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ABSTRACT

Efficient fault treatment of active distribution network is an important guarantee to ensure the steady-
state reliability of the system. In order to improve the accuracy of distribution network fault 
identification and analysis, a fault processing method based on deep learning is proposed in this 
paper. This method collects massive heterogeneous data sets using patrol robot to realize real-time 
perception and accurate acquisition of distribution network status. Relying on the processing mode 
of distribution network cloud edge collaboration, the principal component analysis method is used 
at the edge to effectively remove redundant data, providing a complete and reliable data support for 
the deep network model. Meanwhile, the attention mechanism is added to the cloud to improve the 
depth confidence network, further realizing the extraction of useful feature information for complex 
data sets and avoiding the interference of irrelevant information on the recognition results. The 
simulation experiment is based on the actual active distribution network model. The experimental 
results show that the fault identification accuracy Acc  of the proposed method can reach 0.9255, 
indicating an excellent distribution network fault identification and analysis ability to support safe 
operation of active distribution network.

Keywords
Active Distribution Network, Attention Mechanism, Cloud Edge Collaboration, Deep Belief Network, Fault 
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INTRODUCTION

Efficient and accurate fault identification of distribution network can support the stability and 
controllability of smart grid (Montakhab, Adams, 1998). With the access of distributed power source, 
the traditional distribution network has changed from the original radial network to the complex active 
distribution network with interconnected power sources and users (Tajdinian, et al, 2020). At the 
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same time, the applicability and accuracy of traditional distribution network fault location methods 
are reduced, also bringing difficulties to relay protection (Le, et al, 2020; Chen, et al, 2020).

The distribution network fault is hidden. If the fault line is not cut off in time, it will cause 
great potential safety hazards. For example, in case of single-phase grounding fault, the line voltage 
remains symmetrical, but the phase voltage of non-fault phase will increase by three times. At this 
time, there is a risk of insulation breakdown of power equipment, which may cause two-point or 
multi-point grounding short-circuit fault, leading to further development of the fault (Liang, et al, 
2020; Hagh, et al, 2019; Miguel, 2022). Therefore, the distribution network fault must be identified 
in time and handled quickly.

The fault treatment of distribution system mainly includes distance fault identification method and 
matrix algorithm based on Distribution Automation Terminal (Xie, et al, 2020; Gao, et al. 2021; Yao, 
et al, 2021). Function approximation is used as the basic goal to establish the 0-1 integer optimization 
model, and then faults are located through optimization algorithm, but there are some problems such as 
slow calculation speed, difficult construction of function model and poor convergence of optimization 
algorithm (Jia, et al, 2019; Xu, et al, 2019). It is not enough to cope with the increasingly complex 
active distribution network.

The emergence of deep learning network provides a new solution to fault identification of 
active distribution network. Deep neural network is constructed by using massive data training, 
the characteristics of input data are automatically extracted, and induction and classification are 
implemented accordingly (Ganjkhani, et al, 2021; Hou, et al, 2022; Zhao, Barati, 2021). At present, 
many researchers have carried out power grid fault identification and research based on deep network. 
Luo et al (2019) introduced the automatic encoder into the deep learning network model to realize the 
fault identification and analysis of radial distribution network; (Sun et al, 2021) proposed an adaptive 
long short memory network regression model to realize the state detection and fault identification 
of power transmission network by establishing the corresponding relationship between similar time 
factors and long and short-term memory network (LSTM). Based on the high-voltage direct current 
high voltage direct current system (HVDC), Wang, He and Li (2021) optimized convolutional neural 
network (CNN) and LSTM network models to realize fault identification and judgment of transmission 
lines; Rai, Londhe and Raj (2020) focused on the scene of active distribution network, and used CNN 
to build a fault identification model to support its safe operation. Based on the convolutional neural 
network (CNN), Zhang et al (2022) constructed a network structure fully suitable for power grid fault 
diagnosis, and took the minimum cross entropy as the goal to mine the deep fault features to achieve 
the fault diagnosis analysis of AC/DC transmission system. Wei et al (2021) used two bidirectional 
short-term and short-term memory networks as the basic classifiers, and applied the cross-entropy 
loss function and cost-sensitive loss function to the two classifiers respectively, effectively reducing 
the impact of sample category imbalance in fault event recognition. Yan et al (2022) input the word 
vector into the CNN deep learning model for training, and introduce the DSA mechanism to improve 
the CNN model according to the characteristics of the power grid alarm information.

However, it should be noted that the distribution network are characterized with terminal 
heterogeneity and high-dimensional data. Although the above method migrates the deep learning 
network to the power grid fault identification and analysis, it does not solve the problem of high-
dimensional and redundant distribution network data sets (Barrios, et al, 2021; Ceci, et al, 2020), 
which will make the multi-layer network fall into the problem of local optimization in data analysis 
or even the problem of solution divergence, thus resulting in the low analysis efficiency.

For the modern distribution system, a fault identification method based on deep learning and 
cloud edge cooperation mode is proposed. The main innovations of this method are as follows:

1. 	 Using intelligent equipment such as patrol robot at distribution network terminals, complete and 
original distribution network sample data sets are built for typical places such as switchyards 
and ring network cabinets to realize accurate perception of distribution network status;
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2. 	 Based on the principal component analysis (PCA), the collected state data is optimized at the 
edge of the network, the original features of the data collected by the distribution network are 
reduced to lower the redundancy of data samples, improve the reliability and interactivity of the 
input data of the fault identification model, and provide a reliable and complete training sample 
data set for the cloud analysis model;

3. 	 In the distribution network cloud, the attention mechanism (AM) is used to optimize the deep 
belief network (DBN) model and build the attention mechanism deep belief network (AM-DBN) 
active distribution network fault identification model, which can more accurately obtain the deep 
effective information in complex data samples and achieve efficient and accurate analysis of 
distribution network faults.

CLOUD EDGE COLLABORATION ARCHITECTURE

Introducing cloud edge collaboration architecture into active distribution network can complete 
complex and huge computing tasks with higher efficiency and lower cost (Zhang, et al, 2021). The 
proposed fault identification scheme of active distribution network is realized by the improved DBN 
network model.

Cloud edge collaboration mode is an efficient computing mode that combines cloud computing 
mode and edge computing mode. It can achieve efficient pre-processing operations for network 
collected data at the edge of the network by virtue of the advantages of edge computing devices, such 
as real-time and lightweight computing. On the cloud platform side of the network, we use artificial 
intelligence technology, big data storage and analysis technology to analyze and process data, so as 
to achieve accurate perception and control of network status (Logeswaran, 2021; Sridharan, Domnic, 
2021; Zhang, 2021).

The training process of the model is completed in the cloud control center. When the training 
is completed, the model is distributed to the edge computing equipment to realize local fault 
identification. For the fault identification and analysis function, the edge side uploads the preprocessed 
status data to the cloud through the communication system, and realizes training and learning with 
the help of multi-layer network structure. Figure 1 shows the proposed cloud edge collaboration 
architecture of active distribution network.

The structure of each layer in Figure 1 is as follows:

1. 	 Bottom terminal equipment: the intelligent robot terminal close to the user in the marketing power 
distribution link can collect real-time information of typical places such as switch stations and 
ring main cabinets, and also respond to control instructions issued by edge computing equipment 
or distribution network cloud control center.

2. 	 Edge computing equipment: an edge node with data storage, calculation and analysis capabilities is 
set between the distribution network cloud control center and the underlying terminal equipment. 
It preprocesses the collected state data of the bottom terminal equipment and uploads it to the 
cloud control center of the distribution network to support various advanced application scenarios 
at the top, such as network status awareness, line loss analysis, load forecasting, fault location 
and other functional applications.

3. 	 Cloud control center: as the decision-making center of distribution network, it uses the multilayer 
network model to analyze and process data on the cloud platform to realize fine regulation 
of terminal equipment. For the fault identification architecture, in the cloud center, attention 
mechanism (AM) can be used to optimize the deep trust network (DBN) model to obtain deep 
and effective information in complex data samples.

4. 	 Pipeline communication system: the communication network between the underlying power 
distribution internet of things (IOT) terminal and the edge computing equipment, and between 
the edge computing equipment and the cloud control center. It is mainly used to transmit the 
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status data collected by the bottom terminal, the data after calculation and procession by the 
edge computing equipment and the data sent by the cloud control center.

FAULT IDENTIFICATION METHOD BASED ON DEEP LEARNING

Distribution Network Situation Perception
In order to realize holographic panorama perception of distribution network, this paper uses patrol 
robot at the bottom of the network to obtain multi-source heterogeneous data sets in typical places 
such as switch stations and ring network cabinets. The distribution network status data set is shown 
in Figure 2.

The perception types of the inspection robot can be divided into electrical quantity, state quantity, 
environment quantity and other quantities. Electric quantity is obtained by using electromagnetic 
sensors and other sensing equipment, including current, voltage and other data of electric equipment. 
The state quantity mainly refers to the operation state monitoring data of switchgear, transformer 
and other equipment. The environmental quantity is obtained by using the locally deployed micro 
meteorological sensing device, including the temperature, humidity, light intensity and other data 
within the local range. Other quantities include the action and behavior data of the actors involved in 
the operation of the distribution network obtained by cameras, operation logs, etc.

The perception format of the inspection robot is different and can be divided into numerical data, 
text data, vibration data, image and video data, mixed data and multi-source heterogeneous data. The 
intelligent perception of complex equipment usually requires multiple inspection robots to collect 

Figure 1. 
Cloud edge collaboration architecture for fault identification
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multiple types of multi-source heterogeneous data at different angles and levels. For example, the 
intelligent perception of transformer requires not only the perception of its electrical parameters such 
as current and voltage, but also the perception of its oil chromatography, gas composition, infrared 
image, etc., so as to better analyze the transformer status and fault.

PCA Data Preprocessing
With the rapid construction and development of the power grid, the equipment data, operation data 
and other relevant network data of the distribution network are characterized by large scale and 
complex data structures. Moreover, the data involves multiple applications and systems of the power 
grid company, and there are a lot of redundancy and inconsistency between the data, which is not 
conducive to the accurate and efficient fault identification and location of the distribution network. 
In order to solve this problem, we use principal component analysis to preprocess the distribution 
state data at the edge of the distribution network (Feng RN, et al, 2021).

The purpose of using PCA technology is to reduce the redundancy of the original collected data, 
so as to eliminate the dimension disaster caused by data complexity on model data analysis (Shu, et 
al, 2020; Li, et al, 2021).

The technical operation of PCA mainly takes four steps:
(Data Standardization): Considering that the value ranges of the input data component s s s

z1 2
, , ,&{ }  

may be inconsistent, the input data (1) is first standardized with formula (2)

Figure 2. 
Data set collected by patrol robot
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where, z  is the number of data types collected by the power terminal, y  is the number of data 
samples under each data type, and s

z
 and r

z
 are calculated from formulas (3) to (4).
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The original input is converted into a standardized matrix.
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(Covariance Matrix Calculation): The covariance matrix of the standardized matrix is calculated 
according to formulas (6) to (8).
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Σ Γ Γ=
−
1

1Z
T 	 (8)

(Eigenvalue and Eigenvector Calculation): The singular value decomposition is used to solve the 
eigenvalues and eigenvectors of power state data, and the covariance matrix Σ. The singular values are 
arranged in order according to the characteristics of the eigenvalues, and the operations are converted.

Σ− =l
y
I 0 	 (9)



International Journal of Information Technologies and Systems Approach
Volume 16 • Issue 3

7

Σχ λ χ
y y y
= 	 (10)

where, l
y

 is the eigenvalue and c
y

 is the unit eigenvector corresponding to the eigenvalue l
y

.
(Contribution Rate Verification and Principal Component Vector Acquisition): The ¢Y  vectors 
are selected before the cumulative principal component contribution rate exceeds h%  to construct 
new input data.
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where, the value of ¢Y  meets the following constraints:
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where, l
y

 is the characteristic value of power state data; h  is the cumulative principal component 
contribution rate of the model.

Thus, the training data samples after PCA preprocessing are ¢S
z

 and ( , , , )z Z= 1 2 & & , where, 
the calculation formula of ¢S
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 is:
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Fault Identification Model Based on Improved DBN Network Model
Traditional data analysis methods can effectively extract the features of data of low dimension. When the 
data dimension is too high, the effect of these methods will be significantly reduced (Wu, et al, 2021).

Deep belief network has good ability in data feature extraction and mapping. It can learn from the 
original data through multi hidden layer network and is suitable for solving complex high-dimensional 
classification problems (Xing, et al, 2021; Hong JH, et al, 2021). Aiming to better capture the effective 
data feature information, we introduce the attention mechanism to optimize the DBN network and 
reduce the attention to irrelevant information. Therefore, the ability to obtain information can be 
improved, irrelevant factors interfering with the analysis results can be avoided. By building the 
AM-DBN active distribution network fault identification model, we improve the accuracy of fault 
classification, and achieve accurate and efficient analysis of distribution network faults.

Deep Belief Network
Different from the typical neural network training method, the deep belief network uses the contrast 
divergence algorithm to adjust the connection weight and bias layer by layer. The DBN network 
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consists of multiple restricted boltzmann machine (RBM) stacked together. The specific method is 
to train the parameters between the input layer and the first hidden layer first. Then, the output of 
the trained RBM1 is used as the input of RBM2 to train the parameters of RBM2, and so on. The 
unsupervised learning of DBN network is realized by layer-by-layer training, as shown in Figure 3.

DBN network can be used as a generation model or a discrimination model. To realize the fault 
identification and analysis of active distribution network, which is a typical classification problem, 
this paper adopts DBN as a discrimination model, and thus a classifier is connected in the hidden 
layer of the last RBM.

The fault identification in this paper is a multi-classification problem. Therefore, softmax classifier 
is used for classification, and the features mined by stacking constrained Boltzmann machine are 
used as the input of softmax, so as to realize the data classification.

In the softmax classifier, it is assumed that the training set has q  samples, and these q  samples 
are divided into p  classes. The training set can be expressed as ( , ),( , ), ,( , ), ,( , )s u s u s u s u

i i z z1 1 2 2
… …{ } , 

s R
i
Î  represents the i  training sample, u  represents the category output in the classification 

problem, and u p
i
∈ …{ , , , }1 2 . After the data is input into the model, the data is judged as the category 

with the largest probability value by calculating the probability of belonging to each category. Here, 
the probability value of a given test set data s  belonging to a certain class is P u e s( )= . Since there 
are p  classes, the probability value of s  belonging to each class can be expressed by p  dimension 
vector. The function for calculating the probability value is as follows:

v s

P u s

P u s

P u p s

i

i i

i i

i i

l

l

l

l

( )

( ; )

( ; )

( ; )

=

=

=

=
























1

2





=

























=

∑

1

1

1

2

e

e

e

e
c
T
i

T
i

T
i

p
T
i

s

c

p

s

s

s

l

l

l

l



	 (14)

where, the vector of each dimension of v s
il( )  vector represents the probability that the fault belongs 

to different types of faults. Here, since the fault must belong to one of them, the sum of each column 

of the probability matrix is 1, so 1

1

e c
T
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c
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=
∑

 is used to normalize the matrix, where l l l
1 2
, , ,… ∈

p
R  

Figure 3. 
DBN training process
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represents the network parameters of softmax model. The cross entropy loss function used by softmax 
classifier is as follows:

Loss
q

t u t u
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11
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where, q  represents the number of data samples, p  represents the number of categories, u
ie

 represents 
the output of the network when the input sample is s

i
, and t

ie
 represents the target output category 

of the i  sample.
By training softmax, the optimal parameter l  of the network is obtained. The trained softmax 

classifier is used to classify the data. The probability value of a category output by the network is the 
largest, and the sample belongs to that category.

In this paper, the softmax layer is connected to the last layer of the stacking constrained Boltzmann 
machine, and the other layers are trained with the contrast divergence algorithm, and then the trained 
parameters are used as the initial value of network fine-tuning.

In the fine-tuning process, the labeled training set data is used to optimize the parameters of the 
entire DBN network by adopting the back propagation algorithm, and the chain derivative algorithm 
is used to calculate the partial derivative of the loss function between the actual output result and the 
ideal result to each weight parameter or offset term. Then, according to the optimization algorithm, 
the weight or bias term is updated layer by layer in reverse. By constantly adjusting the parameters 
in the model, the loss function converges and better network parameters are obtained.

AM-DBN Model
Aiming to further support the recognition performance of the state analysis network model, we 
introduce attention mechanism to optimize DBN model and reduce the attention to irrelevant 
information. (Guo, et al, 2021).

In the extracted sample data matrix s s s
z1 2

, , ,&{ } , the attention mechanism optimization is 
introduced and transformed into the hidden layer feature ′ ′ ′{ }s s s

zz1 2
, , ,& . The attention matrix can be 

calculated by equations (16-18).
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where q
i
 is the weight parameter, and wa  is the weight matrix. Finally, the characteristic expression 

is obtained by summing the series of equation (18).
In the training and learning process of AM-DBN, the features extracted by DBN network are 

weighted by the time dimension of attention mechanism to highlight the main features and ignore 
the secondary features to achieve more accurate fault classification.

Figure 4 is the fault identification model of AM-DBN active distribution network proposed in 
this paper.

As shown in Figure 4, the AM-DBN fault detection network converts the features extracted by 
the DBN network into hidden layer features by giving the time dimension of the attention mechanism 
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weighting, highlights the main features and ignores the secondary features, so as to achieve more 
accurate fault classification.

EXPERIMENT AND ANALYSIS

Single-phase grounding fault is a common operation fault of power grid. This paper will carry out 
corresponding research and analysis based on it.

In order to present the experimental simulation analysis with the best effect, the improved DBN 
network model proposed in this paper is implemented by Python script and uses tensorflow framework. 
The deep learning algorithm runs in pycharm software. The main configuration of the experimental 
environment is shown in Table 1.

The experimental calculation takes a 10.5 kV distribution network in a province in eastern China 
as an example. The active distribution network has four branches, as shown in Figure 5. Each node 
has edge computing capacity. At the end of the upper and short branches, there are distributed power 
stations dominated by wind power generation and photovoltaic power generation, in which the installed 
capacity of wind power is 2.5 MVA and the installed capacity of photovoltaic power is 2.0 MVA.

Figure 4. 
AM-DBN fault identification network model
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Evaluating Indicator
When evaluating the performance of the fault identification method, the confusion matrix method is 
adopted. T

P
 determines the actual fault as a positive example, T

N
 determines the actual failure as a 

negative example, F
P

 determines the actual failure as a positive example, and F
N

 determines the 
actual failure as a negative example. It can be represented by the confusion matrix in Table 2 below.

Four indicators are usually used to judge the performance of AM-DBN network model, namely 
accuracy Acc , precision Pre , detection rate Re , and false positive rate F

1
. It should be noted that 

for these four indicators, the higher the value, the better the detection performance.

Acc =
T + T

T + F + T + F

P N

P P N N

	 (19)

Table1. 
Parameter setting of experimental analysis platform

Project Parameter

Operating System Ubuntu 18.04

CPU Inter(R) Core(TM) i7-10875H

GPU GeForce RTX 2060 TI

RAM 16 GB

Development language Python

Development platform Pytorch

Development tool Pycharm

Figure 5. 
Branch structure of active distribution network
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Pre =
T

T + F

P

P P

	 (20)

Re =
T

T + F

P

P N

	 (21)

F
Pre Re

Pre Re1
2= ×

×
+

	 (22)

Training Process
The initial input data dimension of the simulation example is 16. The traffic flow in the input data 
adopts the effective value, while the value of the input data adopts the mean value of the sampling 
value within 20 ms before and after the fault.

The input data of each type of fault is generated by sampling after randomly selecting the location 
and number of distribution network fault nodes. Each type of fault runs 1500 times to form a data 
set, and 80% is randomly selected as the training sample.

The AM-DBN fault identification network model constructed in this paper is used for model 
learning in the training data set. During the training and testing of 100 epochs, the change process 
of accuracy Acc , precision Pre , detection rate Re  and false positive rate F

1
 is shown in Figure 6.

Table 2. 
Confusion matrix

True False

True T
P

T
N

False F
P

F
N

Figure 6. 
Model training and testing process
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From Figure 6, it can be concluded that the performance of the proposed model reaches the best 
in 75 epoch fault identification models, and the evaluation indexes of the four types of models reach 
the best, with Acc  of 0.9255, Pre  of 0.9264, Re  of 0.9261 and F

1
 of 0.9411. It is confirmed that 

the AM-DBN model can accurately and efficiently identify and analyze the faults of active distribution 
network. The reason is that this paper uses AM mechanism to further enhance the ability of DBN 
model for data feature mining. At the same time, the application of back-propagation algorithm also 
makes the construction of fault discrimination model more accurate.

Experimental Demonstration
Aiming to illustrate the advantages of the AM-DBN model, LSTM (Sun H, et al, 2021) and CNN 
(Rai P, et al, 2020) are used as comparison methods, and experimental simulation analysis is carried 
out based on the test sample data set. The comparison methods all run under the same operating 
environment.

The identification results and performance comparison of different fault identification methods 
are shown in Figure 7.

As shown in Figure 7, the AM-DBN model can accurately identify complex distribution network 
faults. The recognition accuracy and precision are 0.9262 and 0.9231, respectively, 0.0242 and 0.0231 
higher than that used by CNN.

The reason is that the proposed AM-DBN based active distribution network fault identification 
method introduces PCA technology to effectively improve the completeness and reliability of sample 
data sets. At the same time, the introduction of AM mechanism enables the fault identification network 
model to accurately obtain the effective feature information in the sample data set and reduce the 
influence of irrelevant information on the recognition results.

Meanwhile, we study the efficiency of model analysis. Table 3 shows the fault identification 
sensitivity of different methods.

It can be seen from Table 3 that the AM-DBN model can realize fault state identification and 
diagnosis in 0.125s, which is 0.09s and 0.16s shorter than LSTM and CNN, respectively. This is also 
the advantage of adopting cloud edge collaboration mode, which can realize the rapid perception and 
analysis of complex power grid state.

Figure 7. 
Distribution network fault identification performance of different methods
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In terms of the comprehensive recognition accuracy and model efficiency, the proposed AM-DBN 
model has the best performance, and can meet the requirements of accurate and fast fault identification 
and support the reliable and safe operation.

CONCLUSION

The emergence of deep learning model provides a good solution for the abnormal state of active 
distribution network. Based on the cloud edge collaborative processing model, this paper proposes 
a fault identification method using improved DBN model. This method completes situation 
perception, data preprocessing and analysis model building in the cloud edge end of distribution 
network. The introduction of patrol robot can realize massive and reliable acquisition of multi-source 
heterogeneous data of distribution network; The application of PCA technology can realize reliable 
data dimensionality reduction and optimization processing at the edge of distribution network, and 
improve the quality of data used in the model; The addition of attention mechanism improves the 
capability of obtaining feature information of DBN model, further ensuring that the proposed method 
can achieve efficient and accurate fault identification and analysis. Simulation results show that the 
proposed method can provide reliable and timely operation guarantee for the actual complex active 
distribution network.

Although the method proposed has excellent fault identification ability, its model parameters are 
fixed values, which is difficult to adjust automatically according to the data characteristic information. 
The next research work is to introduce parameter adaptive algorithm into the model to enhance the 
ability of parameter optimization and further improve the efficiency of fault identification methods.
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Table 3. 
Time consumption of different fault identification methods

Method Time (s) Acc

The proposed method 0.125 0.9262

LSTM 0.134 0.9142

CNN 0.141 0.9020
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