
DOI: 10.4018/IJDWM.320473

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

An Efficient Code-Embedding-
Based Vulnerability Detection Model
for Ethereum Smart Contracts
Zhigang Xu, Hubei University of Technology, China

Xingxing Chen, Hubei University of Technology, China

Xinhua Dong, Hubei University of Technology, China*

Hongmu Han, Hubei University of Technology, China

Zhongzhen Yan, Hubei University of Technology, China

Kangze Ye, Hubei University of Technology, China

Chaojun Li, Hubei University of Technology, China

Zhiqiang Zheng, Narcotics Control Bureau of Department of Public Security of Guangdong Province, China

Haitao Wang, Narcotics Control Bureau of Department of Public Security of Guangdong Province, China

Jiaxi Zhang, Narcotics Control Bureau of Department of Public Security of Guangdong Province, China

ABSTRACT

Efficient and convenient vulnerability detection for smart contracts is a key issue in the field of
smart contracts. The earlier vulnerability detection for smart contracts mainly relies on static
symbol analysis, which has high accuracy but low efficiency and is prone to path explosion. In this
paper, the authors propose a static method for vulnerability detection based on deep learning. It first
disassembles Ethereum smart contracts into opcode sequences and then converts the vulnerability
detection problem into a natural language text classification problem. The word vector method is
employed to map each opcode to a uniform vector space, and the opcode sequence matrix is trained
by the TextCNN method to detect vulnerabilities. Furthermore, a code obfuscation method is given
to enhance and balance the dataset, while three different opcode sequence generation methods are
proposed to construct features. The experimental results verify that the average prediction accuracy
of each smart contract exceeds 96%, and the average detection time is less than 0.1 s.

Keywords
Disassembly, Embedding, Ethereum, Machine Learning, Natural Language Processing, Smart Contracts, Static
Method, Vulnerability Detection

INTRODUCTION

Blockchain is a chained storage structure (Li et al., 2022) that guarantees the security of the system
through cryptography and other technologies, the consistency of transactions through consensus

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

2

algorithms (Fu et al., 2021), and the distributed storage of data through P2P networks. Due to its
advantages in decentralization and traceability and immutability, blockchain technology has been
widely used in industries such as information sharing (Park et al., 2021), product traceability (Wang
et al., 2020), copyright protection (Liu et al., 2021), supply chain (Pournader et al., 2020), and
finance (Kowalski et al., 2021). Currently, the development of blockchain is divided into three stages:
blockchain 1.0, blockchain 2.0, and blockchain 3.0. Blockchain 1.0 is featured by programmable
currency, represented by bitcoin Nakamoto (2008), with which, in 2017, saw its value soar by 1,900%
(Holub & Johnson, 2019), to an extent where the price of a single Bitcoin reached $60,000 by 2021.
Blockchain 2.0 is characterized by a programmable blockchain represented by Ethereum, of which the
core is smart contracts. Ethereum is an open source public blockchain platform with smart contracts,
and most smart contracts across the network currently run on the Ethereum platform. Blockchain
3.0 is a programmable community that goes beyond cryptocurrency and finance and is dedicated
to applying blockchain to all aspects of life, providing decentralized solutions for various industries
and moving toward the era of the smart Internet of Things. At present, the research on blockchain
technology is in the intermediate stage from the blockchain 2.0 era to the blockchain 3.0 era. The
research in this paper focuses on Ethereum smart contracts.

As an application platform for blockchain technology, Ethereum provides the largest execution
platform for the operation of smart contracts. As a blockchain-based platform, Ethereum not only
has basic cryptocurrency functions but also provides anonymous voting, transaction storage, product
traceability, and other services. An Ethereum smart contract is an application running on an Ethereum
virtual machine (EVM) in the form of EVM bytecode. Due to the open and transparent nature of
Ethereum’s own mechanisms, however, the EVM bytecode of a smart contract deployed on Ethereum
can be accessed and analyzed by anyone. Although smart contracts are provided with a safe and secure
execution environment by the blockchain, they may still face considerable security vulnerabilities in
the development process due to the design mechanism of the Ethereum virtual machine, the problems
carried by the characteristics of the blockchain, and the uneven code level of smart contract developers.
Damage could be caused if an attacker finds a vulnerability by analyzing the EVM bytecode and
launches an attack against the vulnerable smart contract, especially if the smart contract is used to
handling asset-related business. The damage would be incalculable not only in terms of loss of assets
but also in terms of challenge to the credibility and security of the platform. For example, in June
2016, the DAO incident occurred (Mehar et al., 2019), which directly led to a hard fall of Ethereum,
where attackers exploited vulnerabilities in the DAO smart contract and stole 30% of the DAO’s
Ether in six hours, amounting to 12 million coins, with a market value of approximately $60 million.
In July 2017, the Ethereum wallet parity was exposed to a major security flaw (Praitheeshan et al.,
2019) in its multi-signature contract wallet.sol, which led to the theft of 150,000 Ether. Since smart
contracts deployed on the blockchain cannot be modified, it is critical to verify smart contracts for
crucial security vulnerabilities before deploying them to ensure that they are as secure as possible.

Figure 1 shows an example of a smart contract written in the Solidity language. The smart
contract shown in Figure 1 has an integer overflow vulnerability. In lines 5 and 6, if a variable of
type uint256 reaches its maximum value (2^256-1), the outcome will turn into 0 when a value greater
than 0 is added. This is an integer overflow vulnerability. In lines 10 and 11, if a variable of type
uint256 reaches its minimum value of 0, and a value greater than 0 is subtracted, its value will become
2^256-1 (the maximum value of type uint256). The current mainstream vulnerability detection tools,
such as Oyente and Mythril, are inefficient and cannot detect new vulnerabilities in a timely manner.

This paper proposes a tool called Con2Vec (Contract to Vector), a static analysis tool based on
machine learning, which learns smart contract code features through EVM bytecode and opcodes to
detect smart contract vulnerabilities. It has a high throughput and accuracy rate and is user-friendly
for those without any expertise concerning smart contract vulnerabilities. This paper builds Con2Vec
in four parts starting with data cleaning and data augmentation to balance and augment the public
dataset. Then the smart contract source code is compiled and decompiled into opcodes. The extracted

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

3

opcodes are then mapped to vector space by training the SkipGram model so that each form of opcode
has a unique vector representation. Finally, the TextCNN model is used to detect vulnerabilities in
the contracts.

This paper contributes as follows:

1) 	 This paper proposes a method for code obfuscation of Ethereum smart contracts, which enhances
the dataset and resists the interference of redundant codes during detection by inserting random
useless codes into the smart contracts. Experiments show that the method can effectively generate
enough obfuscated samples to enhance the detection model’s resistance to redundant codes.

2) 	 Through in-depth analysis and experiments on opcodes, three opcode sequence generation
methods are proposed, and the samples generated by the three methods are trained and detected.
It is found that the detection effect based on Opcode sequence is better than the other two. The
larger the sample size is, the better the model can extract features based on Opcode sequence,
and the higher the detection accuracy is.

3) 	 This paper provides a vulnerability detection method where Con2Vec maps the codes to a unified
vector space by porting the SkipGram model of natural language processing from the natural
language level to the smart contract code level. By embedding the smart contract codes through
a neural network, the model is able to extract information about the hidden features between the
codes, as each code has its own code semantics. By learning and training the semantic features
of the smart contract code, the model can predict whether vulnerabilities exist and what kinds
of vulnerabilities exist in the input smart contract. The experiments show that the vulnerability
detection rate of this method is significantly higher than that of the method in SoliAudit, and
the average prediction accuracy of the system is over 96%.

The remainder of this paper is organized as follows: related work is summarized in the following
section. Machine learning, natural language processing, Ethereum smart contracts and their associated
vulnerabilities are introduced, followed by the description of the data imbalance problems and
models. Experiments and data are then presented. The results are provided, followed by a discussion
and final conclusion.

RELATED WORK

As the Ethereum blockchain is used in different areas, the security of Ethereum smart contracts is
receiving increasing public attention. Many security analysis tools for detecting vulnerabilities in

Figure 1.
Example of Smart Contract With IntegerFlow

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

4

Ethereum smart contracts have emerged in the industry. Vulnerability detection for smart contracts
is generally divided into two types: static detection (Durieux et al., 2020; Tikhomirov et al., 2018;
W. Wang et al., 2020) and dynamic detection (Grieco et al., 2020; Jiang et al., 2018; Wüstholz &
Christakis, 2020). Static detection refers to the analysis of smart contract source code or bytecode.
First, the malicious code is abstracted and its features are extracted. Then, the analysis is conducted
through matching or similarity calculation methods. This method enjoys a high detection efficiency
and a low omission rate, but it also leads to a high false alarm rate due to the variability of functions
and features in smart contracts. Dynamic detection means that the smart contract code takes a pre
run on the EVM, and the vulnerability is detected during the run. The method has high detection
accuracy, but as it has to run through an EVM, its detection efficiency is low. At the same time,
generating efficient test cases is difficult.

SmartCheck (Tikhomirov et al., 2018) is a vulnerability mining tool based on static detection
for Ethereum smart contracts, mainly used to detect reentrancy, timestamp dependency, denial of
service, and money locking vulnerabilities in smart contracts. First, the Solidity source code is
analyzed syntactically and lexically. Then, the results of the analyzed syntactic tree are abstracted in
the form of XML. Finally, the smart contract vulnerability is detected by XPath (Chen et al., 2021).
ContractWard (W. Wang et al., 2020) is a vulnerability detection model based on machine learning.
This model adopts the N-Gram method to model Ethereum smart contract opcodes and trains and
predicts vulnerability samples through the XGBoost method for detecting six types of vulnerabilities
including integer overflow, integer underflow, TOD, CallDepth, timestamp dependency, and
reentrancy. Zhuang et al. (2020) proposed a smart contract vulnerability detection method based on
graph neural networks. The method represented the syntax and semantic structure of smart contracts
by constructing a contract graph, achieving good experimental results. ESCORT (Lutz et al., 2021)
is an Ethereum smart contract vulnerability detection framework based on deep neural networks
(DNN). This method applies transfer learning to smart contract vulnerability detection and supports
the detection of unknown security vulnerabilities. Eth2Vec (Ashizawa et al., 2021) analyzes the
bytecode by a specific extractor and uses a neural network to train the bytecode. The method detects
smart contract vulnerabilities by comparing the code similarity between the target EVM bytecode
and the trained EVM bytecode.

ContractFuzzer (Jiang et al., 2018) is a fuzzing framework for detecting vulnerabilities in smart
contracts on the Ethereum platform. It generates inputs that fit the smart contract invocation syntax
by analyzing the ABI interface of the smart contract and detects smart contract vulnerabilities by
defining different test cases for distinct types of vulnerabilities. The tool can detect seven types of
vulnerabilities including insufficient gas, exception passing, timestamp dependency, code injection,
reentrancy, asset freezing, and transaction sequence dependency. Dynamit (Eshghie et al., 2021) is a
dynamic monitoring framework based on machine learning. The method relies only on the transaction
metadata and balance data of the blockchain system, extracts features from the transactions, and then
analyzes the features through machine learning methods to detect reentrancy vulnerabilities of smart
contracts. HFContractFuzzer (Ding et al., 2021) is a Hyperledger Fabric smart contract vulnerability
detection tool based on fuzzy detection. The method combines the Golang fuzzing tool named go-
fuzz with fabric smart contracts and detects three types of vulnerabilities including type conversion
errors, logic loopholes, and integer overflow, verifying the feasibility of applying fuzzy techniques
to HF smart contract vulnerability detection. Torres et al. (2021) proposed the first hybrid fuzzer for
smart contracts, ConFuzzius, which uses evolutionary fuzzing to execute the shallow part of a smart
contract and generates inputs that satisfy complex conditions by constraint solving, thus preventing
evolutionary fuzzing from exploring the deep part and reducing low code coverage and false positives.

There are still problems that need to be solved for the vulnerability detection of Ethereum
smart contracts. First, the current theoretical analysis for smart contract vulnerability detection is
predominant, and most of the studies do not provide landing solutions that can be learned from.
Second, most of the existing static detection methods extract and model features at the code level,

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

5

lacking feature analysis of the details between codes, which wastes the detailed information implied
in the code files and reduces the efficiency of vulnerability detection and vulnerability coverage.

Due to the low disclosure rate of existing Ethereum smart contract code, which is mostly
compiled EVM bytecode, the aim is to develop a static detection tool to analyze the source code or
EVM bytecode directly and then carry out feature extraction and modeling mapping on the results
obtained from the analysis to detect various vulnerabilities in smart contracts by analyzing EVM
bytecode files. With this tool, only the source code or EVM bytecode of the smart contract is provided
as input to the model, and the vulnerabilities are identified without executing the smart contract.
Static detection is therefore often used as the first line of defense to avoid deploying a smart contract
containing vulnerabilities on the blockchain. However, the accuracy of traditional static analysis
tools for vulnerability detection is low because most of them are rule-based or based on code-level
feature modeling, lacking feature extraction for detailed aspects of the code. Some static analysis
approaches are executed by extracting the symbols of the control flow graph from the target code
(Chinen et al., 2020; Torres et al., 2018; Weiss & Schütte, 2019), the generation of which requires
traversing all states and is time-consuming.

To address the inherent shortcomings of traditional static analysis, many scholars have used
machine learning methods to learn the features of the code as a way to model and infer whether
the smart contract is vulnerable. The methods based on traditional machine learning, however,
cannot extract the hidden features between smart contract codes, whereas the variability between
code structures can seriously affect the analysis results. For instance, two methods with the same
semantics but different code structures may turn out different results, and developers may deliberately
add redundant code to evade detection by the vulnerability software, impacting the detection model.
The existing smart contract vulnerability detection tools, based on static analysis, do not identify
the hidden information between smart contract codes and are not robust enough to analyze different
vulnerabilities. The Con2Vec vulnerability detection model, proposed in this paper, provides faster
detection and higher scalability than the above tools. For this model, no prior knowledge of smart
contract vulnerability mining is needed, and only a sufficient number of vulnerability samples need
to be put into the model for training to obtain the detection model. If new vulnerability samples are
subsequently obtained, the model can be enhanced by adding the corresponding samples directly to
the model for incremental training.

BACKGROUND

This section provides a brief introduction to Ethereum smart contracts and their associated
vulnerabilities, as well as concepts related to machine learning and natural language processing for
detection schemes.

Ethereum Smart Contracts and Their Associated Vulnerabilities
Ethereum smart contracts run on the Ethereum virtual machine. There are two types of accounts
in Ethereum: an externally owned account and a contract account. The externally owned accounts
are controlled by keys, while the contract accounts are controlled by smart contract codes. Anyone
can develop smart contracts on the Ethereum blockchain, but only contract accounts can own these
smart contract codes. However, the externally owned account has a key through which the externally
owned account can access the corresponding smart contracts. The contract account cannot start and
run its own smart contract by itself and must initiate transactions to the contract account through
an externally owned account, thus initiating the execution of the smart contract code in the contract
account. An Ethereum smart contract is an immutable computer program deployed on the Ethereum
blockchain that defines rules to be followed by all peers.

Smart contracts have three properties: immutability, transparency, and certainty. Immutability
indicates that smart contract codes can be considered trustworthy because they cannot be modified

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

6

and removed once deployed to the blockchain. Transparency indicates that anyone with access to the
blockchain can read the smart contracts on the blockchain. Certainty indicates that the same smart
contract code will produce the same result regardless of who invokes it. Once a smart contract has
been deployed to the blockchain, the contract will be executed automatically and will be triggered
to handle the relevant functions when the conditions in the contract are met. Smart contracts allow
anonymous participants to enter into binding agreements where each participant has full knowledge
of the transaction, and value can be transferred between accounts or placed in a third party escrow
within the smart contract.

To incentivize the execution of contract functions, Ethereum relies on gas paid in Ether to drive
the movement of smart contracts. The amount of gas spent on a transaction is related to the complexity
of the computation. According to the Ethereum protocol, a fee is charged for each computational step
performed in a contract or transaction, thus preventing malicious attacks and abuse on the Ethereum
network. Every transaction must include a gas limit as well as a fee willing to pay for gas. Miners can
choose whether to pack the transaction and charge a fee. The transaction is executed if the total amount
of gas in the computation step (gas used, including the original message and any sub messages that
may be triggered) is less than or equal to the gas limit. All changes are rolled back if the total amount
of gas exceeds the gas limit, unless the transaction is still valid and the miner accepts the cost. Any
excess gas not used in the execution of the transaction is returned to the transaction initiator in Ether
without fear of overspending, as only the cost of the consumed gas is paid during execution, meaning
that it is useful and safe to send transactions above the estimated value of the gas limit.

Ethereum smart contracts are usually written in high-level languages such as Solidity, and the
smart contract source code is compiled into a bytecode file in an EVM, which is a global single
instance with unique results. It runs like a single instance computer between all peer nodes in the
blockchain network, with each peer running a local copy of the EVM, thus verifying that the contract
functions execution, and the transactions processed as well as the smart contracts recorded on the
blockchain. The Ethereum blockchain will suffer damage if an Ethereum smart contract is vulnerable.
In this paper, several contract vulnerabilities are detected. Thirteen contract vulnerabilities, and their
corresponding descriptions are shown in Table 1.

Machine Learning
Machine learning is a method that empowers a machine to learn the underlying characteristics of
data and perform functions that cannot be done by direct programming. In a practical sense, machine
learning is a method of training a model from data, making the model possess the underlying patterns
in the data, and finally predicting the untrained data from the trained model. Machine learning is
divided into two phases: training and prediction. The training phase takes the data as input to learn
the features between the data and optimizes the internal parameters of the model using the objective
function as a benchmark to achieve the desired loss target. The prediction phase takes data that have
not been involved in training as input and predicts the input using the model and its parameters learned
in the training phase. There are two types of machine learning. One type is supervised learning, which
involves the training of existing training samples to obtain an optimal model and using this model to
map all the inputs to the corresponding outputs to complete the task of prediction and classification.
The data in supervised learning are labeled in advance, and its training samples contain both features
and label information. Common supervised learning algorithms are linear regression algorithms,
BP neural network algorithms, decision trees, regression trees, logistic regression, support vector
machines, KNN, and others. The other type of learning is unsupervised learning, where the training
samples are unlabeled, and the goal is to reveal commonalities between data and intrinsic patterns by
learning from unlabeled training samples. The most popular machine learning method in recent years
is deep learning, which is based on neural networks and uses a large number of operations to extract
features between data in a black-box fashion to continuously approximate an optimized objective
function. The aim in this paper is to develop a machine learning model that learns vulnerabilities in

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

7

smart contracts so that it can be used to detect vulnerabilities in untrained smart contracts, making
its detection universal and robust.

Natural Language Processing
Natural language processing refers to utilizing computers to process human language so that computers
can read and understand human language. Natural language processing is used in machine translation,
speech recognition, spam filtering, information extraction, text sentiment analysis, automatic question
and answer, and personalized recommendation. Words are the smallest units of language processing,
and sentences are processed by stitching together the smallest units. From a syntactic or semantic point
of view, phrases can also be used as the smallest unit of language processing. For a specific sentence,
both words and phrases may be the smallest units for comprehension. Sometimes language processing
is also performed in phrases because words in phrases lose their meaning once they are separated.
For natural language processing, a simple strong splitting of sentences does not help natural language
processing because words and phrases in different contexts have their own specific meanings. The
difference between natural language and code is that code has syntax and structure, which need to
be considered when processing code using natural language processing methods.

DESIGN OF CON2VEC

Con2Vec consists of the ByteCodeToVec model and the BugDetection module. In this section, the
construction of the ByteCodeToVec model and the BugDetection module is described, and the architecture
is given in Figure 2. The entire flow of the vulnerability detection methodology is presented in Figure 3.

Design Concept
The ByteCodeToVec module is composed of two parts: the OpcodeExtractor module and the
Opcode2Vec module. OpcodeExtractor converts the Ethereum bytecode into an opcode sequence
and uses it as input to the Opcode2Vec module. The rules of conversion are based on the bytecode to

Table 1.
Thirteen Types of Security Vulnerabilities in Smart Contracts

Types of Vulnerabilities Descriptions

Underflow Integer underflow

Overflow Integer overflow

CallDepth Use send or call cmd, but do not check the cmd result

TOD State will depend on the txorder

TimeDep State will depend on the timestamp

Reentrancy Contract contains reentrancy function

AssertFail Contract contains the condition of assert fail

TxOrigin Contract use tx.origin

CheckEffects Contract checks if the state has been updated before the
transaction or not

InlineAssembly Contract uses assembly code

BlockTimestamp Contract uses block timestamp

LowLevelCalls Contract uses send or call not transfer

SelfDestruct Contract uses self destruct

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

8

Figure 2.
Overview of Con2Vec

Figure 3.
The Flowchart of Vulnerability Detection

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

9

opcode correspondence rule listed in the Ethereum Yellow Book. The Opcode2Vec module mainly
consists of the extended SkipGram model (Mikolov et al., 2013), which maps opcodes to vectors. The
Opcode2Vec module does not vectorize natural language, as is the case with word embedding in natural
language processing, but vectorizes code, so ByteCodeToVec can implicitly extract smart contract
features. Con2Vec uses the code embedding information from the trained neural network as the basis
for the vulnerability detection model to learn the code embedding features to detect vulnerabilities.
When a smart contract vulnerability needs to be detected, the model simply learns the features of the
smart contract containing the vulnerability and then feeds the opcode sequence of the smart contract
to be detected into the trained detection model to output the corresponding vulnerability. To clarify,
Con2Vec can detect vulnerabilities in smart contracts even if the vulnerability characteristics of the
specific smart contract are not known. Con2Vec takes the EVM bytecode or contract source code to
be detected as input and returns a list of detected smart contract vulnerabilities.

The BugDetection module mainly consists of TextCNN (Chen, 2015). When the ByteCodeToVec
module is trained, it generates a vector representation of Ethereum smart contract opcodes. In the
BugDetection module, each data input to the model is an opcode sequence. Each opcode sequence is
converted from the smart contract source code and represented as a matrix of smart contract opcodes
stitched together in rows of opcode vectors.

Building Blocks of ByteCodeToVec
The ByteCodeToVec model consists of the OpcodeExtractor module and the Opcode2Vec module.

OpcodeExtractor Module
The OpcodeExtractor module is a module that provides input to the Opcode2Vec module. Specifically,
the ByteToOpcode module parses Ethereum bytecodes to generate opcodes according to established
rules (Table 2 lists some of the rules for the mapping table of bytecodes to opcodes). According to the
corresponding generation rules, the OpcodeExtractor module maps the input bytecode string in groups
of two characters to obtain the corresponding opcode. It is important to note that the PUSH instruction
set has its own set of rules. It consists of 32 instructions from PUSH1 to PUSH32, with each PUSH
instruction followed by a number representing an additional character to be read. When the module reads
a PUSH instruction, it automatically recognizes the number following the PUSH instruction, reads an
additional group of characters of that size according to that value, and then uses it as the parameter value
for the PUSH instruction. For example, when the module reads a certain group of input characters whose
corresponding operation code is PUSH4 in accordance with the relational mapping table, the module
will read 4 additional groups of characters (i.e., 8 characters, 2 characters for 1 group) and place these 4
groups of characters after the PUSH4 instruction at the same time. For other instructions, the module will
convert them to opcodes as normal according to the relational mapping table. The result of converting
the EVM bytecodes 0x6d4946c0e9f43f4dee607b0ef1fa1c3318585733ff to opcode is shown in Table 3.

This paper proposes three different methods of generating opcode sequences by studying the
above conversion rules for bytecodes and opcodes. The first method is to remove all the operands and
keep only the opcode and to concatenate all the opcodes to form an opcode sequence. The second
method is to retain both opcodes and operands and to unify the operands after the opcode as NUM.
For example, PUSH1 49 becomes PUSH1 NUM, PUSH2 49 46 becomes PUSH2 NUM, and so on.
The third method also retains both the opcode and the operand, but it differs from the second method
in that the opcode followed by the operand is unified into a single field. For example, PUSH1 49 is
unified as PUSH1 NUM, PUSH2 49 46 is unified as PUSH2 NUM, and so on. Three opcode sequence
generation methods are shown in Table 4.

Opcode2Vec Module
The Opcode2Vec module can vectorize smart contract code. It is a SkipGram model that obtains an
opcode vector by training a sequence of opcodes. The training process is shown in Figure 4.

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

10

The model allows a vectorized representation of the code. Specifically, if given a string of smart
contract bytecodes, the OpcodeExtractor module processes the corresponding sequence of opcodes,
the SkipGram model slides over the sequence of opcodes with a fixed window size, and the central
opcode predicts the surrounding opcodes to generate a number of tasks. The sliding window starts
at the beginning of the opcode sequence and moves forward by one opcode size at each step, which

Table 2.
Relationship Mapping Table Between Bytecode and Opcode

Bytecode Opcode

0x00 STOP

0x01 ADD

0x02 MUL

0x03 SUB

0x04 DIV

0x05 SDIV

0x06 MOD

0x07 SMOD

0x08 ADDMOD

0x09 MULMOD

Table 3.
Conversion Results of Smart Contract Bytecodes and Opcode

Bytecodes Opcode And Operand

6d 49 46 c0 e9 f4 3f 4d ee 60 7b 0e f1 fa 1c PUSH14 49 46 c0 e9 f4 3f 4d ee 60 7b 0e f1 fa 1c

33 CALLER

18 XOR

58 PC

57 JUMPI

33 CALLER

ff SELFDESTRUCT

Table 4.
Three Methods of Generating Opcode Sequence

Method of Generating
Opcode Sequences

Bytecodes Opcode Sequence

Method 1 (Based on
Opcode)

0x6d4946c0e9f43f4dee607b0ef1fa1c3318585733ff PUSH14 CALLER XOR PC JUMPI CALLER
SELFDESTRUCT

Method 2 (Based on
OpcodeAndNum)

0x6d4946c0e9f43f4dee607b0ef1fa1c3318585733ff PUSH14 NUM CALLER XOR PC JUMPI CALLER
SELFDESTRUCT

Method 3 (Based on
OpcodeNum)

0x6d4946c0e9f43f4dee607b0ef1fa1c3318585733ff PUSH14NUM CALLER XOR PC JUMPI CALLER
SELFDESTRUCT

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

11

is similar to performing a multiclass inference task where each input yields a different output, and
the weight matrix passed between each input to the output is different. This enables the central opcode
matrix from the training process to be used as the final code vector matrix. For sliding windows, the
range covered by each slide is the range in the opcode sequence, (i.e., all the predicted opcodes are
in the opcode sequence). For example, if the sliding window size is 3 (3 before and 3 after the center
opcode) and the current center opcode is the first opcode in the opcode sequence, then the window
will only cover the three opcodes to the right of the center opcode, but not the three to the left. Thus,
the left three are beyond the opcode sequence. In terms of model details, the model is trained by a
neural network, and the target words are inferred from the vocabulary by the SoftMax function. The
SkipGram architecture consists of a hidden layer. For example, given a vector of inputs (typically a
one-hot vector), the model is trained to obtain the corresponding output, and the output layer is
computed based on the SoftMax function to produce the classification result. Assuming a set of
opcode sequences w w w wT1 2 3

, , ,...,



 , the objective function of the model is:

L
T

p w w
t j t

c j ct

T

= +
− ≤ ≤=
∑∑1

1

log (|) 	

The parameter c is the size of the contextual window. The larger the value of c , the more
training samples are obtained, the higher the result accuracy is, but the longer training takes. The
SkipGram model is defined using the SoftMax function p w wo i(|) :

p w w
v v

v v
o i

w
T
w

w

W

w
T
w

o I

o I

(|)
exp()

exp()

'

'
=

=∑ 1

	

The parameters v vw
'

w, denote the output vector and input vector of opcode w , respectively.

Figure 4.
SkipGram Model

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

12

Building Blocks of BugDetection
For the ByteCodeToVec model, the training objective is to optimize the opcode vector belonging to
each smart contract, where opcodes with similar meanings are mapped to similar locations in the vector
space. The opcode vectors obtained by this model can be invoked as features of the vector representation
for contract-level analysis. The algorithm is unsupervised, so the process does not need to label each
contract in advance. The features obtained from this training can be utilized in BugDetection, a module
that detects smart contract vulnerabilities through model training. Specifically, the main body of the
module consists of a TextCNN, with the input of the model being the opcode matrix and the output
being the presence or absence of vulnerabilities. The scheme generally uses the CNN-multichannel
method. The embedding layer is initialized by the pretrained SkipGram vector, and the opcodes that
do not appear in the pretrained word vector, due to their version, are randomly initialized. From there,
the embedding layer is fixed, and the whole network is fine-tuned to obtain the fine-tuned word vector.
Then, together with the pretrained SkipGram vector, multiple channels are formed simultaneously to
learn the features of both embeddings during the model training process. In the convolutional pooling
layer, convolution is performed only for the vertical direction of the opcode sequence, (i.e., the width
of the convolutional kernel is fixed to the dimension of the opcode vector). Convolutional kernels of
different heights can be used for convolution, resulting in richer feature representations and indirectly
more N-gram features. The pooling layer can choose 1-max pooling to extract the maximum value in
the feature map. By choosing the maximum value of each feature map, the most important features in
each feature map can be captured. Each convolutional kernel will obtain an important feature value.
1-max pooling is used for all convolutional kernels and then cascaded to obtain the final feature vector,
which is fed into the SoftMax layer for binary classification to obtain the vulnerability detection model.
The TextCNN model for vulnerability detection is illustrated in Figure 5.

Figure 5.
Vulnerability Detection Model

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

13

Multilabel Classification Problems
For a labeled smart contract dataset, a smart contract may have multiple vulnerabilities, meaning that
each contract may have multiple labels, each label corresponding to one vulnerability. The detection
tool in this paper provides detection of the following 13 smart contract vulnerabilities: underflow
vulnerability (marked as C1), overflow vulnerability (marked as C2), CallDepth vulnerability (marked
as C3), TOD vulnerability (marked as C4), TimeDep vulnerability (marked as C5), reentrancy
vulnerability (marked as C6), AssertFail vulnerability (marked as C7), TxOrigin vulnerability (marked
as C8), CheckEffects vulnerability (marked as C9), InlineAssembly vulnerability (marked as C10),
BlockTimeStamp vulnerability (marked as C11), LowLevelCalls vulnerability (marked as C12), and
SelfDestruct vulnerabilities (marked as C13). In theory, this research method is applicable to the
detection of various smart contract vulnerabilities, provided that a considerable number of samples
of the vulnerable smart contract dataset are available for training. Examples of vulnerability labels
are shown in Table 5. The label [1,0,0,0,0,0,0,0,0,0,0,0,1] for the smart contract sample X1 indicates
that the contract has both underflow vulnerability and SelfDestruct vulnerability, free of the other 11
additional vulnerabilities. To address the multilabel classification problem in vulnerability mining,
this paper uses a one-to-rest (one vs rest) strategy to classify the dataset into two categories for each
label, namely, the presence of the vulnerability and the absence of the vulnerability, thus converting
the multilabel classification problem into a multiple binary classification problem.

Data Imbalance Problems
The training effect can be afflicted when there is a disparity between the proportion of positive and
negative classes of vulnerabilities for smart contract datasets. In a naturally distributed Ethereum
smart contract, the proportion of vulnerabilities that occur is expected to be low. Assuming a total of
100 training data points, and 99 of them do not contain reentrancy vulnerabilities, it is clear that if
these data are trained, the trained model has a 99% accuracy rate of predicting whether a particular
smart contract is in the negative class (i.e., there are almost no reentrancy vulnerabilities), but such
a model often has no value. Therefore, to address the data imbalance problem in the smart contract
dataset, this paper proposes a code obfuscation method for smart contracts to address the smart
contract dataset imbalance problem, and to improve the redundant code interference resistance of this
detection model. The idea of the method is to prepare a number of redundant codes for obfuscation
in advance and then randomly insert the redundant codes into the smart contracts according to the
rules before compiling the smart contracts in the dataset to form a new smart contract with redundant
codes. Specifically, the redundant code can include either simple computation of invalid variables
(i.e., variables that cannot be defined in the same way as the original smart contract code and are
limited to defining some useless variables for self-operation) or invalid functions that do not affect
the functionality of the smart contract system. The specific code obfuscation method is shown in
Algorithm 1. Line 1 indicates that the location of all right brackets in the smart contract source
code is found and marked, returning an array of location markers, which stores the location of the
right brackets in the smart contract source code. Line 2 indicates the number of right brackets for
all functions in the source code of the smart contract. Line 3 indicates that the number of redundant

Table 5.
Examples of a Vulnerability Label

Contract Contract Bytecodes Label

Contract X1 0x6d4946c0e9f43f4dee607b0ef1fa1c3318585733ff [1,0,0,0,0,0,0,0,0,0,0,0,1]

Contract X2 0x608060405234801561001057600080fd [1,0,0,0,0,1,0,0,0,0,0,0,0]

Contract X3 0x6060604052361561006c5760e060020a60003504 [1,0,1,0,0,1,1,1,1,1,1,0,1]

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

14

codes to be embedded is calculated. Line 4 defines an array that receives the redundant codes (i.e.,
where the redundant code in the source code is inserted), with an array size of countRandomPosition.
Line 5, line 6, line 7, and line 8 indicate the random selection of countRandomPosition right bracket
positions to insert the redundant code. Line 9 indicates the random shuffle of the redundant code
to be inserted. Line 10 indicates that the prepared redundant code is inserted one by one in an array
order into the next line of the randomly selected source code corresponding to the right bracket
position. Line 11 returns the smart contract with the redundant code embedded. With this algorithm,
a large number of nonredundant smart contracts can be generated, thus addressing the issue of data
imbalance. Moreover, the detection model is also resistant to regular code redundancy, as a large
amount of redundant code is randomly inserted into the normal code.
Algorithm 1:
Algorithm 1: RandomInsertion
Input: contractFile, redundantcode[]
Output: contractFile
 1: rightBracketPosition[]=FindFuncRightBracket(contractFile)
 2: count=len(rightBracketPosition)
 3: countRandomPosition=len(reddundantCode)
 4: Define an integer array named writeRandomPostion to store
randomly generated insertion position
 5: while countRandomPosition>0 do
 6: writeRandomPosition.append(random.randInt(0,count))
 7: countRandomPosition--
 8: end while
 9: shuffle(redudantcode)
10: wRddtCodeToContractFile(writeRandomPosition,redundantCode)
11: return contractFile

EXPERIMENT

Purpose of the Experiment
To evaluate the performance of Con2Vec, vulnerabilities in the smart contract code to be analyzed can
be detected by training a smart contract that is known to contain vulnerabilities. To do this, it is first
necessary to check whether ByteCodeToVec appropriately represents the relationship between the
smart contract code to be analyzed and the smart contract code learned during the training phase. Based
on this, a number of smart contracts written by Solidity containing integer overflow vulnerabilities
were predesigned and evaluated against these known vulnerable smart contracts to confirm whether
ByteCodeToVec could properly extract the features of the code. Next, the smart contract code with
known vulnerabilities was trained and evaluated with TextCNN to check whether the model successfully
extracted the features of the smart contract and identified all the vulnerabilities learned. Through these
experiments, it can be seen that ByteCodeToVec is able to accurately extract features and thus detect
vulnerabilities. In the field of vulnerability detection of Ethereum smart contract, datasets are not provided
in most papers, while data sets are provided in the SoliAudit (Liao et al., 2019). SoliAudit’s method is
effective and representative among the current static vulnerability detection methods. Therefore, this
paper conducts experiments on the dataset of SoliAudit and compares the performance of Con2Vec
with that of SoliAudit, and the experiments prove that Con2Vec outperforms SoliAudit.

Experimental Setup
In the mapping phase for smart contract opcodes, the SkipGram model is used for training, and
the samples are negatively sampled during the training process to speed up the training. In the

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

15

vulnerability detection module, TextCNN is used in the main body for feature extraction and
vulnerability classification, and pretrained opcode vectors are added to fine-tune the model during
the training phase. The convolution kernel sizes are set to 3, 4, and 5, corresponding to the trigram,
4-gram, and 5-gram in the language model, respectively, and 1-max pooling is used to obtain the
most key features in the opcode sequence. The experimental results are measured using accuracy,
precision, recall, and F1-score.

Datasets
This experiment obtains a total of over 60,000 unlabeled smart contracts from the Ethereum platform
to build a dataset, which are all open source on the Ethereum platform and whose contracts are real
and valid. In addition, this paper cleans and merges the public datasets from authoritative papers
to obtain over 17,000 labeled smart contract datasets, most of which are imbalanced. The number
of positive and negative samples for each of the original dataset vulnerabilities (positive samples
represent vulnerabilities, negative samples represent no vulnerabilities) is shown in Table 6. A code
obfuscation method is given to expand the 17,000 labeled datasets to 40,000, where the positive to
negative ratio is 1:1. The datasets are publicly available at https://github.com/starStraw/OpcodeToVec.

RESULTS

The vulnerability detection results of Con2Vec are shown in Tables 7, 8, and 9. Table 7 presents the
results of vulnerability detection based on Opcode sequence (OpSe), Table 8 shows the results of
vulnerability detection based on OpcodeAndNum sequence (OpANSe), and Table 9 shows the results
of vulnerability detection based on OpcodeNum sequence (OpNSe).

As shown in Table 7, the prediction accuracy of the model for underflow, overflow, TimeDep,
AssertFail, InlineAssembly, BlockTimeStamp, and LowLevelCalls vulnerabilities all reached more
than 97%, which is higher than the prediction accuracy of other vulnerabilities.

As shown in Table 8, the prediction accuracy of the model for underflow and overflow vulnerabilities
reached more than 97%, which is higher than the prediction accuracy of other vulnerabilities.

Table 6.
Number of Positive and Negative Samples for Each Vulnerability in the Dataset

Types of Vulnerability Positive (With Vulnerability) Negative (Without Vulnerability)

Underflow 10883 6527

Overflow 15499 1911

CallDepth 386 17024

TOD 2523 14887

TimeDep 1175 16235

Reentrancy 513 16897

AssertFail 7450 9960

TxOrigin 144 17266

CheckEffects 6853 10557

InlineAssembly 1286 16124

BlockTimeStamp 5625 11785

LowLevelCalls 5153 12257

SelfDestruct 1255 16155

https://github.com/starStraw/OpcodeToVec

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

16

As shown in Table 9, the prediction accuracy of the model for overflow, TimeDep, AssertFail,
InlineAssembly, and BlockTimeStamp vulnerabilities reached more than 97%, which is higher than
the prediction accuracy of other vulnerabilities.

Table 7.
Vulnerability Detection Results of OpSe

Types of Vulnerability Accuracy Precision Recall F1-score

Underflow 97.08% 97.37% 96.77% 97.07%

Overflow 97.24% 97.93% 96.52% 97.22%

CallDepth 96.34% 96.54% 96.13% 96.33%

TOD 96.37% 96.77% 95.94% 96.35%

TimeDep 97.11% 98.05% 96.13% 97.08%

Reentrancy 95.83% 95.40% 96.30% 95.85%

AssertFail 97.52% 97.66% 97.37% 97.52%

TxOrigin 95.92% 96.50% 95.30% 95.89%

CheckEffects 95.59% 96.15% 94.98% 95.56%

InlineAssembly 97.65% 98.84% 96.43% 97.62%

BlockTimeStamp 97.48% 98.96% 95.97% 97.44%

LowLevelCalls 97.30% 98.13% 96.44% 97.28%

SelfDestruct 96.48% 97.81% 95.09% 96.43%

Average 96.76% 97.39% 96.11% 96.74%

Table 8.
Vulnerability Detection Results of OpANSe

Types of Vulnerability Accuracy Precision Recall F1-score

Underflow 97.25% 97.55% 96.93% 97.24%

Overflow 97.12% 97.63% 96.58% 97.10%

CallDepth 95.83% 96.00% 96.13% 96.33%

TOD 95.87% 96.24% 95.47% 95.85%

TimeDep 96.46% 96.97% 95.92% 96.44%

Reentrancy 96.21% 96.39% 96.02% 96.20%

AssertFail 96.94% 98.47% 95.36% 96.89%

TxOrigin 95.79% 95.91% 95.66% 95.78%

CheckEffects 96.08% 96.93% 95.17% 96.04%

InlineAssembly 96.58% 96.95% 96.19% 96.57%

BlockTimeStamp 96.52% 97.18% 95.82% 96.50%

LowLevelCalls 96.78% 97.48% 96.04% 96.76%

SelfDestruct 96.25% 97.09% 95.36% 96.22%

Average 96.44% 96.98% 95.90% 96.46%

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

17

According to the data in Figures 6, 7, and 8, it can be found that the average accuracy of Con2Vec
in detecting various vulnerabilities in the current dataset is up to 96% or more, which is higher than
the detection method in SoliAudit with an accuracy of 91.4%. Even when compared to vulnerabilities
that occur infrequently, the recall rate of Con2Vec is more stable and higher than that of SoliAudit’s
method. It can be seen that the Con2Vec method is more efficient in detection in Table 10. When
the model is trained and the smart contract to be detected is fed into the model, the result is obtained
in less than 0.1 s (with batch testing, it takes less than two minutes to test 1,700 smart contracts).

As shown in Figure 9, the histogram shows the comparison of accuracy, precision, recall and
F1-score of the three methods. From the figure, it can be seen that the overall metrics of the OpSe
method are better than those of the other two among the above three detection methods. Among them,
the OpANSe method is slightly worse than the other two, while the OpSe method and the OpNSe
method are not much different in all aspects, probably because of the approximation of the converted
method when converting bytecode to opcode sequence (OpcodeNum sequence). In its conversion,
the OpSe method discards all operands and retains only the opcode. The OpNSe method retains the
operands but does not have a significant effect on the overall result because only opcodes such as
PUSH are followed by operands. Although the names of the converted opcodes are different, the
final result is similar, with only a few opcodes to distinguish between them.

DISCUSSION

It is found that when the dataset is expanded to a certain level, the detection effect of using the
similarity between opcodes to simplify the opcodes to generate the opcode sequences is lower than
the result based on opcode sequences alone, which may be because after the dataset is expanded, the
code embedding method is better able to find the subtle differences between the opcodes without
the need to simplify the opcodes to focus features and thus find differences. Additionally, unknown
vulnerabilities are not managed by the method proposed in this paper because the dataset must be
labeled before training. Despite the limitations, the method can retrain and detect the vulnerabilities

Table 9.
Vulnerability Detection Results of OpNSe

Types of Vulnerability Accuracy Precision Recall F1-score

Underflow 96.91% 97.36% 96.43% 96.90%

Overflow 97.05% 97.91% 96.15% 97.02%

CallDepth 96.28% 96.34% 96.22% 96.28%

TOD 96.08% 96.37% 95.77% 96.07%

TimeDep 97.11% 98.05% 96.13% 97.08%

Reentrancy 95.92% 96.43% 95.37% 95.90%

AssertFail 97.34% 98.04% 96.61% 97.32%

TxOrigin 96.23% 96.57% 95.86% 96.22%

CheckEffects 95.66% 96.05% 95.24% 95.64%

InlineAssembly 97.32% 98.09% 96.51% 97.30%

BlockTimeStamp 97.02% 97.77% 96.24% 97.00%

LowLevelCalls 96.89% 97.77% 95.97% 96.86%

SelfDestruct 96.13% 97.00% 95.21% 96.09%

Average 96.61% 97.21% 95.98% 96.59%

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

18

as long as there are enough labeled smart contract samples with new vulnerabilities. In the process
of researching the area of smart contract vulnerability detection, it is found that the current smart
contract datasets are less publicly available, and there is no large-scale smart contract corpus. Due to
the different domains, the current large-scale pretrained models cannot be used in the area of smart

Figure 6.
Comparison Between OpSe and SoliAudit

Figure 7.
Comparison Between OpANSe and SoliAudit

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

19

Figure 8.
Comparison Between OpNSe and SoliAudit

Table 10.
Comparison of Average Time Consumption of Different Methods (Seconds)

Variable OpSe OpANSe OpNSe Oyente Mythril

Time <=0.1 <=0.1 <=0.1 22 3612

Figure 9.
Comparison of Three Methods

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

20

contract vulnerability detection, so the current static detection for smart contract vulnerabilities mostly
uses simple deep learning models and machine learning models.

CONCLUSION

This paper proposes a vulnerability detection method based on embedding and TextCNN model
for smart contracts. Through collating and cleaning existing datasets, over 60,000 unlabeled smart
contract datasets are disclosed, and a code obfuscation method for data enhancement of labeled smart
contracts is offered. This method can effectively generate enough obfuscation samples, enhancing
the capability of anti-redundant code for the detection model. Three different methods for generating
opcode sequences are also proposed in this paper, among which the vulnerability detection results
based on opcode sequence is optimal. A total of 13 smart contract vulnerabilities are detected in this
paper with reliable performance in terms of accuracy. The highlight of the model is that it converts
the smart contract vulnerability detection problem into a natural language text classification problem
with a short detection time and low miss rate. The result shows that the average accuracy of this
method for smart contract vulnerability detection is above 96% and no prior knowledge is required.
This approach could theoretically also be applied to other types of smart contracts, such as fabric
smart contracts. Fabric smart contract is essentially a program written in Golang language. As long
as the Golang code is converted into opcodes, and then feature extraction and model training are
performed on the opcode using this method, the vulnerability of the fabric smart contract can be
easily detected. In future work, solutions in the area of smart contract vulnerability detection can be
extended by improving the vector representation of smart contracts.

ACKNOWLEDGMENT

Li Zhao and Qi Li helped proofread manuscripts. We sincerely thank the anonymous reviewers for
their very comprehensive and constructive comments.

CONFLICT OF INTEREST

The authors of this publication declare there is no conflict of interest.

FUNDING STATEMENT

This work is supported by the National Natural Science Foundation of China, under grant No.61772180,
the Key-Area Research and Development Program of Guangdong Province 2020B1111420002, the
Key Research and Development Project in Hubei Province 2022BAA040, the Science and Technology
Project of Department of Transport of Hubei Province 2022-11-4-3, and the Innovation Fund of Hubei
University of Technology. BSQD2019027, BSQD2019020, and BSQD2016019.

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

21

REFERENCES

Ashizawa, N., Yanai, N., Cruz, J. P., & Okamura, S. (2021). Eth2Vec: learning contract-wide code representations
for vulnerability detection on ethereum smart contracts [Paper presentation]. 3rd ACM International Symposium
on Blockchain and Secure Critical Infrastructure. doi:10.1145/3457337.3457841

Chen, R., Wang, Z., & Hong, Y. (2021). Pipelined XPath query based on cost optimization. Scientific
Programming, 2021, 1–16. doi:10.1155/2021/5089236

Chen, Y. (2015). Convolutional neural network for sentence classification. University of Waterloo.

Chinen, Y., Yanai, N., Cruz, J. P., & Okamura, S. (2020). RA: Hunting for re-entrancy attacks in ethereum
smart contracts via static analysis [Paper presentation]. 2020 IEEE International Conference on Blockchain
(Blockchain). doi:10.1109/Blockchain50366.2020.00048

Ding, M., Li, P., Li, S., & Zhang, H. (2021). Hfcontractfuzzer: Fuzzing hyperledger fabric smart contracts for
vulnerability detection. Evaluation and Assessment in Software Engineering, 321-328.

Durieux, T., Ferreira, J. F., Abreu, R., & Cruz, P. (2020). Empirical review of automated analysis tools on
47,587 ethereum smart contracts [Paper presentation]. ACM/IEEE 42nd International Conference on Software
Engineering.

Eshghie, M., Artho, C., & Gurov, D. (2021). Dynamic vulnerability detection on smart contracts using machine
learning. Evaluation and Assessment in Software Engineering, 305-312.

Fu, X., Wang, H., & Shi, P. (2021). A survey of blockchain consensus algorithms: Mechanism, design and
applications. Science China. Information Sciences, 64(2), 121101. Advance online publication. doi:10.1007/
s11432-019-2790-1

Grieco, G., Song, W., Cygan, A., Feist, J., & Groce, A. (2020). Echidna: effective, usable, and fast fuzzing for
smart contracts [Paper presentation]. 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis. doi:10.1145/3395363.3404366

Holub, M., & Johnson, J. (2019). The impact of the bitcoin bubble of 2017 on bitcoin’s P2P market. Finance
Research Letters, 29, 357–362. doi:10.1016/j.frl.2018.09.001

Jiang, B., Liu, Y., & Chan, W. K. (2018). Contractfuzzer: Fuzzing smart contracts for vulnerability detection
[Paper presentation]. 33rd ACM/IEEE International Conference on Automated Software Engineering.
doi:10.1145/3238147.3238177

Kowalski, M., Lee, Z. W., & Chan, T. K. (2021). Blockchain technology and trust relationships in trade finance.
Technological Forecasting and Social Change, 166, 120641. doi:10.1016/j.techfore.2021.120641

Li, D., Han, D., Weng, T.-H., Zheng, Z., Li, H., Liu, H., Castiglione, A., & Li, K.-C. (2022). Blockchain for
federated learning toward secure distributed machine learning systems: A systemic survey. Soft Computing,
26(9), 4423–4440. doi:10.1007/s00500-021-06496-5 PMID:34840525

Liao, J.-W., Tsai, T.-T., He, C.-K., & Tien, C.-W. (2019). Soliaudit: Smart contract vulnerability assessment based
on machine learning and fuzz testing [Paper presentation]. 2019 Sixth International Conference on Internet of
Things: Systems, Management and Security (IOTSMS). doi:10.1109/IOTSMS48152.2019.8939256

Liu, Y., Zhang, J., Wu, S., & Pathan, M. S. (2021). Research on digital copyright protection based on the
hyperledger fabric blockchain network technology. PeerJ. Computer Science, 7, e709. doi:10.7717/peerj-cs.709
PMID:34616889

Lutz, O., Chen, H., Fereidooni, H., Sendner, C., Dmitrienko, A., Sadeghi, A. R., & Koushanfar, F. (2021).
ESCORT: ethereum smart contracts vulnerability detection using deep neural network and transfer learning.
arXiv preprint arXiv:2103.12607. https://arxiv.org/abs/2103.12607

Mehar, M. I., Shier, C. L., Giambattista, A., Gong, E., Fletcher, G., Sanayhie, R., Kim, H. M., & Laskowski, M.
(2019). Understanding a revolutionary and flawed grand experiment in blockchain: The DAO attack. Journal
of Cases on Information Technology, 21(1), 19–32. doi:10.4018/JCIT.2019010102

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781. https://arxiv.org/abs/1301.3781

http://dx.doi.org/10.1145/3457337.3457841
http://dx.doi.org/10.1155/2021/5089236
http://dx.doi.org/10.1109/Blockchain50366.2020.00048
http://dx.doi.org/10.1007/s11432-019-2790-1
http://dx.doi.org/10.1007/s11432-019-2790-1
http://dx.doi.org/10.1145/3395363.3404366
http://dx.doi.org/10.1016/j.frl.2018.09.001
http://dx.doi.org/10.1145/3238147.3238177
http://dx.doi.org/10.1016/j.techfore.2021.120641
http://dx.doi.org/10.1007/s00500-021-06496-5
http://www.ncbi.nlm.nih.gov/pubmed/34840525
http://dx.doi.org/10.1109/IOTSMS48152.2019.8939256
http://dx.doi.org/10.7717/peerj-cs.709
http://www.ncbi.nlm.nih.gov/pubmed/34616889
https://arxiv.org/abs/2103.12607
http://dx.doi.org/10.4018/JCIT.2019010102
https://arxiv.org/abs/1301.3781

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

22

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review, 21260.

Park, Y.-H., Kim, Y., Lee, S.-O., & Ko, K. (2021). Secure outsourced blockchain-based medical data sharing
system using proxy re-encryption. Applied Sciences (Basel, Switzerland), 11(20), 9422. doi:10.3390/
app11209422

Pournader, M., Shi, Y., Seuring, S., & Koh, S. L. (2020). Blockchain applications in supply chains, transport and
logistics: A systematic review of the literature. International Journal of Production Research, 58(7), 2063–2081.
doi:10.1080/00207543.2019.1650976

Praitheeshan, P., Pan, L., Yu, J., Liu, J., & Doss, R. (2019). Security analysis methods on ethereum smart contract
vulnerabilities: a survey. arXiv preprint arXiv:1908.08605. https://arxiv.org/abs/1908.08605

Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E., & Alexandrov, Y. (2018).
Smartcheck: Static analysis of ethereum smart contracts [Paper presentation]. 1st International Workshop on
Emerging Trends in Software Engineering for Blockchain. doi:10.1145/3194113.3194115

Torres, C. F., Iannillo, A. K., Gervais, A., & State, R. (2021). Confuzzius: A data dependency-aware hybrid
fuzzer for smart contracts [Paper presentation]. 2021 IEEE European Symposium on Security and Privacy
(EuroS&P).

Torres, C. F., Schütte, J., & State, R. (2018). Osiris: Hunting for integer bugs in ethereum smart contracts [Paper
presentation]. 34th Annual Computer Security Applications Conference.

Wang, W., Song, J., Xu, G., Li, Y., Wang, H., & Su, C. (2020). Contractward: Automated vulnerability detection
models for ethereum smart contracts. IEEE Transactions on Network Science and Engineering, 8(2), 1133–1144.
doi:10.1109/TNSE.2020.2968505

Wang, Z., Wang, T., Hu, H., Gong, J., Ren, X., & Xiao, Q. (2020). Blockchain-based framework for improving
supply chain traceability and information sharing in precast construction. Automation in Construction, 111,
103063. doi:10.1016/j.autcon.2019.103063

Weiss, K., & Schütte, J. (2019, Sep. 23-27). Annotary: A concolic execution system for developing secure smart
contracts [Paper presentation]. Computer Security–ESORICS 2019: 24th European Symposium on Research in
Computer Security, Luxembourg.

Wüstholz, V., & Christakis, M. (2020). Harvey: A greybox fuzzer for smart contracts [Paper presentation]. 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. doi:10.1145/3368089.3417064

Zhuang, Y., Liu, Z., Qian, P., Liu, Q., Wang, X., & He, Q. (2020, July). Smart Contract Vulnerability Detection
using Graph Neural Network. IJCAI, 3283-3290. doi:10.24963/ijcai.2020/454

http://dx.doi.org/10.3390/app11209422
http://dx.doi.org/10.3390/app11209422
http://dx.doi.org/10.1080/00207543.2019.1650976
https://arxiv.org/abs/1908.08605
http://dx.doi.org/10.1145/3194113.3194115
http://dx.doi.org/10.1109/TNSE.2020.2968505
http://dx.doi.org/10.1016/j.autcon.2019.103063
http://dx.doi.org/10.1145/3368089.3417064
http://dx.doi.org/10.24963/ijcai.2020/454

International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

23

Zhigang Xu was born in 1977. He holds a PhD and is a professor (Chutian Scholar) and Master Tutor. His main
research interests include blockchain, distributed system security and big data governance.

Xingxing Chen was born in 1998. He is a postgraduate and his main research interests include vulnerability
detection of blockchain smart contract and knowledge graph.

Xinhua Dong was born in 1976. He earned a PhD and is a lecturer (Master Tutor). He is a member of the China
Computer Federation. His main research interests include big data management, cloud computing, information
retrieval and distributed system security.

Hongmu Han was born in 1980. He holds a PhD and is a lecturer (Master Tutor). He is a member of the China
Computer Federation. His main research interests include blockchain, information security and mobile security.

Zhongzhen Yan was born in 1980. She earned a PhD and is a lecturer (Master Tutor). Her main research interests
include information integration, data mining, artificial intelligence and image recognition.

Kangze Ye was born in 1998. He is a postgraduate and his main research interests include blockchain network
propagation and data governance.

Chaojun Li was born in 1997. He is a postgraduate and his main research interests include vulnerability detection
of blockchain smart contract.

Zhiqiang Zheng was born in 1972. He is a Master and his main research interest is information security.

Haitao Wang was born in 1981. He is a Master and his main research interest is information security.

Jiaxi Zhang was born in 1982. He is a bachelor and his main research interest is information security.

