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ABSTRACT

Efficient and convenient vulnerability detection for smart contracts is a key issue in the field of 
smart contracts. The earlier vulnerability detection for smart contracts mainly relies on static 
symbol analysis, which has high accuracy but low efficiency and is prone to path explosion. In this 
paper, the authors propose a static method for vulnerability detection based on deep learning. It first 
disassembles Ethereum smart contracts into opcode sequences and then converts the vulnerability 
detection problem into a natural language text classification problem. The word vector method is 
employed to map each opcode to a uniform vector space, and the opcode sequence matrix is trained 
by the TextCNN method to detect vulnerabilities. Furthermore, a code obfuscation method is given 
to enhance and balance the dataset, while three different opcode sequence generation methods are 
proposed to construct features. The experimental results verify that the average prediction accuracy 
of each smart contract exceeds 96%, and the average detection time is less than 0.1 s.
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INTRODUCTION

Blockchain is a chained storage structure (Li et al., 2022) that guarantees the security of the system 
through cryptography and other technologies, the consistency of transactions through consensus 
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algorithms (Fu et al., 2021), and the distributed storage of data through P2P networks. Due to its 
advantages in decentralization and traceability and immutability, blockchain technology has been 
widely used in industries such as information sharing (Park et al., 2021), product traceability (Wang 
et al., 2020), copyright protection (Liu et al., 2021), supply chain (Pournader et al., 2020), and 
finance (Kowalski et al., 2021). Currently, the development of blockchain is divided into three stages: 
blockchain 1.0, blockchain 2.0, and blockchain 3.0. Blockchain 1.0 is featured by programmable 
currency, represented by bitcoin Nakamoto (2008), with which, in 2017, saw its value soar by 1,900% 
(Holub & Johnson, 2019), to an extent where the price of a single Bitcoin reached $60,000 by 2021. 
Blockchain 2.0 is characterized by a programmable blockchain represented by Ethereum, of which the 
core is smart contracts. Ethereum is an open source public blockchain platform with smart contracts, 
and most smart contracts across the network currently run on the Ethereum platform. Blockchain 
3.0 is a programmable community that goes beyond cryptocurrency and finance and is dedicated 
to applying blockchain to all aspects of life, providing decentralized solutions for various industries 
and moving toward the era of the smart Internet of Things. At present, the research on blockchain 
technology is in the intermediate stage from the blockchain 2.0 era to the blockchain 3.0 era. The 
research in this paper focuses on Ethereum smart contracts.

As an application platform for blockchain technology, Ethereum provides the largest execution 
platform for the operation of smart contracts. As a blockchain-based platform, Ethereum not only 
has basic cryptocurrency functions but also provides anonymous voting, transaction storage, product 
traceability, and other services. An Ethereum smart contract is an application running on an Ethereum 
virtual machine (EVM) in the form of EVM bytecode. Due to the open and transparent nature of 
Ethereum’s own mechanisms, however, the EVM bytecode of a smart contract deployed on Ethereum 
can be accessed and analyzed by anyone. Although smart contracts are provided with a safe and secure 
execution environment by the blockchain, they may still face considerable security vulnerabilities in 
the development process due to the design mechanism of the Ethereum virtual machine, the problems 
carried by the characteristics of the blockchain, and the uneven code level of smart contract developers. 
Damage could be caused if an attacker finds a vulnerability by analyzing the EVM bytecode and 
launches an attack against the vulnerable smart contract, especially if the smart contract is used to 
handling asset-related business. The damage would be incalculable not only in terms of loss of assets 
but also in terms of challenge to the credibility and security of the platform. For example, in June 
2016, the DAO incident occurred (Mehar et al., 2019), which directly led to a hard fall of Ethereum, 
where attackers exploited vulnerabilities in the DAO smart contract and stole 30% of the DAO’s 
Ether in six hours, amounting to 12 million coins, with a market value of approximately $60 million. 
In July 2017, the Ethereum wallet parity was exposed to a major security flaw (Praitheeshan et al., 
2019) in its multi-signature contract wallet.sol, which led to the theft of 150,000 Ether. Since smart 
contracts deployed on the blockchain cannot be modified, it is critical to verify smart contracts for 
crucial security vulnerabilities before deploying them to ensure that they are as secure as possible.

Figure 1 shows an example of a smart contract written in the Solidity language. The smart 
contract shown in Figure 1 has an integer overflow vulnerability. In lines 5 and 6, if a variable of 
type uint256 reaches its maximum value (2^256-1), the outcome will turn into 0 when a value greater 
than 0 is added. This is an integer overflow vulnerability. In lines 10 and 11, if a variable of type 
uint256 reaches its minimum value of 0, and a value greater than 0 is subtracted, its value will become 
2^256-1 (the maximum value of type uint256). The current mainstream vulnerability detection tools, 
such as Oyente and Mythril, are inefficient and cannot detect new vulnerabilities in a timely manner.

This paper proposes a tool called Con2Vec (Contract to Vector), a static analysis tool based on 
machine learning, which learns smart contract code features through EVM bytecode and opcodes to 
detect smart contract vulnerabilities. It has a high throughput and accuracy rate and is user-friendly 
for those without any expertise concerning smart contract vulnerabilities. This paper builds Con2Vec 
in four parts starting with data cleaning and data augmentation to balance and augment the public 
dataset. Then the smart contract source code is compiled and decompiled into opcodes. The extracted 
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opcodes are then mapped to vector space by training the SkipGram model so that each form of opcode 
has a unique vector representation. Finally, the TextCNN model is used to detect vulnerabilities in 
the contracts.

This paper contributes as follows:

1) 	 This paper proposes a method for code obfuscation of Ethereum smart contracts, which enhances 
the dataset and resists the interference of redundant codes during detection by inserting random 
useless codes into the smart contracts. Experiments show that the method can effectively generate 
enough obfuscated samples to enhance the detection model’s resistance to redundant codes.

2) 	 Through in-depth analysis and experiments on opcodes, three opcode sequence generation 
methods are proposed, and the samples generated by the three methods are trained and detected. 
It is found that the detection effect based on Opcode sequence is better than the other two. The 
larger the sample size is, the better the model can extract features based on Opcode sequence, 
and the higher the detection accuracy is.

3) 	 This paper provides a vulnerability detection method where Con2Vec maps the codes to a unified 
vector space by porting the SkipGram model of natural language processing from the natural 
language level to the smart contract code level. By embedding the smart contract codes through 
a neural network, the model is able to extract information about the hidden features between the 
codes, as each code has its own code semantics. By learning and training the semantic features 
of the smart contract code, the model can predict whether vulnerabilities exist and what kinds 
of vulnerabilities exist in the input smart contract. The experiments show that the vulnerability 
detection rate of this method is significantly higher than that of the method in SoliAudit, and 
the average prediction accuracy of the system is over 96%.

The remainder of this paper is organized as follows: related work is summarized in the following 
section. Machine learning, natural language processing, Ethereum smart contracts and their associated 
vulnerabilities are introduced, followed by the description of the data imbalance problems and 
models. Experiments and data are then presented. The results are provided, followed by a discussion 
and final conclusion.

RELATED WORK

As the Ethereum blockchain is used in different areas, the security of Ethereum smart contracts is 
receiving increasing public attention. Many security analysis tools for detecting vulnerabilities in 

Figure 1. 
Example of Smart Contract With IntegerFlow
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Ethereum smart contracts have emerged in the industry. Vulnerability detection for smart contracts 
is generally divided into two types: static detection (Durieux et al., 2020; Tikhomirov et al., 2018; 
W. Wang et al., 2020) and dynamic detection (Grieco et al., 2020; Jiang et al., 2018; Wüstholz & 
Christakis, 2020). Static detection refers to the analysis of smart contract source code or bytecode. 
First, the malicious code is abstracted and its features are extracted. Then, the analysis is conducted 
through matching or similarity calculation methods. This method enjoys a high detection efficiency 
and a low omission rate, but it also leads to a high false alarm rate due to the variability of functions 
and features in smart contracts. Dynamic detection means that the smart contract code takes a pre 
run on the EVM, and the vulnerability is detected during the run. The method has high detection 
accuracy, but as it has to run through an EVM, its detection efficiency is low. At the same time, 
generating efficient test cases is difficult.

SmartCheck (Tikhomirov et al., 2018) is a vulnerability mining tool based on static detection 
for Ethereum smart contracts, mainly used to detect reentrancy, timestamp dependency, denial of 
service, and money locking vulnerabilities in smart contracts. First, the Solidity source code is 
analyzed syntactically and lexically. Then, the results of the analyzed syntactic tree are abstracted in 
the form of XML. Finally, the smart contract vulnerability is detected by XPath (Chen et al., 2021). 
ContractWard (W. Wang et al., 2020) is a vulnerability detection model based on machine learning. 
This model adopts the N-Gram method to model Ethereum smart contract opcodes and trains and 
predicts vulnerability samples through the XGBoost method for detecting six types of vulnerabilities 
including integer overflow, integer underflow, TOD, CallDepth, timestamp dependency, and 
reentrancy. Zhuang et al. (2020) proposed a smart contract vulnerability detection method based on 
graph neural networks. The method represented the syntax and semantic structure of smart contracts 
by constructing a contract graph, achieving good experimental results. ESCORT (Lutz et al., 2021) 
is an Ethereum smart contract vulnerability detection framework based on deep neural networks 
(DNN). This method applies transfer learning to smart contract vulnerability detection and supports 
the detection of unknown security vulnerabilities. Eth2Vec (Ashizawa et al., 2021) analyzes the 
bytecode by a specific extractor and uses a neural network to train the bytecode. The method detects 
smart contract vulnerabilities by comparing the code similarity between the target EVM bytecode 
and the trained EVM bytecode.

ContractFuzzer (Jiang et al., 2018) is a fuzzing framework for detecting vulnerabilities in smart 
contracts on the Ethereum platform. It generates inputs that fit the smart contract invocation syntax 
by analyzing the ABI interface of the smart contract and detects smart contract vulnerabilities by 
defining different test cases for distinct types of vulnerabilities. The tool can detect seven types of 
vulnerabilities including insufficient gas, exception passing, timestamp dependency, code injection, 
reentrancy, asset freezing, and transaction sequence dependency. Dynamit (Eshghie et al., 2021) is a 
dynamic monitoring framework based on machine learning. The method relies only on the transaction 
metadata and balance data of the blockchain system, extracts features from the transactions, and then 
analyzes the features through machine learning methods to detect reentrancy vulnerabilities of smart 
contracts. HFContractFuzzer (Ding et al., 2021) is a Hyperledger Fabric smart contract vulnerability 
detection tool based on fuzzy detection. The method combines the Golang fuzzing tool named go-
fuzz with fabric smart contracts and detects three types of vulnerabilities including type conversion 
errors, logic loopholes, and integer overflow, verifying the feasibility of applying fuzzy techniques 
to HF smart contract vulnerability detection. Torres et al. (2021) proposed the first hybrid fuzzer for 
smart contracts, ConFuzzius, which uses evolutionary fuzzing to execute the shallow part of a smart 
contract and generates inputs that satisfy complex conditions by constraint solving, thus preventing 
evolutionary fuzzing from exploring the deep part and reducing low code coverage and false positives.

There are still problems that need to be solved for the vulnerability detection of Ethereum 
smart contracts. First, the current theoretical analysis for smart contract vulnerability detection is 
predominant, and most of the studies do not provide landing solutions that can be learned from. 
Second, most of the existing static detection methods extract and model features at the code level, 
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lacking feature analysis of the details between codes, which wastes the detailed information implied 
in the code files and reduces the efficiency of vulnerability detection and vulnerability coverage.

Due to the low disclosure rate of existing Ethereum smart contract code, which is mostly 
compiled EVM bytecode, the aim is to develop a static detection tool to analyze the source code or 
EVM bytecode directly and then carry out feature extraction and modeling mapping on the results 
obtained from the analysis to detect various vulnerabilities in smart contracts by analyzing EVM 
bytecode files. With this tool, only the source code or EVM bytecode of the smart contract is provided 
as input to the model, and the vulnerabilities are identified without executing the smart contract. 
Static detection is therefore often used as the first line of defense to avoid deploying a smart contract 
containing vulnerabilities on the blockchain. However, the accuracy of traditional static analysis 
tools for vulnerability detection is low because most of them are rule-based or based on code-level 
feature modeling, lacking feature extraction for detailed aspects of the code. Some static analysis 
approaches are executed by extracting the symbols of the control flow graph from the target code 
(Chinen et al., 2020; Torres et al., 2018; Weiss & Schütte, 2019), the generation of which requires 
traversing all states and is time-consuming.

To address the inherent shortcomings of traditional static analysis, many scholars have used 
machine learning methods to learn the features of the code as a way to model and infer whether 
the smart contract is vulnerable. The methods based on traditional machine learning, however, 
cannot extract the hidden features between smart contract codes, whereas the variability between 
code structures can seriously affect the analysis results. For instance, two methods with the same 
semantics but different code structures may turn out different results, and developers may deliberately 
add redundant code to evade detection by the vulnerability software, impacting the detection model. 
The existing smart contract vulnerability detection tools, based on static analysis, do not identify 
the hidden information between smart contract codes and are not robust enough to analyze different 
vulnerabilities. The Con2Vec vulnerability detection model, proposed in this paper, provides faster 
detection and higher scalability than the above tools. For this model, no prior knowledge of smart 
contract vulnerability mining is needed, and only a sufficient number of vulnerability samples need 
to be put into the model for training to obtain the detection model. If new vulnerability samples are 
subsequently obtained, the model can be enhanced by adding the corresponding samples directly to 
the model for incremental training.

BACKGROUND

This section provides a brief introduction to Ethereum smart contracts and their associated 
vulnerabilities, as well as concepts related to machine learning and natural language processing for 
detection schemes.

Ethereum Smart Contracts and Their Associated Vulnerabilities
Ethereum smart contracts run on the Ethereum virtual machine. There are two types of accounts 
in Ethereum: an externally owned account and a contract account. The externally owned accounts 
are controlled by keys, while the contract accounts are controlled by smart contract codes. Anyone 
can develop smart contracts on the Ethereum blockchain, but only contract accounts can own these 
smart contract codes. However, the externally owned account has a key through which the externally 
owned account can access the corresponding smart contracts. The contract account cannot start and 
run its own smart contract by itself and must initiate transactions to the contract account through 
an externally owned account, thus initiating the execution of the smart contract code in the contract 
account. An Ethereum smart contract is an immutable computer program deployed on the Ethereum 
blockchain that defines rules to be followed by all peers.

Smart contracts have three properties: immutability, transparency, and certainty. Immutability 
indicates that smart contract codes can be considered trustworthy because they cannot be modified 
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and removed once deployed to the blockchain. Transparency indicates that anyone with access to the 
blockchain can read the smart contracts on the blockchain. Certainty indicates that the same smart 
contract code will produce the same result regardless of who invokes it. Once a smart contract has 
been deployed to the blockchain, the contract will be executed automatically and will be triggered 
to handle the relevant functions when the conditions in the contract are met. Smart contracts allow 
anonymous participants to enter into binding agreements where each participant has full knowledge 
of the transaction, and value can be transferred between accounts or placed in a third party escrow 
within the smart contract.

To incentivize the execution of contract functions, Ethereum relies on gas paid in Ether to drive 
the movement of smart contracts. The amount of gas spent on a transaction is related to the complexity 
of the computation. According to the Ethereum protocol, a fee is charged for each computational step 
performed in a contract or transaction, thus preventing malicious attacks and abuse on the Ethereum 
network. Every transaction must include a gas limit as well as a fee willing to pay for gas. Miners can 
choose whether to pack the transaction and charge a fee. The transaction is executed if the total amount 
of gas in the computation step (gas used, including the original message and any sub messages that 
may be triggered) is less than or equal to the gas limit. All changes are rolled back if the total amount 
of gas exceeds the gas limit, unless the transaction is still valid and the miner accepts the cost. Any 
excess gas not used in the execution of the transaction is returned to the transaction initiator in Ether 
without fear of overspending, as only the cost of the consumed gas is paid during execution, meaning 
that it is useful and safe to send transactions above the estimated value of the gas limit.

Ethereum smart contracts are usually written in high-level languages such as Solidity, and the 
smart contract source code is compiled into a bytecode file in an EVM, which is a global single 
instance with unique results. It runs like a single instance computer between all peer nodes in the 
blockchain network, with each peer running a local copy of the EVM, thus verifying that the contract 
functions execution, and the transactions processed as well as the smart contracts recorded on the 
blockchain. The Ethereum blockchain will suffer damage if an Ethereum smart contract is vulnerable. 
In this paper, several contract vulnerabilities are detected. Thirteen contract vulnerabilities, and their 
corresponding descriptions are shown in Table 1.

Machine Learning
Machine learning is a method that empowers a machine to learn the underlying characteristics of 
data and perform functions that cannot be done by direct programming. In a practical sense, machine 
learning is a method of training a model from data, making the model possess the underlying patterns 
in the data, and finally predicting the untrained data from the trained model. Machine learning is 
divided into two phases: training and prediction. The training phase takes the data as input to learn 
the features between the data and optimizes the internal parameters of the model using the objective 
function as a benchmark to achieve the desired loss target. The prediction phase takes data that have 
not been involved in training as input and predicts the input using the model and its parameters learned 
in the training phase. There are two types of machine learning. One type is supervised learning, which 
involves the training of existing training samples to obtain an optimal model and using this model to 
map all the inputs to the corresponding outputs to complete the task of prediction and classification. 
The data in supervised learning are labeled in advance, and its training samples contain both features 
and label information. Common supervised learning algorithms are linear regression algorithms, 
BP neural network algorithms, decision trees, regression trees, logistic regression, support vector 
machines, KNN, and others. The other type of learning is unsupervised learning, where the training 
samples are unlabeled, and the goal is to reveal commonalities between data and intrinsic patterns by 
learning from unlabeled training samples. The most popular machine learning method in recent years 
is deep learning, which is based on neural networks and uses a large number of operations to extract 
features between data in a black-box fashion to continuously approximate an optimized objective 
function. The aim in this paper is to develop a machine learning model that learns vulnerabilities in 
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smart contracts so that it can be used to detect vulnerabilities in untrained smart contracts, making 
its detection universal and robust.

Natural Language Processing
Natural language processing refers to utilizing computers to process human language so that computers 
can read and understand human language. Natural language processing is used in machine translation, 
speech recognition, spam filtering, information extraction, text sentiment analysis, automatic question 
and answer, and personalized recommendation. Words are the smallest units of language processing, 
and sentences are processed by stitching together the smallest units. From a syntactic or semantic point 
of view, phrases can also be used as the smallest unit of language processing. For a specific sentence, 
both words and phrases may be the smallest units for comprehension. Sometimes language processing 
is also performed in phrases because words in phrases lose their meaning once they are separated. 
For natural language processing, a simple strong splitting of sentences does not help natural language 
processing because words and phrases in different contexts have their own specific meanings. The 
difference between natural language and code is that code has syntax and structure, which need to 
be considered when processing code using natural language processing methods.

DESIGN OF CON2VEC

Con2Vec consists of the ByteCodeToVec model and the BugDetection module. In this section, the 
construction of the ByteCodeToVec model and the BugDetection module is described, and the architecture 
is given in Figure 2. The entire flow of the vulnerability detection methodology is presented in Figure 3.

Design Concept
The ByteCodeToVec module is composed of two parts: the OpcodeExtractor module and the 
Opcode2Vec module. OpcodeExtractor converts the Ethereum bytecode into an opcode sequence 
and uses it as input to the Opcode2Vec module. The rules of conversion are based on the bytecode to 

Table 1. 
Thirteen Types of Security Vulnerabilities in Smart Contracts

Types of Vulnerabilities Descriptions

Underflow Integer underflow

Overflow Integer overflow

CallDepth Use send or call cmd, but do not check the cmd result

TOD State will depend on the txorder

TimeDep State will depend on the timestamp

Reentrancy Contract contains reentrancy function

AssertFail Contract contains the condition of assert fail

TxOrigin Contract use tx.origin

CheckEffects Contract checks if the state has been updated before the 
transaction or not

InlineAssembly Contract uses assembly code

BlockTimestamp Contract uses block timestamp

LowLevelCalls Contract uses send or call not transfer

SelfDestruct Contract uses self destruct
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Figure 2. 
Overview of Con2Vec

Figure 3. 
The Flowchart of Vulnerability Detection
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opcode correspondence rule listed in the Ethereum Yellow Book. The Opcode2Vec module mainly 
consists of the extended SkipGram model (Mikolov et al., 2013), which maps opcodes to vectors. The 
Opcode2Vec module does not vectorize natural language, as is the case with word embedding in natural 
language processing, but vectorizes code, so ByteCodeToVec can implicitly extract smart contract 
features. Con2Vec uses the code embedding information from the trained neural network as the basis 
for the vulnerability detection model to learn the code embedding features to detect vulnerabilities. 
When a smart contract vulnerability needs to be detected, the model simply learns the features of the 
smart contract containing the vulnerability and then feeds the opcode sequence of the smart contract 
to be detected into the trained detection model to output the corresponding vulnerability. To clarify, 
Con2Vec can detect vulnerabilities in smart contracts even if the vulnerability characteristics of the 
specific smart contract are not known. Con2Vec takes the EVM bytecode or contract source code to 
be detected as input and returns a list of detected smart contract vulnerabilities.

The BugDetection module mainly consists of TextCNN (Chen, 2015). When the ByteCodeToVec 
module is trained, it generates a vector representation of Ethereum smart contract opcodes. In the 
BugDetection module, each data input to the model is an opcode sequence. Each opcode sequence is 
converted from the smart contract source code and represented as a matrix of smart contract opcodes 
stitched together in rows of opcode vectors.

Building Blocks of ByteCodeToVec
The ByteCodeToVec model consists of the OpcodeExtractor module and the Opcode2Vec module.

OpcodeExtractor Module
The OpcodeExtractor module is a module that provides input to the Opcode2Vec module. Specifically, 
the ByteToOpcode module parses Ethereum bytecodes to generate opcodes according to established 
rules (Table 2 lists some of the rules for the mapping table of bytecodes to opcodes). According to the 
corresponding generation rules, the OpcodeExtractor module maps the input bytecode string in groups 
of two characters to obtain the corresponding opcode. It is important to note that the PUSH instruction 
set has its own set of rules. It consists of 32 instructions from PUSH1 to PUSH32, with each PUSH 
instruction followed by a number representing an additional character to be read. When the module reads 
a PUSH instruction, it automatically recognizes the number following the PUSH instruction, reads an 
additional group of characters of that size according to that value, and then uses it as the parameter value 
for the PUSH instruction. For example, when the module reads a certain group of input characters whose 
corresponding operation code is PUSH4 in accordance with the relational mapping table, the module 
will read 4 additional groups of characters (i.e., 8 characters, 2 characters for 1 group) and place these 4 
groups of characters after the PUSH4 instruction at the same time. For other instructions, the module will 
convert them to opcodes as normal according to the relational mapping table. The result of converting 
the EVM bytecodes 0x6d4946c0e9f43f4dee607b0ef1fa1c3318585733ff to opcode is shown in Table 3.

This paper proposes three different methods of generating opcode sequences by studying the 
above conversion rules for bytecodes and opcodes. The first method is to remove all the operands and 
keep only the opcode and to concatenate all the opcodes to form an opcode sequence. The second 
method is to retain both opcodes and operands and to unify the operands after the opcode as NUM. 
For example, PUSH1 49 becomes PUSH1 NUM, PUSH2 49 46 becomes PUSH2 NUM, and so on. 
The third method also retains both the opcode and the operand, but it differs from the second method 
in that the opcode followed by the operand is unified into a single field. For example, PUSH1 49 is 
unified as PUSH1 NUM, PUSH2 49 46 is unified as PUSH2 NUM, and so on. Three opcode sequence 
generation methods are shown in Table 4.

Opcode2Vec Module
The Opcode2Vec module can vectorize smart contract code. It is a SkipGram model that obtains an 
opcode vector by training a sequence of opcodes. The training process is shown in Figure 4.
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The model allows a vectorized representation of the code. Specifically, if given a string of smart 
contract bytecodes, the OpcodeExtractor module processes the corresponding sequence of opcodes, 
the SkipGram model slides over the sequence of opcodes with a fixed window size, and the central 
opcode predicts the surrounding opcodes to generate a number of tasks. The sliding window starts 
at the beginning of the opcode sequence and moves forward by one opcode size at each step, which 

Table 2. 
Relationship Mapping Table Between Bytecode and Opcode

Bytecode Opcode

0x00 STOP

0x01 ADD

0x02 MUL

0x03 SUB

0x04 DIV

0x05 SDIV

0x06 MOD

0x07 SMOD

0x08 ADDMOD

0x09 MULMOD

Table 3. 
Conversion Results of Smart Contract Bytecodes and Opcode

Bytecodes Opcode And Operand

6d 49 46 c0 e9 f4 3f 4d ee 60 7b 0e f1 fa 1c PUSH14 49 46 c0 e9 f4 3f 4d ee 60 7b 0e f1 fa 1c

33 CALLER

18 XOR

58 PC

57 JUMPI

33 CALLER

ff SELFDESTRUCT

Table 4. 
Three Methods of Generating Opcode Sequence

Method of Generating 
Opcode Sequences

Bytecodes Opcode Sequence

Method 1 (Based on 
Opcode)

0x6d4946c0e9f43f4dee607b0ef1fa1c3318585733ff PUSH14 CALLER XOR PC JUMPI CALLER 
SELFDESTRUCT

Method 2 (Based on 
OpcodeAndNum)

0x6d4946c0e9f43f4dee607b0ef1fa1c3318585733ff PUSH14 NUM CALLER XOR PC JUMPI CALLER 
SELFDESTRUCT

Method 3 (Based on 
OpcodeNum)

0x6d4946c0e9f43f4dee607b0ef1fa1c3318585733ff PUSH14NUM CALLER XOR PC JUMPI CALLER 
SELFDESTRUCT
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is similar to performing a multiclass inference task where each input yields a different output, and 
the weight matrix passed between each input to the output is different. This enables the central opcode 
matrix from the training process to be used as the final code vector matrix. For sliding windows, the 
range covered by each slide is the range in the opcode sequence, (i.e., all the predicted opcodes are 
in the opcode sequence). For example, if the sliding window size is 3 (3 before and 3 after the center 
opcode) and the current center opcode is the first opcode in the opcode sequence, then the window 
will only cover the three opcodes to the right of the center opcode, but not the three to the left. Thus, 
the left three are beyond the opcode sequence. In terms of model details, the model is trained by a 
neural network, and the target words are inferred from the vocabulary by the SoftMax function. The 
SkipGram architecture consists of a hidden layer. For example, given a vector of inputs (typically a 
one-hot vector), the model is trained to obtain the corresponding output, and the output layer is 
computed based on the SoftMax function to produce the classification result. Assuming a set of 
opcode sequences w w w wT1 2 3

, , ,...,



 , the objective function of the model is:
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T

p w w
t j t
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SkipGram Model
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Building Blocks of BugDetection
For the ByteCodeToVec model, the training objective is to optimize the opcode vector belonging to 
each smart contract, where opcodes with similar meanings are mapped to similar locations in the vector 
space. The opcode vectors obtained by this model can be invoked as features of the vector representation 
for contract-level analysis. The algorithm is unsupervised, so the process does not need to label each 
contract in advance. The features obtained from this training can be utilized in BugDetection, a module 
that detects smart contract vulnerabilities through model training. Specifically, the main body of the 
module consists of a TextCNN, with the input of the model being the opcode matrix and the output 
being the presence or absence of vulnerabilities. The scheme generally uses the CNN-multichannel 
method. The embedding layer is initialized by the pretrained SkipGram vector, and the opcodes that 
do not appear in the pretrained word vector, due to their version, are randomly initialized. From there, 
the embedding layer is fixed, and the whole network is fine-tuned to obtain the fine-tuned word vector. 
Then, together with the pretrained SkipGram vector, multiple channels are formed simultaneously to 
learn the features of both embeddings during the model training process. In the convolutional pooling 
layer, convolution is performed only for the vertical direction of the opcode sequence, (i.e., the width 
of the convolutional kernel is fixed to the dimension of the opcode vector). Convolutional kernels of 
different heights can be used for convolution, resulting in richer feature representations and indirectly 
more N-gram features. The pooling layer can choose 1-max pooling to extract the maximum value in 
the feature map. By choosing the maximum value of each feature map, the most important features in 
each feature map can be captured. Each convolutional kernel will obtain an important feature value. 
1-max pooling is used for all convolutional kernels and then cascaded to obtain the final feature vector, 
which is fed into the SoftMax layer for binary classification to obtain the vulnerability detection model. 
The TextCNN model for vulnerability detection is illustrated in Figure 5.

Figure 5. 
Vulnerability Detection Model
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Multilabel Classification Problems
For a labeled smart contract dataset, a smart contract may have multiple vulnerabilities, meaning that 
each contract may have multiple labels, each label corresponding to one vulnerability. The detection 
tool in this paper provides detection of the following 13 smart contract vulnerabilities: underflow 
vulnerability (marked as C1), overflow vulnerability (marked as C2), CallDepth vulnerability (marked 
as C3), TOD vulnerability (marked as C4), TimeDep vulnerability (marked as C5), reentrancy 
vulnerability (marked as C6), AssertFail vulnerability (marked as C7), TxOrigin vulnerability (marked 
as C8), CheckEffects vulnerability (marked as C9), InlineAssembly vulnerability (marked as C10), 
BlockTimeStamp vulnerability (marked as C11), LowLevelCalls vulnerability (marked as C12), and 
SelfDestruct vulnerabilities (marked as C13). In theory, this research method is applicable to the 
detection of various smart contract vulnerabilities, provided that a considerable number of samples 
of the vulnerable smart contract dataset are available for training. Examples of vulnerability labels 
are shown in Table 5. The label [1,0,0,0,0,0,0,0,0,0,0,0,1] for the smart contract sample X1 indicates 
that the contract has both underflow vulnerability and SelfDestruct vulnerability, free of the other 11 
additional vulnerabilities. To address the multilabel classification problem in vulnerability mining, 
this paper uses a one-to-rest (one vs rest) strategy to classify the dataset into two categories for each 
label, namely, the presence of the vulnerability and the absence of the vulnerability, thus converting 
the multilabel classification problem into a multiple binary classification problem.

Data Imbalance Problems
The training effect can be afflicted when there is a disparity between the proportion of positive and 
negative classes of vulnerabilities for smart contract datasets. In a naturally distributed Ethereum 
smart contract, the proportion of vulnerabilities that occur is expected to be low. Assuming a total of 
100 training data points, and 99 of them do not contain reentrancy vulnerabilities, it is clear that if 
these data are trained, the trained model has a 99% accuracy rate of predicting whether a particular 
smart contract is in the negative class (i.e., there are almost no reentrancy vulnerabilities), but such 
a model often has no value. Therefore, to address the data imbalance problem in the smart contract 
dataset, this paper proposes a code obfuscation method for smart contracts to address the smart 
contract dataset imbalance problem, and to improve the redundant code interference resistance of this 
detection model. The idea of the method is to prepare a number of redundant codes for obfuscation 
in advance and then randomly insert the redundant codes into the smart contracts according to the 
rules before compiling the smart contracts in the dataset to form a new smart contract with redundant 
codes. Specifically, the redundant code can include either simple computation of invalid variables 
(i.e., variables that cannot be defined in the same way as the original smart contract code and are 
limited to defining some useless variables for self-operation) or invalid functions that do not affect 
the functionality of the smart contract system. The specific code obfuscation method is shown in 
Algorithm 1. Line 1 indicates that the location of all right brackets in the smart contract source 
code is found and marked, returning an array of location markers, which stores the location of the 
right brackets in the smart contract source code. Line 2 indicates the number of right brackets for 
all functions in the source code of the smart contract. Line 3 indicates that the number of redundant 

Table 5. 
Examples of a Vulnerability Label

Contract Contract Bytecodes Label

Contract X1 0x6d4946c0e9f43f4dee607b0ef1fa1c3318585733ff [1,0,0,0,0,0,0,0,0,0,0,0,1]

Contract X2 0x608060405234801561001057600080fd [1,0,0,0,0,1,0,0,0,0,0,0,0]

Contract X3 0x6060604052361561006c5760e060020a60003504 [1,0,1,0,0,1,1,1,1,1,1,0,1]
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codes to be embedded is calculated. Line 4 defines an array that receives the redundant codes (i.e., 
where the redundant code in the source code is inserted), with an array size of countRandomPosition. 
Line 5, line 6, line 7, and line 8 indicate the random selection of countRandomPosition right bracket 
positions to insert the redundant code. Line 9 indicates the random shuffle of the redundant code 
to be inserted. Line 10 indicates that the prepared redundant code is inserted one by one in an array 
order into the next line of the randomly selected source code corresponding to the right bracket 
position. Line 11 returns the smart contract with the redundant code embedded. With this algorithm, 
a large number of nonredundant smart contracts can be generated, thus addressing the issue of data 
imbalance. Moreover, the detection model is also resistant to regular code redundancy, as a large 
amount of redundant code is randomly inserted into the normal code.
Algorithm 1: 
Algorithm 1: RandomInsertion
Input: contractFile, redundantcode[]
Output: contractFile
 1: rightBracketPosition[]=FindFuncRightBracket(contractFile)  
 2: count=len(rightBracketPosition) 
 3: countRandomPosition=len(reddundantCode) 
 4: Define an integer array named writeRandomPostion to store 
randomly generated insertion position 
 5: while countRandomPosition>0 do
 6:       writeRandomPosition.append(random.randInt(0,count)) 
 7:       countRandomPosition-- 
 8: end while 
 9: shuffle(redudantcode) 
10: wRddtCodeToContractFile(writeRandomPosition,redundantCode) 
11: return contractFile

EXPERIMENT

Purpose of the Experiment
To evaluate the performance of Con2Vec, vulnerabilities in the smart contract code to be analyzed can 
be detected by training a smart contract that is known to contain vulnerabilities. To do this, it is first 
necessary to check whether ByteCodeToVec appropriately represents the relationship between the 
smart contract code to be analyzed and the smart contract code learned during the training phase. Based 
on this, a number of smart contracts written by Solidity containing integer overflow vulnerabilities 
were predesigned and evaluated against these known vulnerable smart contracts to confirm whether 
ByteCodeToVec could properly extract the features of the code. Next, the smart contract code with 
known vulnerabilities was trained and evaluated with TextCNN to check whether the model successfully 
extracted the features of the smart contract and identified all the vulnerabilities learned. Through these 
experiments, it can be seen that ByteCodeToVec is able to accurately extract features and thus detect 
vulnerabilities. In the field of vulnerability detection of Ethereum smart contract, datasets are not provided 
in most papers, while data sets are provided in the SoliAudit (Liao et al., 2019). SoliAudit’s method is 
effective and representative among the current static vulnerability detection methods. Therefore, this 
paper conducts experiments on the dataset of SoliAudit and compares the performance of Con2Vec 
with that of SoliAudit, and the experiments prove that Con2Vec outperforms SoliAudit.

Experimental Setup
In the mapping phase for smart contract opcodes, the SkipGram model is used for training, and 
the samples are negatively sampled during the training process to speed up the training. In the 
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vulnerability detection module, TextCNN is used in the main body for feature extraction and 
vulnerability classification, and pretrained opcode vectors are added to fine-tune the model during 
the training phase. The convolution kernel sizes are set to 3, 4, and 5, corresponding to the trigram, 
4-gram, and 5-gram in the language model, respectively, and 1-max pooling is used to obtain the 
most key features in the opcode sequence. The experimental results are measured using accuracy, 
precision, recall, and F1-score.

Datasets
This experiment obtains a total of over 60,000 unlabeled smart contracts from the Ethereum platform 
to build a dataset, which are all open source on the Ethereum platform and whose contracts are real 
and valid. In addition, this paper cleans and merges the public datasets from authoritative papers 
to obtain over 17,000 labeled smart contract datasets, most of which are imbalanced. The number 
of positive and negative samples for each of the original dataset vulnerabilities (positive samples 
represent vulnerabilities, negative samples represent no vulnerabilities) is shown in Table 6. A code 
obfuscation method is given to expand the 17,000 labeled datasets to 40,000, where the positive to 
negative ratio is 1:1. The datasets are publicly available at https://github.com/starStraw/OpcodeToVec.

RESULTS

The vulnerability detection results of Con2Vec are shown in Tables 7, 8, and 9. Table 7 presents the 
results of vulnerability detection based on Opcode sequence (OpSe), Table 8 shows the results of 
vulnerability detection based on OpcodeAndNum sequence (OpANSe), and Table 9 shows the results 
of vulnerability detection based on OpcodeNum sequence (OpNSe).

As shown in Table 7, the prediction accuracy of the model for underflow, overflow, TimeDep, 
AssertFail, InlineAssembly, BlockTimeStamp, and LowLevelCalls vulnerabilities all reached more 
than 97%, which is higher than the prediction accuracy of other vulnerabilities.

As shown in Table 8, the prediction accuracy of the model for underflow and overflow vulnerabilities 
reached more than 97%, which is higher than the prediction accuracy of other vulnerabilities.

Table 6. 
Number of Positive and Negative Samples for Each Vulnerability in the Dataset

Types of Vulnerability Positive (With Vulnerability) Negative (Without Vulnerability)

Underflow 10883 6527

Overflow 15499 1911

CallDepth 386 17024

TOD 2523 14887

TimeDep 1175 16235

Reentrancy 513 16897

AssertFail 7450 9960

TxOrigin 144 17266

CheckEffects 6853 10557

InlineAssembly 1286 16124

BlockTimeStamp 5625 11785

LowLevelCalls 5153 12257

SelfDestruct 1255 16155

https://github.com/starStraw/OpcodeToVec
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As shown in Table 9, the prediction accuracy of the model for overflow, TimeDep, AssertFail, 
InlineAssembly, and BlockTimeStamp vulnerabilities reached more than 97%, which is higher than 
the prediction accuracy of other vulnerabilities.

Table 7. 
Vulnerability Detection Results of OpSe

Types of Vulnerability Accuracy Precision Recall F1-score

Underflow 97.08% 97.37% 96.77% 97.07%

Overflow 97.24% 97.93% 96.52% 97.22%

CallDepth 96.34% 96.54% 96.13% 96.33%

TOD 96.37% 96.77% 95.94% 96.35%

TimeDep 97.11% 98.05% 96.13% 97.08%

Reentrancy 95.83% 95.40% 96.30% 95.85%

AssertFail 97.52% 97.66% 97.37% 97.52%

TxOrigin 95.92% 96.50% 95.30% 95.89%

CheckEffects 95.59% 96.15% 94.98% 95.56%

InlineAssembly 97.65% 98.84% 96.43% 97.62%

BlockTimeStamp 97.48% 98.96% 95.97% 97.44%

LowLevelCalls 97.30% 98.13% 96.44% 97.28%

SelfDestruct 96.48% 97.81% 95.09% 96.43%

Average 96.76% 97.39% 96.11% 96.74%

Table 8. 
Vulnerability Detection Results of OpANSe

Types of Vulnerability Accuracy Precision Recall F1-score

Underflow 97.25% 97.55% 96.93% 97.24%

Overflow 97.12% 97.63% 96.58% 97.10%

CallDepth 95.83% 96.00% 96.13% 96.33%

TOD 95.87% 96.24% 95.47% 95.85%

TimeDep 96.46% 96.97% 95.92% 96.44%

Reentrancy 96.21% 96.39% 96.02% 96.20%

AssertFail 96.94% 98.47% 95.36% 96.89%

TxOrigin 95.79% 95.91% 95.66% 95.78%

CheckEffects 96.08% 96.93% 95.17% 96.04%

InlineAssembly 96.58% 96.95% 96.19% 96.57%

BlockTimeStamp 96.52% 97.18% 95.82% 96.50%

LowLevelCalls 96.78% 97.48% 96.04% 96.76%

SelfDestruct 96.25% 97.09% 95.36% 96.22%

Average 96.44% 96.98% 95.90% 96.46%
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According to the data in Figures 6, 7, and 8, it can be found that the average accuracy of Con2Vec 
in detecting various vulnerabilities in the current dataset is up to 96% or more, which is higher than 
the detection method in SoliAudit with an accuracy of 91.4%. Even when compared to vulnerabilities 
that occur infrequently, the recall rate of Con2Vec is more stable and higher than that of SoliAudit’s 
method. It can be seen that the Con2Vec method is more efficient in detection in Table 10. When 
the model is trained and the smart contract to be detected is fed into the model, the result is obtained 
in less than 0.1 s (with batch testing, it takes less than two minutes to test 1,700 smart contracts).

As shown in Figure 9, the histogram shows the comparison of accuracy, precision, recall and 
F1-score of the three methods. From the figure, it can be seen that the overall metrics of the OpSe 
method are better than those of the other two among the above three detection methods. Among them, 
the OpANSe method is slightly worse than the other two, while the OpSe method and the OpNSe 
method are not much different in all aspects, probably because of the approximation of the converted 
method when converting bytecode to opcode sequence (OpcodeNum sequence). In its conversion, 
the OpSe method discards all operands and retains only the opcode. The OpNSe method retains the 
operands but does not have a significant effect on the overall result because only opcodes such as 
PUSH are followed by operands. Although the names of the converted opcodes are different, the 
final result is similar, with only a few opcodes to distinguish between them.

DISCUSSION

It is found that when the dataset is expanded to a certain level, the detection effect of using the 
similarity between opcodes to simplify the opcodes to generate the opcode sequences is lower than 
the result based on opcode sequences alone, which may be because after the dataset is expanded, the 
code embedding method is better able to find the subtle differences between the opcodes without 
the need to simplify the opcodes to focus features and thus find differences. Additionally, unknown 
vulnerabilities are not managed by the method proposed in this paper because the dataset must be 
labeled before training. Despite the limitations, the method can retrain and detect the vulnerabilities 

Table 9. 
Vulnerability Detection Results of OpNSe

Types of Vulnerability Accuracy Precision Recall F1-score

Underflow 96.91% 97.36% 96.43% 96.90%

Overflow 97.05% 97.91% 96.15% 97.02%

CallDepth 96.28% 96.34% 96.22% 96.28%

TOD 96.08% 96.37% 95.77% 96.07%

TimeDep 97.11% 98.05% 96.13% 97.08%

Reentrancy 95.92% 96.43% 95.37% 95.90%

AssertFail 97.34% 98.04% 96.61% 97.32%

TxOrigin 96.23% 96.57% 95.86% 96.22%

CheckEffects 95.66% 96.05% 95.24% 95.64%

InlineAssembly 97.32% 98.09% 96.51% 97.30%

BlockTimeStamp 97.02% 97.77% 96.24% 97.00%

LowLevelCalls 96.89% 97.77% 95.97% 96.86%

SelfDestruct 96.13% 97.00% 95.21% 96.09%

Average 96.61% 97.21% 95.98% 96.59%
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as long as there are enough labeled smart contract samples with new vulnerabilities. In the process 
of researching the area of smart contract vulnerability detection, it is found that the current smart 
contract datasets are less publicly available, and there is no large-scale smart contract corpus. Due to 
the different domains, the current large-scale pretrained models cannot be used in the area of smart 

Figure 6. 
Comparison Between OpSe and SoliAudit

Figure 7. 
Comparison Between OpANSe and SoliAudit
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Figure 8. 
Comparison Between OpNSe and SoliAudit

Table 10. 
Comparison of Average Time Consumption of Different Methods (Seconds)

Variable OpSe OpANSe OpNSe Oyente Mythril

Time <=0.1 <=0.1 <=0.1 22 3612

Figure 9. 
Comparison of Three Methods
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contract vulnerability detection, so the current static detection for smart contract vulnerabilities mostly 
uses simple deep learning models and machine learning models.

CONCLUSION

This paper proposes a vulnerability detection method based on embedding and TextCNN model 
for smart contracts. Through collating and cleaning existing datasets, over 60,000 unlabeled smart 
contract datasets are disclosed, and a code obfuscation method for data enhancement of labeled smart 
contracts is offered. This method can effectively generate enough obfuscation samples, enhancing 
the capability of anti-redundant code for the detection model. Three different methods for generating 
opcode sequences are also proposed in this paper, among which the vulnerability detection results 
based on opcode sequence is optimal. A total of 13 smart contract vulnerabilities are detected in this 
paper with reliable performance in terms of accuracy. The highlight of the model is that it converts 
the smart contract vulnerability detection problem into a natural language text classification problem 
with a short detection time and low miss rate. The result shows that the average accuracy of this 
method for smart contract vulnerability detection is above 96% and no prior knowledge is required. 
This approach could theoretically also be applied to other types of smart contracts, such as fabric 
smart contracts. Fabric smart contract is essentially a program written in Golang language. As long 
as the Golang code is converted into opcodes, and then feature extraction and model training are 
performed on the opcode using this method, the vulnerability of the fabric smart contract can be 
easily detected. In future work, solutions in the area of smart contract vulnerability detection can be 
extended by improving the vector representation of smart contracts.
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