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ABSTRACT

Aspect-based sentiment analysis (ABSA) aims to classify the sentiment polarity of a given aspect in 
a sentence or document, which is a fine-grained task of natural language processing. Recent ABSA 
methods mainly focus on exploiting the syntactic information, the semantic information and both. 
Research on cognition theory reveals that the syntax an*/874d the semantics have effects on each 
other. In this work, a graph convolutional network-based model that fuses the syntactic information 
and semantic information in line with the cognitive practice is proposed. To start with, the GCN 
is taken to extract syntactic information on the syntax dependency tree. Then, the semantic graph 
is constructed via a multi-head self-attention mechanism and encoded by GCN. Furthermore, a 
parameter-sharing GCN is developed to capture the common information between the semantics 
and the syntax. Experiments conducted on three benchmark datasets (Laptop14, Restaurant14 and 
Twitter) validate that the proposed model achieves compelling performance comparing with the 
state-of-the-art models.

Keywords
Aspect-Based Sentiment Analysis, Bert, Dependency Tree, Emotional Computing, Graph Convolutional Network, 
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INTRODUCTION

Aspect-based sentiment analysis (ABSA), a crucial task in fine-grained sentiment analysis, aims at 
automatically inferring the sentiment toward an aspect within its context. Generally, the sentiment of 
the given aspect is classified as positive, neural, or negative. Consider the following sentence: “I liked 
the atmosphere very much, but the food was not worth the price.” The sentiment of the “atmosphere” 
and “food” aspects are positive and negative, respectively.
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So far, several state-of-the-art methods have been developed based on dual-channel graph 
convolutional networks (GCNs). These deal with syntactic and semantic information, which obtain 
satisfying results in ABSA tasks. Specifically, for both syntax and semantics processing, the 
fundamental idea is to reduce the distance between the aspect and its contextual words. In such a 
manner, the sentiment information of the aspect can be captured for sentiment classification. In the 
syntax-based approach, the dependency between the aspect and context is built and parsed to extract 
the syntactic information. Regarding long-term dependency, current models like ASGCN (Zhang et 
al., 2019) and CDT (Sun et al., 2019) exploit the GCN to establish adjacency matrices and derive the 
syntactic relation. However, a large amount of user-generated content involves informal grammatic 
style, such as text on Twitter. For this reason, exploiting semantic information for ABSA is highlighted.

Most widely applied methods employ attention mechanisms to perform the interactions between 
aspect and its context. With the application of GCN, the attention matrix of the sentence is established 
and fed into GCN for semantic feature extraction (Guo et al., 2019). As such, the widespread use of 
syntactic- and semantic-GCN gives rise to the advances in dual-channel GCN methods. Generally, 
dual-channel GCNs are carried out in two ways. The first is to separately extract syntax and semantics 
before concatenating the syntactic and semantic representations (Pang et al., 2021). The second is to 
fuse these two categories of features during information encoding (Yan et al., 2021).

As with many facets of the natural language processing (NLP) task, a major challenge lies in 
teaching a computer to handle data that is distinctly human (Brooke, 2009). As such, the first step in 
ABSA method devising is to establish information flow, which directs the sentiment delivery from 
opinion words to the aspect. According to Pylkkänen (2020), the syntactic effects are performed 
earlier than the semantic effects during natural language comprehending. Concretely, measured by 
magnetoencephalography, the posterior middle/superior temporal gyrus (pM/STG), which processes 
the syntactic information, activates before the left anterior temporal lobe (LATL) and the ventromedial 
prefrontal cortex (vmPFC), whose purpose is to tackle the semantics (see Figure 1). Despite the order 
of precedence, the syntactic effects and semantic effects are difficult to distinguish from each other 
(Pylkkänen, 2019), indicated by the intersection of pM/STG and LATL in Figure 1.

In terms of recent ABSA approaches, two limitations can be observed. First, the semantics and 
syntax are generally processed in two separate channels. They do not consider the sequences. Second, 
in most cases, syntactic changes vary the meaning of the expression. The interaction between syntactic 
effect and semantic effect, referred to as the common information, remains neglected in ABSA tasks.

A fuse syntax and semantics-based graph convolutional network (FSSGCN) is developed for 
ABSA to mitigate the deficiencies of current ABSA methods. In the proposed model, the syntax 
structure of the sentence is resolved. Then, the semantic information is captured and fused with the 
syntactic information to enhance the sentiment delivery. Further, a common information module is 
built using GCN. It collects the information from both syntax and semantics to facilitate the sentiment 
classification. This work contains three main contributions as follows:

Figure 1. 
MEG Results on Processing Stages of Language Comprehension
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1. 	 In line with the human cognition practice, a GCN-based method is established to deal with the 
syntactic information and semantic information in a cascading manner. The syntax dependency 
is extracted and integrated with the semantic information.

2. 	 The parameter sharing scheme is carried out during the graph convolution. This is based on the 
common information of syntax and semantics.

3. 	 Comprehensive experiments are performed on three benchmark datasets to evaluate the working 
performance of FSSGCN. Experimental results reveal that FSSGCN is a competitive alternative 
that achieves state-of-the-art performance.

GRAPH CONVOLUTIONAL NETWORKS

There are many non-Euclidean structure data in life, such as social networks, knowledge maps, and other data 
with rich information. Many are tree structures. In the past, CNN was often used to extract feature information, 
which can only be used for Euclidean structure data. As the graph convolutional network has been raised, the 
problem of extracting feature information from non-Euclidean structure data has been solved.

Graph convolution uses the topology graph in which nodes and edges are related to each other. 
It computes between nodes and edges to extract information from the graph. The input of the graph 
convolutional network includes the adjacency matrix and feature matrix. As the input information 

G A H
l= ( )( ), , the operation process of the graph convolutional network can be expressed as:

H AH W
l l l+( ) ( ) +( )= ( )1 1σ 	 (1)

where A Rk k ×  is the adjacency matrix and H h h h
l l l

n

l( ) ( ) ( ) ( )= …



1 2

, , ,  represents the set of feature 

matrices of all nodes. W l+( )1  indicates the trainable parameter matrix of l th+( )−1  layer.
Through the calculation of graph convolutional network, the current node can fuse the information 

from neighbor nodes. By using the topological graph of specific relationship, such as syntax graph 
and semantic graph, the current node can fuse the information of specific relationship.

RELATED WORK

Many approaches have been proposed in the domain of ABSA. Among multiple ABSA methods, the 
focus lies in modeling the relation between the given aspect and its contexts. In this way, all approaches 
can be divided into the following three categories: (1) semantic-based models; (2) syntax-based 
models; and (3) semantic and syntax integration models.

Semantic-Based Models
The attention network, with its integration into deep neural networks, can establish the semantic 
relationship between the aspect and its contexts. As such, most semantic-based models are developed 
on the foundation of attention mechanism. Wang et al. (2016) applied the attention mechanism to 
long-short term memory (LSTM) to derive the aspect embedding and predict its sentiment polarity. 
Ma et al. (2017) proposed the interactive attention networks (IAN) for determining the attention 
weights of the contexts. Thus, it represented the aspect and its collocative context. More recently, the 
transformer model tackled sentence encoding with only attention mechanisms. It achieves a satisfying 
working performance in various tasks. The transformer’s derived methods are also well-documented 
in ABSA tasks. The bidirectional encoder representations from transformer (BERT) model works 
on developing multi-layer bidirectional transformer encoders to comprehensively learn semantic 
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information and obtain more precise representations. Similarly, target-dependent BERT aims to 
generate the accurate aspect representations with a simpler model structure (Gao et al., 2019). To 
exploit the superiorities of both RNN and multi-head attention mechanism, R-transformer is proposed 
to capture local structures and global long-term dependencies in sequences (Zhou & Wang, 2019).

Syntax-Based Models
Regarding syntax dependency tree, the syntax-based models are employed to reduce the long-
distance dependencies between the aspect and its opinion words. Recent publications reveal that 
the application of GCN holds great promise in ABSA tasks. Both Zhang et al. (2019) and Sun et al. 
(2019) propose aspect-oriented GCN by using the syntax dependency tree, which aims to learn the 
syntactic information. Besides, in the BERT4GCN model, a lexical graph is constructed based on which 
bipolar interactive GCN is devised to learn the syntax and lexical information (Zhang & Qian, 2020).

Dual-Channel Models
The dual-channel models are proposed to integrate syntactic and semantic information to optimize the 
sentiment classification results. DGEDT uses both transformer and GCN as encoders to interactively 
learn the semantic information and syntactic information (Tang et al., 2020). Then, the sentence 
representation is generated by using two categories of features. DualGCN (Li et al., 2021) and 
DMGCN (Pang et al., 2021) build a semantic graph via multi-head self-attention mechanism. It takes 
dual-channel GCN to encode the sentence syntax and semantics, respectively. In the model SEGCN, 
an interactive dual-channel GCN is developed to process the syntactic dependency trees and semantic 
graphs using cosine similarity (Yan et al., 2021).

THE APPROACH

The architecture of FSSGCN is presented in Figure 2. The proposed model contains five major 
components: (1) sentence encoder; (2) information fusion module; (3) common information module; (4) 
feature fusion module; and (5) sentiment classifier. Details of each component are described as follows.

Sentence Encoder

Let x w w w w w
m n

= … … …{ }+ +1 2 1
, , , , , , ,τ τ  be a n-word sentence containing a specific aspect 

a w w
m

= …{ }+ +τ τ1
, , . The sequence [CLS] x  [SEP] a  [SEP] is sent to the pre-trained Bert model 

Figure 2. 
General Framework of the FSSGCN
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to obtain the sentence embedding. This contributes to the explicit interaction between the aspect and 
its contexts. Thus, the aspect-oriented word representations can be derived. Then, the hidden states 
of the encoder are taken as the outcomes for further processing.

Information Fusion Module
The framework of the information fusion module is given in Figure 3. Notably, the module has two 
GCNs. The first is for syntax encoding (namely SynGCN). The second is for semantic learning (namely 
SemGCN). The word embeddings from BERT are first fed into SynGCN. Then, the word representations 
that incorporate the syntax are sent to the SemGCN for information fusion. By exploiting the syntax 
dependency tree, the distance between the aspect and its opinion words is effectively reduced. This is 
based on which syntactic information can be captured. In this way, the authors transform the syntax 
dependency tree of the sentence into the syntactic adjacency matrix A

syn
n n∈ ×  (Zhang et al., 2019). 

Specifically, the authors take A
ij

 = 1 to characterize the connection between node i and node j (and 

A
ij

 = 0). With the input of sentence embedding, the syntax graph G A H
syn syn

c= ( ),  is established. At 
this stage, the GCN is employed to capture the syntactic information:

� � �A D A I D
syn syn f
= +( )− −

1

2

1

2 	 (2)

GCN A H W ReLU AH W
l l l l� �, ,( )

+( ) ( ) +( )( ) = ( )1 1 	 (3)

H GCN A H W
syn

l

syn syn

l

syn

l+( ) ( ) +( )= ( )1 1� , , 	 (4)

with:

H H R
syn

c n dhid0( ) ×= ∈ 	 (5)

where I
f
 is the identity matrix; �A

syn
 stands for A

syn
 with self-loop; H

syn

0( )  is derived from the word 

representation of Bert encoder; and W R
syn

l d l d dhid gcn hid+( ) +( )×∈1
*  indicates the trainable parameter matrix 

of l th+( )−1  layer.
The syntactic information is incorporated into the node representation through graph convolution. 

Conforming to the cognition procedure, the hidden layer state of SynGCN is sent to the SemGCN for 
information fusion. Notably, the multi-head self-attention network is employed to identify valuable 
contextual information (Guo et al., 2019). This is further integrated into the aspect representation. 
The sentence is characterized by a fully connected graph; therefore, the application of the multi-
head self-attention mechanism can build the relationship between the aspect and its contexts in a 
soft pruning manner.

For semantic information processing, the input of semantic-learning GCN is derived as:

H H H
sem syn syn

0 0 1( ) ( ) ( )= 





; 	 (6)

On this occasion, a k-head attention network is used to construct the semantic adjacency matrices 
A i k
sem i,

, ,
0

1( ) = …( )�  via multi-head attention:
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A
H W H W

d
sem i

sem sem k sem sem q

T

head

,

, ,0

0 0 0 0

( )
( ) ( ) ( ) ( )

=
( )( )

	 (7)

with:

d
d

Khead
hid= 	 (8)

where W
sem k,

0( )  and W
sem q,

0( )  are trainable weight matrices.
The Softmax function is carried out to compute the probability of each semantic adjacency 

matrix, which is:

A argmax softmax A A
sem sem sem K

0

1

0 0( ) ( ) ( )= …( )





, ,

, , 	 (9)

Subsequently, the top-k selection is employed to pick the semantic adjacency matrix of the largest 
probability. Thus, it maintains the substantial contextual information within the matrix:

A top k A
sem sem

0 0( ) ( )= − ( ) 	 (10)

In this way, the matrix A
sem

0( )  is the attentive matrix that most relates to the sentence semantics. 

The authors construct the semantic graph as G A H
sem sem sem
= ( )( ) ( )0 0

, . The GCN is taken to learn the 

semantic information, which is written as:

Figure 3. 
Framework of Information Fusion Module
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H GCN A H W
sem sem sem sem

1 0 0 1( ) ( ) ( ) ( )= ( )� , , 	 (11)

Note that the aspect node within the graph generated by the multi-head attention mechanism 
connects to every other word. In turn, the information of all other nodes is inevitably incorporated. 
The noise can also be introduced during information fusion. For this reason, the authors use the 
top-k selection mechanism to sparse the fully connected graph based on the k edges with the largest 
attention weights preserved. If k = 2, the top-k mechanism is performed as presented:

0 2 0 5 0 7 0 1 0 1 1 0. , . , . , . , , ,



 →







−top k

	 (12)

To simplify the information fusion, the authors re-write the processing within this module as:

H SynGCN A H W
syn

l

syn syn

l

syn

l( ) −( ) ( )= ( ), ,
1 	 (13)

H SemGCN A H W
sem

l

sem syn

l

sem

l+( ) ( ) +( )= ( )1 1
, , 	 (14)

Common Information Module
As discussed, the sentence semantics can vary in line with the variation of syntactic structure. In other 
words, the syntax and semantics are not independent from each other. The interaction between them 
must be considered during processing. Thereby, the common information is highlighted to enhance 
the sentiment delivery. Figure 4 exhibits the framework of common information module.

Figure 4. 
Framework of Common Information Module
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The authors design a common information module with reference to Wang et al. (2020). They 
use a parameter-sharing GCN to extract the common information between the syntactic space and 
semantic space. The schematic diagram of the module is as follows.

The common information module is established on the foundation of the SemGCN and SynGCN. 
The sentence hidden states of Bert Hc  are taken as the common inputs of both GCNs, which can be 
written as:

H SynGCN A H W
c syn

l

syn
c

com

l

−

+( ) +( )= ( )1 1
, , 	 (15)

H SemGCN A H W
c sem

l

sem
c

com

l

−

+( ) +( )= ( )1 1
, , 	 (16)

where W R
com

l d l d dhid gcn hid+( ) +( )×∈1
*  is the parametric matrix of the l-th GCN-layer. With l times iteration, 

the common information is integrated into both the syntax representation H
c syn

l

−

+( )1  and semantic 

representation H
c sem

l

−

+( )1 . Then, the sentence representation, with common information incorporated, 
can be computed as:

H
H H

com

l c syn

l

c sem

l

+( ) −

+( )
−

+( )

=
+1

1 1

2
	 (17)

Feature Fusion
The outputs of the information fusion module and the common information module are utilized to 
obtain a precise feature representation of the aspect. The mask operation is separately conducted 
on the sentence representations from both modules to preserve the aspect words. Then, the average 
pooling is performed on the masked representations to generate two corresponding aspect vectors:

h f mask H
sem sem

l= ( )( )+( )1 	 (18)

h f mask H
com com

l= ( )( )+( )1 	 (19)

where f ⋅( )  stands for the average pooling and mask ⋅( )  is the mask operation. Specifically, the 
masking indicates the setting of all words to 0 (except for the aspect word):

mask
t m t n

t m
=

≤ < + + < <
+ ≤ ≤ +








0 1 1

1 1

, ,

,

τ τ
τ τ

	 (20)

The final aspect representation is the concatenation of h
sem

 and h
com

:

h h h
a sem com
= 


; 	 (21)

The authors, thus, send h
a

 to the Softmax classifier. The sentiment distribution of the given 
aspect can be classified as:
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ŷ softmax hW b
a

T= +( )1 1
	 (22)

where WT
1

 and b
1

 denote the trainable weight matrix and the bias, respectively.

Model Training
The training of the model is carried out to minimize the cross-entropy loss between the predicted 
outcome and real result. The loss function is given by:

L y logy
i j

P

i
j

i
j= −∑∑ =1
ˆ 	 (23)

where the subscript 𝑖 represents the 𝑖 th sample and the subscript 𝑗 represents the 𝑗th sentiment polarity. 
P  stands for the sentiment classes. y  is the real sentiment distribution and ŷ  is predicted.

EXPERIMENT

Experimental Setting
Experiments are carried out on several benchmark datasets, including Restaurant and Laptop from 
Semeval (Kirange et al., 2014) and Twitter (Dong et al., 2014). Each sample from the experimental 
dataset is labeled as positive, neutral, or negative. Table 1 provides details of each dataset.

The word embeddings are initialized by using the pre-trained Bert model with a lexicon size 
of 30,522 and a word-embedding dimension of 768. For the multi-head attention network, the head 
number is 12. The hidden layer dimension is 12. The learning rate is set to 0.00001. Moreover, the 
Adam optimizer is adopted with the weight of the regularization term, set as 0.00001.

For each method in the experiment, the result is averaged over three runs. All parameters are randomly 
initialized for every run. In addition, the authors take accuracy and macro-F1 score as evaluation metrics.

The process of calculating accuracy is expressed as:

Accuracy
TP TN

TP FP TN FN
=

+
+ + +

	 (24)

where TP, TN, FP, and FN represent the number of true positive samples, true negative samples,incorrectly 
identified positive samples, and incorrectly identified negative samples, respectively.

Table 1. 
Statistics of Dataset

Datasets Classes Positive Neutral Negative

Twitter Trian 3 1,561 3,127 1,560

Test 3 173 346 173

Laptop14 Train 3 994 464 870

Test 3 341 169 128

Restaurant14 Train 3 2,164 637 807

Test 3 728 196 196
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The macro-F1 score represents the average of the F1 scores of the three types of sentiments 
(positive, neutral, and negative):

Macro F
F score F score F score

− =
− + − + −

1
1 1 1

3
1 2 3� 	 (25)

where F score1
1

− , F score1
2

−  and F score1
3

−  are the F1 scores of the three types of sentiments. 
It means that the weight of F1 value of three types of sentiments is equal.

Baseline Methods
To confirm the working performance of the proposed model, seven state-of-the-art approaches are 
taken as baselines. Notably, all word embeddings of these methods are generated via the Bert encoder.

•	 BERT-SPC: The basic BERT model is devised based on bidirectional transformer. The sentence, 
together with the aspect, is fed into a finetuned Bert model for sentiment classification (Song et al., 2019).

•	 R-GAT+BERT: An aspect-oriented dependency tree is constructed and pruned. This is further 
encoded via a relational graph attention network (Wang & Shen et al., 2020).

•	 DGEDT+BERT: A mutual bi-affine model structure is developed to fuse the flat representations 
learned by the traditional transformer and the graph-based representations learned via the 
dependency graph (Tang et al., 2020).

•	 TDGAT+BERT: A multi-layer graph attention network is established. This is capable of propagating 
sentiment features from important syntax neighboring words to the aspect (Huang & Carley, 2019).

•	 InterGCN+BERT: Considering the relation among distinguishing aspects, a graph-aware model, 
based on interactive graph convolution, is proposed to learn the syntactic representation of the 
given aspect (Liang et al., 2020).

•	 DMGCN+BERT: A multi-channel GCN method is designed to encode the syntax, semantics, 
and correlated information from the generated graph (Pang et al., 2021).

•	 DualGCN+BERT: With the transformation of the syntax adjacency matrix, a dual-channel GCN 
is proposed to deal with both the syntactic information and semantic information (Li et al., 2021).

Result and Analysis
Experimental Results
Table 2 shows the experimental results on the three datasets. Among all the evaluation settings, the 
proposed model is a competitive alternative that outperforms most baselines.

When comparing with the syntactic-based models (i.e., R-GAT, DGEDT, TDGAT, and 
InterGCN), a considerable improvement is obtained in both accuracy and macro-F1 score. The main 
reason is that the integration of semantic information contributes to the sentiment delivery to a large 
extent. Likewise, in contrast to BERT-SPC, the model shows superiority in building the syntax 
structure for sentiment classification.

Compared to the dual-channel GCN approaches, the model is best-performing on both Restaurant and 
Twitter. The proposed method can exploit and fuse the semantics and syntax in a more dedicated manner 
based on which sentiment information of the aspect can be extracted. Regarding cognition practice, the 
aspect representation in the model is both informative and accurate. This optimizes the working performance.

However, the accuracy on Laptop fails to overperform DualGCN. A possible explanation is 
that the syntactic probability matrix constructed in DualGCN performs better in fusing the syntactic 
information on the Laptop dataset.

The model provides a state-of-the-art result by integrating the syntax and semantics of the 
sentence. Therefore, it is reasonable to expect a more satisfying working performance in ABSA.



International Journal of Data Warehousing and Mining
Volume 19 • Issue 1

11

Hyperparameter Settings
To investigate the effect of the hyperparameter on working performance, the authors optimized the 
value of k for top-k selection. Figure 5 presents the setting of k on different datasets. According to 
Figure 5, accuracy reaches its highest level when the k equals 3, 2, and 4 for Restaurant, Laptop, and 
Twitter, respectively. With the increment of k, the working performance declines to a certain extent. 
The main reason is that the node number in the semantic graph increases along with k, which can lead 
to the incorporation of irrelevant information. In such a manner, the generated aspect representation 
contains semantic noise, impacting the sentiment classification.

Table 2. 
Experimental Results

Model Restaurant14 Laptop14 Twitter

Accuracy F1 Accuracy F1 Accuracy F1

BERT-SPC 86.15 80.29 78.48 74.74 75.92 74.29

R-GAT+BERT 86.60 81.35 78.21 74.07 76.15 74.88

DGEDT+BERT 86.30 80.00 79.80 75.60 77.90 75.40

TDGAT+BERT 83.0 -- 80.1

InterGCN+BERT 87.12 81.02 82.87 79.32

Dual-Channel Models

DMGCN+BERT 87.66 82.79 80.22 77.28 78.06 77.36

DualGCN+BERT 87.13 81.16 81.80 78.10 77.40 76.02

FSSGCN+BERT 87.79 82.72 80.58 77.75 78.09 76.37

Note: Results are cited from the original paper of the baseline where “-” the result is not available.

Figure 5. 
Setting of k on Different Datasets
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Ablation Study
To verify the effect of the information fusion module and common information module, the authors 
conduct an ablation study based on the FSSGCN. First, removing the information fusion module 
leads to the accuracy drop of 3.35%, 2.82%, and 2.38% on Rest14, Lap14, and Twitter, respectively. 
This indicates that the information fusion module proposed by the authors can capture the syntactic 
and semantic information. It also demonstrates the significance of the information fusion module. 
Second, due to the loss of the common information module, the accuracy drops 1.29%, 1.05%, and 
2.63% on Rest14, Lap14, and Twitter, respectively. This shows that the common information of syntax 
and semantics is useful for sentiment classification. Overall, the results of the ablation study showed 
that both modules of the approach contribute to the accuracy. See Table 3.

Case Study
The effectiveness of the model is further validated by visualizing the attentive weights of context 
words in Figure 6. The aspect for the first sentence is “waiter.” The second sentence uses “entrees” 
and “duck.” In Figure 6(a), two words that convey positive sentiment (“rude” and “disinterested”) 
are recognized. In Figure 6(b), the sentiment word toward “entrees” is “great.” Regarding the word 
“duck,” the attention weights are assigned to both “suggest” and “great” (with the integration of 
syntax and semantics). Thus, the proposed model is distinct in identifying the sentiment of the aspect, 
which facilitates the task of ABSA.

CONCLUSION

On the task of ABSA, the authors propose a GCN-based method that integrates the syntax and 
semantics in line with the human cognition principle. The sentiment information fusion process is 

Table 3. 

Model Restaurant14 Laptop14 Twitter

Accuracy Accuracy Accuracy

FSSGCN w/o h
sem

84.43 77.76 75.71

FSSGCN w/o h
com

86.50 79.53 75.46

FSSGCN 87.79 80.58 78.09

FSSGCN w/o h
sem

: removing the information fusion module

FSSGCN w/o h
com

: removing the common information module.

Figure 6. 
Visualization of Attention Mechanism
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carried out to encode the syntactic information and semantic information in sequence. Furthermore, 
regarding parameter sharing, the common information of syntax and semantics can be precisely 
captured. Experiments are conducted on three publicly available datasets to evaluate the effectiveness 
of the proposed model. The experimental results verify that FSSGCN is a competitive alternative. It 
achieves advanced performance compared with the baselines.
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