

RPNs

No.1 FM
5 5.003 FM

5 5.366 FM
5 5.045

No.2 FM
3 4.807 FM

3 5.211 FM
3 4.880

No.3 FM
6 4.667 FM

6 5.055 FM
6 4.741

No.4 FM
1 4.547 FM

1 5.003 FM
1 4.679

No.5 FM
2 4.546 FM

2 4.959 FM
2 4.624

No.6 FM
4 4.441 FM

4 4.912 FM
4 4.578
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CONCLUSIONS AND FUTURE WORK

This paper proposes a novel FMEA framework with a weight allocation method based on the performance 
of alternatives and a consensus-reaching process. Through comparative analysis, the CIS model can 
improve the evaluation bias caused by decision-makers’ subjectivity, and the weight allocation method 
based on the performance of alternatives is effective. Its major contributions are as follows.

An improved FMEA approach must consider issues such as effectiveness, difficulty, and 
practicality. The proposed method does so as follows. First, using CIS can improve the ability to deal 
with uncertain information and solve the problem that different DMs have different understandings 
of the same term. Second, in our paper, the consensus-reaching process can effectively solve the 
potential conflict or inconsistency across different apartments with a minimum adjustment cost 
feedback mechanism. Third, the proposed method uses a novel weight allocation method based on 
alternatives’ performances to assign weights to RFs to solve the problem that different OSD values 
may get the same result. Fourth, applying FMEA in the Industrial Internet fills the risk management 
problem research gap to a certain extent.

Although this paper optimizes the weight allocation of RFs, it does not consider the weight problem 
among decision-makers. Different departments, positions, work experiences, and other factors will 
affect the actual work of decision-making issues, so it is necessary to consider the weight of decision-
makers in the FMEA framework in the future. Besides, considering that there may be much more 
decision-makers taking part in FMEA work, the frameworks of large-scale group decision-making and 
consensus in social network group decision-making can be introduced into FMEA problems to extend 
application scenarios (Ji et al., 2023; Wu et al., 2022b; Zhou et al., 2023). Additionally, RFs of FMEA 
extend beyond OSD, and can be tailored according to the decision-making environment and specific 
attributes of the object. Consequently, further investigations into the Industrial Internet Platform could 
yield an expanded range of RFs, more accurately reflecting the distinctive properties of the Industrial 
Internet. Finally, the consensus-based FMEA framework can be extended and applied to other sectors, 
such as the shipping industry, new vehicles (Wang et al., 2023), and other fields.

Figure 4. 
Consensus levels of DMs based on different weight allocation methods
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