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ABSTRACT

As a fundamental problem of natural language processing (NLP), the calculation of semantic text 
similarity plays a crucial role in a variety of big data application situations. In the process of text 
similarity modeling, however, owing to the complexity and ambiguity of Chinese semantics, effectively 
capturing the semantic interaction characteristics of Chinese text only from a single angle is impossible. 
This study proposes a deep learning-based computational model for semantic text similarity called 
SRU-based multi-angle enhanced network (SMAEN). Specifically, the authors firstly combine 
character-grained embeddings and word-granularity embeddings obtained from the pre-trained model 
to represent text. The text is encoded using a bidirectional simple recurrent unit (Bi-SRU) network, 
and the local text similarity is represented using a soft-aligned attention technique. In addition, the 
authors integrate Bi-SRU with an improved convolutional neural network (CNN) for global similarity 
modeling to capture semantic, time, and spatial characteristics of short text interaction. Finally, they 
employ a pooling layer to aggregate the calculation results into a fixed-length vector and a multi-
layer perceptual (MLP) classifier to make a determination. Experimental results on Chinese public 
datasets LCQMC and PAWS-X show that the proposed method fully captures semantic interaction 
features from multiple angles and achieves advanced performance. This method can produce better 
matching results and enhance the accuracy of large data analysis. It is applicable to numerous scenarios 
involving large data, such as information retrieval and recommendation systems.

KEywoRDS
Big Data, Chinese Semantic Text Similarity, Deep Learning, Natural Language Processing, Semantic Interaction, 
Simple Recurrent Unit

INTRoDUCTIoN

In the big data era, how to accurately find the required data from massive texts is an important issue (Mohamed 
et al., 2020). The advancement of deep learning and big data (Wu et al., 2021; Liu, 2022) provides excellent 
support. Big data application research relies on the calculation of semantic text similarity (STS). Because 
of the drastic advancement of deep learning, the effect of calculating STS has been significantly enhanced.

STS calculation (Chen et al., 2021) is the essential topic in natural language processing (NLP), 
which is used to determine the similarities of two text pieces in a variety of big data applications, 
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such as information retrieval (Song et al., 2018; Chen et al., 2021), automatic question answering 
(Chen, & Xu., 2021; Hu et al., 2021; Zheng et al., 2021), machine translation (Mistree et al., 2022; 
Niu et al., 2021; Cheng et al., 2021), and recommendation system (Gong et al., 2021; Ghasemi, & 
Momtazi, 2021). These tasks can be abstracted predominately as text semantic matching problems. 
The information retrieval task finds matching documents through user queries. The automatic question 
answering task finds the most appropriate candidate answer based on the question’s relevance. The 
task of machine translation is to match two languages based on their relevance. The recommendation 
system matches the relevant metrics that the user may be interested in with the user’s behavior. In 
light of the fact that the rich semantic information provided within the text cannot be fully used, the 
similarity calculation of Chinese semantic text still faces great challenges.

Chinese text is abstract and complicated, and the standards for representing Chinese text are 
stricter. A CNN or recurrent neural network (RNN) is typically employed to encode text. Long 
short-term memory (LSTM) and gate recurrent unit (GRU) can effectively mitigate the gradient 
disappearance issue. However, the scalability of the cyclic neural network is extremely poor, and the 
CNN requires an enormous amount of calculations that cannot be balanced within the model’s capacity.

Recently, numerous scholars have made major contributions to STS activities, which can be 
grouped into three categories. The first category includes conventional methods that focus solely on 
the literal resemblance of elements, such as words, string sequences, and phrases between texts, and 
have significant limits, mainly including Jaccard distance and SimHash.

The second category relies on machine learning techniques that represent text as vectors and 
analyze semantic similarity using statistical methods, primarily including vector space model (VSM), 
latent semantic analysis (LSA), and others. However, the consideration of the position of words is 
ignored and performance in complex tasks is not so good.

The third group depends on deep learning approaches that use deep learning models to capture 
semantic information and interaction features from text. There are primarily three frameworks 
involved. One framework is a representational framework. The main idea is the “Siamese structure” 
(Bromley et al., 1993); it uses two symmetric networks to represent the text and calculate the similarity. 
It also has shared parameters and low complexity. The typical examples include deep structured 
semantic mode (DSSM) (Huang et al., 2013; Chen et al., 2020), and ARC-I (Hu et al., 2014). This 
framework lacks semantic interaction information during the encoding process and cannot measure 
the contextual importance of words. As a result, an interactive framework is proposed with “matching 
aggregation” as the central concept (Wang, & Jiang, 2016) and the attention mechanism used to boost 
textual interaction by collecting both interactive and semantic information. As a third framework, 
the pretraining model (Devlin et al., 2019; Liu et al., 2019; Zhang et al., 2021) is used to complete 
specific matching tasks by fine-tuning the model. Although its accuracy has improved, its order of 
magnitude, parameter size, and time cost are higher than the previous two frameworks. This model 
also has a big problem in balancing model capacity and accuracy.

Although significant advancements in existing techniques have been made, the current research still 
faces two difficulties. First, Chinese is more complex than English in terms of grammatical structure 
and context expression; the standards for Chinese text representation are stricter, and Chinese characters 
have richer semantic information. Embeddings at a single granularity do not represent Chinese text well, 
requiring a mixed embedding of multiple granularities and a lightweight network to encode the text. 
Second, during the semantic interaction process, capturing semantic interaction features only from a 
single perspective cannot facilitate more comprehensive decision-making in global analysis.

To solve the aforementioned difficulties, this research provides an innovative method for 
calculating semantic text similarity that optimizes interaction features and text representation, 
outperforming existing methods.

This paper has three main contributions.
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• We established a special model, SMAEN, that uses semantics and interaction information to the 
fullest extent and provides an effective method for solving semantic text similarity calculation;

• We combined character embedding and word embedding to convey the entire meaning of Chinese 
text, and use lightweight Bi-SRU instead of bidirectional LSTM (Bi-LSTM) for text encoding;

• By combining simple recurrent networks and CNNs, we captured finer-grained interaction 
features between texts from three perspectives: semantics, time, and space.

In the remaining sections of this paper, we provide a summary of relevant work, describe our 
proposed approach, cover the relevant experimental data and analyses, and summarize our study.

RELATED woRK

Because of the limitations of traditional text similarity calculation methods, deep learning methods 
extract more grammatical, semantic, and structural information of short texts. In recent years, the 
traditional method for estimating text similarity based on statistics has been largely replaced.

Based on the Siamese network architecture (Huang et al., 2013; Thyagarajan, 2016), two identical 
encoders map text pairs into the same space and perform similarity calculations on two text vectors 
simply using the distance between vectors. However, the two texts are independent of each other in 
the encoding process; they lack clear interactive information, leading to the loss of vital information. 
Some researchers have applied the attention machine to the encoding layer to strengthen the interaction 
between texts (Lin et al., 2017; Yuan, & Jun, 2020). However, the effect has not been much enhanced.

On the basis of the match-aggregation architecture, an encoder of RNN or CNN is typically 
employed to encode two texts into vectors of equal length and to record the matching signal of two 
smaller text units (such as characters, words, or contextual information). The matching findings are 
then aggregated, and a global analysis of the similarity is carried out. This framework essentially 
interacts through a certain technology or method in the two twin networks, significantly improving 
the interaction ability, and the semantic focus and interaction information are better grasped. For 
instance, the enhanced sequential inference model (ESIM) (Chen et al., 2017) is used to construct a 
network using Bi-LSTM that reaches cutting-edge performance by improving the interaction between 
two phrases using an attention mechanism.

However, single-angle matching cannot capture the interaction information between sentence 
pairs. Inspired by the concept of ESIM, Wang et al. (2017) describe a bilateral multi-perspective 
matching model (BIMPM) used to build a network with Bi-LSTM that achieves four different 
matching algorithms and improves the ability to extract sentence interaction features. However, 
the captured features are confined to word-level characteristics. Enhanced recurrent convolutional 
neural networks (ERCNN) (Peng et al., 2020) combine CNN and RNN to capture the similarity and 
difference between sentence pairs on the basis of ESIM. This approach is more effective than ESIM 
at capturing the interaction information of sentences’ key points.

Kim et al. (2019) describe a deeply recursive convolutional network (DRCN) that executes 
numerous rounds of the encoder and connects interaction modules via residual connections, preventing 
information loss by preserving the original information and common attention feature information from 
the bottom word embedding layer to the top recurrent layer. Deep interaction text matching (DITM) 
(Yu et al., 2021) uses multiple loop interaction modules to gather deep interaction information of text 
and extracts information using multi-angle pooling to forecast the relationship between text pairings. 
In many NLP text matching tasks, it has obtained the top results. Multiway semantic interaction 
based on multi-granularity semantic embedding (MSIM) (Tang et al., 2022) uses multiple semantic 
interactions to estimate text similarity, enabling the model to capture as much interaction information 
between phrases as possible with superior performance. Enhanced attentive convolutional neural 
networks (EACNN) (Xu et al., 2020) adopt three attention mechanisms and full use of CNN features 
to obtain sentence interaction features. These features are highly competitive in training efficiency 
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compared with LSTM. Although the aforementioned methods explore the capture of the semantic 
interaction features between texts, the semantic alignment and interaction information between text 
pairs cannot be fully extracted from only a single perspective. It is necessary to capture the semantic 
interaction features between texts from multiple perspectives.

In the process of similarity calculation, the semantic features of sentences and words are taken 
into account, and good results are obtained. Architecture for general matching of text chunks on 
multiple levels of granularity (MultiGranCNN) (Yin, & Schütze, 2015) employs CNN to extract text 
information of various granularities, including words, phrases, and sentences, and then measures 
the similarity between two sentences. This MultGranCNN architecture improves the preservation of 
the detailed information of sentences and the accuracy of text matching. Multi-channel information 
crossing (MIX) (Chen et al., 2018) augments the multi-channel convolutional neural network with an 
attention mechanism. Moreover, it extracts multi-granularity text features by parsing sentences into 
text segments of various granularities, including unary, binary, and ternary. Although the approaches 
all employ granular semantic elements, such as words, phrases, and sentences, for text representation, 
they continue to disregard the influence of character granularity on Chinese text. The semantic 
information of character granularity and word granularity should therefore be used to the fullest extent.

This research offers a multi-angle enhanced network based on simple recurrent units by using 
the concept of interactive framework matching aggregation in an effort to address the deficiencies 
of the existing Chinese semantic text similarity calculation. The focus is on capturing the interaction 
information and semantic information of sentences in depth from the three different angles of 
semantics, time, and space, and the global analysis of sentence similarity is improved. It combines 
Bi-SRU and CNN to calculate text similarity from many angles using multi-granularity mixed 
embedding and an encoder based on a soft attention approach.

MoDEL INTRoDUCTIoN

We present SMAEN for Chinese semantics text similarity calculation to completely express the 
semantic features of Chinese texts and account for interaction information in multi-angle enhancement 
global similarity modeling. Figure 1 depicts the primary structure of SMAEN, which comprises three 
components: an input encoding layer, local similarity modeling, and global similarity modeling.
A a a a

m
= { }1 2

, ,...,  and B b b b
n

= { }1 2
, ,...,  denote two input sentences, where a

i
 or b

j
k∈ � , 

m  and n  are the lengths of the two sentences, respectively, and n is the length of the two sentences, 
respectively. Predicting the similarity label y ∈ { }0 1,  is the objective between A and B, where 0 
means that sentences A and B are semantically dissimilar, and 1 means that sentences A and B are 
semantically similar.

Input Encoding
In this layer, we perform multi-granularity embedding operations and encoding operations on the 
input sentences to extract the contextual features of the sentences.

Embedding
In Chinese semantic text similarity calculation, sentences can be represented as words or characters. 
Chinese characters are the most basic expression of Chinese sentences, while words have richer semantic 
information than Chinese characters. Character embedding-based models outperform word embedding-
based models in the majority of Chinese NLP tasks (Cheng et al., 2021). Therefore, we can add character 
embedding on the basis of word embedding to increase fine-grained semantic information.

The two input Chinese sentences are segmented using the Jieba word segmentation tool, and the 
embedding of the word granularity and the embedding of the character granularity are integrated to 
generate the sentence representation. Word embedding and character embedding are pretrained by 
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word2vec (Mikolov et al., 2013) on Wikipedia Chinese corpus and Baidu Encyclopedia Chinese 
corpus. Because trainable word embeddings are prone to overfitting, we fix the word embeddings. 
We set the word vector and character vector dimensions to 300. For each sentence, the word vector 
matrices A m d∈ ×�  and B n d∈ ×�  are determined, and d is the word vector’s dimension.

Encoding
After the word and character embeddings are fused, they are fed into the Bi-SRU (Lei et al., 2018). 
Unidirectional simple recurrent unit (SRU) cannot effectively capture bidirectional semantic 
information, so the forward and reverse SRUs are integrated to form a bidirectional SRU structure. 
At the same time, a skip connection is used to optimize the gradient propagation and exclude the 
gradient disappearance owing to the long propagation distance when increasing the network depth. 
As shown in Figure 2, in the SRU, the forget gate regulates the retention of essential information 
from the previous instant to the present. The reset gate is used to determine the state of the output. 
The formulas for SRU are shown in equations (1) through (5).

�x Wx
t t
=  (1)

Figure 1. Structure of SMAEN model
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f W x b
t f t f
= +σ( )  (2)

r W x b
t r t r
= +σ( )  (3)

c f c f x
t t t t t
= + −−� � �

1
1( )  (4)

h r g c r x
t t t t t
= + −� �( ) ( )1  (5)

where x
t
 represents the input and t  the time step, W and W

f
are the parameter weights, and σ and

g are the activation functions. f
t
 andb

f
 are the output and bias term of the forget gate in equation 

(2). r
t
 and b

r
 are the output and bias terms of the reset gate in equation (3). c

t
 is the state vector in 

equation (4), and the value is determined by f
t
 adaptively averaging the previous state c

t−1 , and the 
present moment �x

t
.h
t
 in equation (5) is the hidden state vector at time t, computed through skip 

connections. An activation function g is used to activate hidden states.

Figure 2. Structure of SRU cell
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The feature sequences obtained after passing through Bi-SRU are 
�
H h h h

t
= ( , ... )

,1 2
 and 

�
H h h h

t
= ( , ,... )

1 2
, and the feature vectors are their connected vectors. The resulting sentence 

representations A and B are input into Bi-SRU, and the formulas are shown in equations (6) and (7),

h BiSRU h A i m
i
A

i
A

i
= =−( , ) ,...,

1
1  (6)

h Bi h B j n
j
B

j
B

j
= =−SRU( , ) ,...,

1
1  (7)

where h
i
A  is the ith encoding vector of A  after encoding, and h

j
B  is the jth encoding vector of B  

after encoding. A
i
 represents the ith word vector of A . B

j
 represents the jth word vector of B . The 

word vector A
i
 represents the ith word in A , and B

j
 is also applicable.

Local Similarity Modeling
Soft-Alignment Attention
We use soft-alignment attention (Chen et al. 2017; Bahdanau et al., 2016) to compute the similarity 
of hidden state groups < >h h

i
A

j
B,  between sentence pairs to associate related parts between two 

sentences. The formula is shown in equation (8),

s h h
ij i

A T
j
B= ( )  (8)

where s
ij

 is the attention weight, which determines the local similarity of sentence pairs.
For an already encoded element in one of the sentences; i.e., h

i
A , s

ij
 is used to determine its 

semantic similarity information in another sentence in equation (9).
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In these equations, �h
i
A  is the weighted sum of { }h

j
B
j
m
=1 . Intuitively, the information in { }h

j
B
j
m
=1  

related to h
i
A  is selected and denoted as �h

i
A . The same calculation operation is used for �h

j
B  in equation 

(10).
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Sentence Interaction Modeling

By computing the difference and element-wise product of tuples < >h h
i
A

i
A, �  and < >h h

j
B

j
B, � , we 

augment the information collected further. This can help capture semantic interaction information 
between elements in tuples. The original vectors h

i
A  and �h

i
A , h

j
B and �h

j
B  are then connected to the 

difference and the product of the elements (Mou et al., 2016), respectively. The calculation process 
is shown in equations (11) and (12).

I h h h h h hA
i
A

i
A

i
A

i
A

i
A

i
A= −[ ; ; ; ]� � � �  (11)

I h h h h h hB
j
B

j
B

j
B

j
B

j
B

j
B= −[ ; ; ; ]� � � �  (12)

In these equations, �  stands for element-wise multiplication.

Global Similarity Modeling
The global similarity modeling consists of an enhanced composition layer and a pooling layer.

Enhanced Composition Layer
This part is used to composite local similarity information. Here, it is different from using two Bi-
LSTMs in ESIM. We use a two-layer Bi-SRU to combine local similarity information and capture 
more fine-grained global similarity information from a temporal perspective and a semantic one, 
respectively. Simultaneously, we employ CNN to obtain global similarity information from a spatial 
perspective. SRU has better scalability and parallelism and has an excellent effect on balancing model 
capacity and performance, whereas CNN performs better in capturing key similarity information. 
By combining the two, more fine-grained global similarity information from multiple perspectives 
can be captured in the combined process. We use the mapping G in equations (13) and (14) to prevent 
overfitting owing to the increase in the global parameters caused by the combination of local 
information. G is a feed-forward neural network with activation function rectified linear unit (ReLu), 
and l

t
 represents the output of Bi-SRU at time t.

l BiSRU G I t
t
A

t
A= ( ( ), )  (13)

l BiSRU G I t
t
B

t
B= ( ( ), )  (14)

After fully capturing the global similarity information in both the temporal and semantic 
perspectives, we use CNN layers to further capture the global similarity information in the spatial 
perspective. At the same time, we use the “NIN” idea (Lin et al., 2014; He et al., 2015; Zhang et al., 
2021); namely, “network in network,” to improve CNN’s performance. Its internal structure is shown 
in Figure 3. The first layer of CNN contains three convolution kernels with the same size of 1 × 1, 
which are used to extract the overall spatial information. It can increase the degree of nonlinearity 
through the subsequent nonlinear activation function while reducing the number of output feature 
maps. The second layer of CNN contains three different convolution kernels; namely, 1×1, 2×2 and 
3×3, to further capture the key abstract features of spatial information (Peng et al., 2020).
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We express the result A output in the previous step as shown in the formula in equation (15).

l l l l l
m m1 1 2 3:

...= ⊕ ⊕ ⊕ ⊕  (15)

In this equation k
0
 is the hidden state size and ⊕  is the connection operation. l

i i j: +  is the 
connection of ( , ,... )l l l

i i i j+ +1
, which is input into the improved CNN, i.e., NIN. For each convolution 

operation, steps are taken to create a new feature l
i

 through a window of word l
i i w: + −1 . These steps 

are shown in equations (16) and (17).

l W l b
i i i w
= ⋅ ++ −σ( )

: 1
 (16)

In equation (16) W Rw k∈ ⋅ 0 , and W  is the filter. The convolution acts on units of w words to 
capture features, and σ  is the activation function. ReLu (Nair, & Hinton, 2010) is used here, and b 
is the bias factor. This filter acts on each possible window in { , ,..., }

: : :
l l l
w w m w m1 2 1 1+ − + to generate feature 

maps as shown in equation (17).

l l l l
m w

= − +[ , ,..., ]
1 2 1

 (17)

In this equation, l Rk∈ 1  and k m w
1

1= − + .

Figure 3. Structure of the NIN layer
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On top of the output of the convolution, max pooling and column-wise average pooling are 
performed to capture the most valuable features for each feature map, and these vectors are then 
combined. The whole formula is shown in equation 18.

�l NIN l= ( )  (18)

Pooling Layer
We process the result after passing through Bi-SRU as a fixed length. Because the summation operation 
is greatly affected by the length of the sequence (Parikh et al., 2016), we combine the two pooling 
operations and concatenate the obtained results with the results of the NIN layer to create the final 
vector of fixed length o . The operation is shown in equations (19), (20), and (21).

l
l

m
l l

ave
A i

A

i

m
A

i

m

i
A= =

=
=

∑ , max
max

1
1

 (19)

l
l

n
l l

ave
B j

B

j

n
B

j

n

j
B= =

=
=

∑ , max
max

1
1

 (20)

o l l l l l l
ave
A A A

ave
B B B= [ ; ; ; ; ; ]

max max
� �  (21)

Then we feed o into the MLP classifier, as shown in equation (22).

y MLP o= ( )  (22)

In this equation, MLP is a hidden layer with tanh activation and an output layer with softmax.

Loss Function and Metrics
Loss Function
We adopted the cross-entropy loss function in our experiments. The network parameters for an 
N-capacity data set are calculated where there is a cross-entropy minimum between the predicted 
label and the actual label, as shown in equation (23).

L y y
N

y y y y
x

( ,̂ ) [ log ˆ ( )log( )̂]= − + − −∑1 1 1  (23)

In this equation, ŷ  represents the predicted value, y represents the real label, and backpropagation 
is used for network training.
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METRICS

Model performance is evaluated using accuracy and F1-score in this paper. In our network, accuracy 
refers to the capacity of the model to accurately distinguish similar and different texts. The precision 
rate indicates how accurately the model identifies the correct sentence among comparable sentences. 
Recall rate is the performance of the model in all similar sentences. F1-score reflects the average 
performance of the model on precision rate and recall rate.

Experiments
On two public Chinese semantic similarity datasets, we conducted numerous tests to assess the 
efficacy of SMAEN.

Dataset
LCQMC Dataset
LCQMC (Liu et al., 2018) is a large-scale Chinese question semantic matching dataset constructed 
by Harbin Institute of Technology in 2018. It comes from real questions from users in different fields 
of Baidu QA. A focus is placed on the intent of the question when matching. The dataset contains 
260,086 instances of labeled questions, including similar questions and dissimilar questions. There 
are 238,766 pairs of questions in the training set, 8,802 pairs in the validation set, and 12,500 pairs 
in the test set. The examples are presented in Table 1. In the case of semantically similar questions, 
it is marked as 1, and for the semantically dissimilar ones it is marked as 0.

PAWS-X (Chinese) Dataset
The PAWS-X (Yang et al., 2019) (Chinese) dataset is a synonym judgment dataset released by Google. 
The Chinese part includes paraphrased pairs and non-paraphrased pairs. The main feature is that it 
has highly overlapping vocabulary and pays more attention to the judgment ability of the model for 
syntax. The dataset contains 53,401 pairs of label sentences. There are 49,401 pairs of instances in 
the training set, and 2,000 pairs in each verification set and test set. Table 2 shows examples of the 
PAWS-X (Chinese) dataset. In the case of semantically similar questions, it is marked as 1, and when 
the semantics are not similar it is marked as 0.

Implementation
Both character embedding and word embedding had dimensions of 300.Word embedding used 
word2vec vectors trained on the Wikipedia_zh corpus, whereas character embedding used word vectors 
trained on Baidu Baike. For uniformity, we padded sentences with fewer than 50 words to ensure that 
the input sequence had a maximum length of 50 words. The Bi-SRU layer’s hidden state was set to 
300. We adopted two methods to avoid overfitting: the dropout value was to 0.1, and early stopping 

Table 1. Examples from LCQMC dataset

  Sentence A   Sentence B   Label

  如何清洗手表的皮表带?   手表表带脏了怎么清洗?   1

  (How to clean the leather strap of a watch?)   (How to clean the dirty watch strap?)

  哪种修脚刀锋利?   扬州三把刀哪家好?   0

  (Which pedicure knife is sharp?)   (Which of the three knives in Yangzhou is 
better?)
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was used. We used the dev set for evaluating the training loss in this experiment, and the tolerance 
set was set to five. There would be an early termination of the training process if the accuracy rate 
on the five dev sets did not improve. Using the Adam optimizer, we set the learning rate as 0.0002. 
Training for 50 epochs with batch size was set to 256.

Baseline Methods
To demonstrate that SMAEN is effective in the Chinese STS task, we compared and evaluated the 
model using these baseline approaches:

• Decomposable attention (Parikh et al., 2016): This approach uses soft alignment to decompose 
the whole task into independent subtasks, instead of the work of LSTM encoding two sentences; 
this approach integrates and classifies the results of the subproblems.

• Attention-based convolutional neural network (ABCNN): This approach uses three attention-
based CNNs to encode two sentences, capturing finer-grained interaction features; it also uses 
logistic regression for similarity measurement.

• BiMPM: This approach encodes sentence pairs by using Bi-LSTM; it performs multiview matching 
in two different directions using four methods and uses fully connected layers for classification.

• ESIM: This approach uses attentional soft alignment to collect deep interaction information 
between sentence pairs to measure similarity.

• RE2 (Yang et al., 2019): This approach uses the residual network for information enhancement; 
it captures the information using a variety of alignment methods and predicts the target.

• ERCNN: This approach uses CNN and RNN to capture finer-grained interactions between 
sentence pairs and a special fusion layer to model overall similarity.

Results and Discussion
The results of SMAEN were compared with those of other baseline models that achieved good 
performance on both Chinese and English datasets. After we reproduced these models, we applied 
them to the dataset selected in this experiment. We optimized models on the dev set before evaluating 
them on the test set in all experiments.

LCQMC Dataset Result
Table 3 displays the experimental findings about LCQMC. To evaluate various models, we 
concentrated on the model’s accuracy and F1 score. The decomposable attention model relies solely on 
soft alignment attention and cannot account for the temporal and spatial characteristics of the sentence 
context, so the accuracy and F1 score are inferior to those of competing models. The ABCNN model 
uses CNN to capture sentence spatial features and lacks the capture of sentence temporal features.

Table 2. Examples from PAWS-X (Chinese) dataset

  ID   Sentence A   Sentence B   Label

  1   安装有一个三脚架,但前腿是一个脚
轮。

  安装是三脚架,但前腿有一个方向盘。   0

  (There is a tripod mounted, but the front 
legs are a caster.)

  (The mount is a tripod, but the front legs have a 
steering wheel.)

  2   CUTA有五个国家和地区委员会。   CUTA有五个国家委员会和五个地区委员会。   1

  (CUTA has five national and regional 
committees.)

  (CUTA has five national committees and five 
regional committees.)
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The BIMPM model uses different perspectives and multiple angles for matching; it also uses Bi-
LSTM for sentence encoding. The accuracy and F1 score are 1.05% and 1.71% higher than ABCNN, 
respectively. ESIM uses Bi-LSTM to build the network and then uses the attention mechanism for 
information interaction and overall similarity modeling. Although it also obtains good results, it 
takes only word vectors as input, which is somewhat thin in the semantic richness of sentences. The 
overall similarity modeling uses Bi-LSTM, which has great limitations in model scalability and 
feature richness. RE2 uses a residual network and uses CNN to encode and interact with the attention 
mechanism in encoding, but the effect on this dataset is not so good as ESIM. The performance of 
ERCNN in this dataset is poor, which may be due to the low fitting degree of ERCNN on this dataset. 
The captured interaction information also does not play a significant role in text matching. Our model 
integrates embeddings at two levels of granularity and captures and fuses global similarity information 
at multiple angles to calculate sentence pairs’ similarity. Compared with ESIM, the accuracy rate has 
an increase of 1.74%, and the F1 score has an increase of 0.96%.

According to Table 3, the proposed SMAEN model has superior accuracy and F1 score compared 
with all baseline models. Figure 4 depicts the training process for the LCQMC model.

The setting of the dropout parameter has a great influence on the model, so we explored it on 
the dataset LCQMC. In the process of training each batch, dropout will discard some neurons with a 
certain probability; this action can significantly reduce overfitting. As shown in Figure 5, when the 

Table 3. Experimental results on LCQMC dataset

  Model   Accuracy (%)   F1 (%)

  Decomposable Attention   80.50   82.97

  ABCNN   81.03   82.90

  BiMPM   82.08   84.61

  ESIM   84.32   85.66

  RE2   84.14   85.49

  ERCNN   77.64   80.66

  SMAEN   85.88   86.62

Figure 4. Specific training process on LCQMC dataset. (a) Training set loss value (b) Training set accuracy
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dropout is 0, the model accuracy is the lowest, and when it is greater than 0.1, the model accuracy 
gradually decreases, so we set the dropout to 0.1 to achieve the best performance.

PAWS-X (Chinese) Dataset Result
Table 4 shows the results of the experiment on the PAWS-X (Chinese) dataset. Compared with other 
models, the accuracy and F1 score of SMAEN are superior than those of other baseline models. 
Compared with the latest technology, our model has an increase of 3.11% and 4.8% in accuracy and 
F1 score, respectively.

Figure 6 show the results of the model stopping training at the 18th epoch.

Classic Case Analysis
Based on the analysis of the experimental results of SMAEN and other models on the LCQMC and 
PAWS-X (Chinese) datasets, we compared the best-performing ESIM with the prediction results of 
SMAEN in specific cases. Table 5 shows that SMAEN is more accurate than ESIM in calculating 
text similarity.

Figure 5. Dropout value and accuracy rate changes on LCQMC

Table 4. Experimental results on PAWS-X (Chinese) dataset

  Model   Accuracy (%)   F1 (%)

  Decomposable Attention   55.72   10.51

  ABCNN   55.27   17.81

  BiMPM   57.17   60.53

  ESIM   67.95   62.62

  RE2   56.35   20.85

  ERCNN   63.82   48.36

  SMAEN   71.06   67.42
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In the first set of cases, both SMAEN and ESIM made correct predictions for short and 
semantically similar sentences. It is proved that both of them are more accurate in calculating the 
similarity of two sentences with similar semantics.

In the two sentences in the second set of cases, although the characters and words are highly 
similar, they are semantically quite different. ESIM did not capture the key difference features, but 
only captured sentence features from a single perspective, making a wrong judgment. SMAEN fully 
captures the key differences and similar features of two sentences from three perspectives, improving 
its judgment performance.

The two sentences in the third group of cases still have a high degree of similarity in terms of 
words, but because of the ambiguity and abstraction of Chinese itself, this group of sentences is more 
difficult to judge than the first two groups. In the process of global similarity modeling, ESIM used 

Figure 6. Specific training process on PAWS-X (Chinese) dataset. (a) Training set loss value (b) Training Set Accuracy

Table 5. Classic case forecast comparison

No Sentence A Sentence B Label SMAEN ESIM

(1) 刻舟求剑这则寓言告诉我们
什么?

刻舟求剑告诉我们什么道理? 1 1 1

(What does the fable of carving a 
boat and seeking a sword tell us?)

(What does Carving a Boat and 
Seeking a Sword tell us?)

(2) 它于 2011 年 12 月 22 日出
版并于 2012 年 2 月公布。

它在 2011 年 12 月 22 日公
布并在 2012 年 2 月发行。

0 0 1

(It was published on December 
22, 2011, and announced in 

February 2012.)

(It was announced on December 
22, 2011, and released in 

February 2012.)

(3) 他受邀于 1924 年在多伦多担
任 ICM 发言人,1932 年在苏黎
世和 1936 年在奥斯陆也相继

担任发言人。

1924 年、1932 年和 1936 
年,他分别在多伦多、奥斯陆
和苏黎世担任 ICM 的特邀发

言人。

0 0 1

(He was invited to be ICM 
speaker in Toronto in 1924. He 
was also a speaker in Zurich in 

1932 and in Oslo in 1936.)

(In 1924, 1932 and 1936 he 
was a guest speaker at the ICM 
in Toronto, Oslo, and Zurich, 

respectively.)
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Bi-LSTM to match and aggregate only local information, and did not make a better global analysis 
on abstract text, which leads to the judgment of similar sentences. However, SMAEN used not 
only multi-granularity embedding when extracting the features of the sentence itself, but also CNN 
combined with two-layer Bi-SRU to conduct a more comprehensive analysis in global similarity 
modeling, which improved the model’s understanding of abstract features and ambiguous features.

Ablation Study
To determine the effectiveness of each component of SMAEN, we performed ablation experiments 
on the LCQMC dataset. Table 6 presents the results.

On the LCQMC dataset, we first removed the NIN module, and the accuracy dropped to 84.76% 
and the F1 score to 86.02%. The performance also dropped significantly, which shows that the NIN 
module plays a good role in global similarity modeling. We then removed the two-layer Bi-SRU 
in the global similarity modeling, and the accuracy dropped to 84.58%, and the F1-score dropped 
to 85.76%. This indicates that the two-layer Bi-SRU can better capture the feature information of 
inter-sentence interactions in global similarity modeling. The Bi-SRU accuracy and F1 score after 
removing the coding layer dropped to 80.43% and 83.09%, respectively, which indicates that Bi-SRU 
has a strong coding function.

When we removed all Bi-SRU modules in the model, the accuracy rate dropped to 81.27%, and 
the F1 score to 83.27%, indicating the scalability of Bi-SRU. When the average pooling was removed, 
the accuracy rate dropped to 83.54% and the F1-score dropped to 85.20%. When the maximum 
pooling was removed, the accuracy rate dropped to 83.65% and the F1 score dropped to 85.28%. 
This indicates that the average pooling has a greater impact on the overall model than the maximum 
pooling. If the difference and element-wise product were removed, the accuracy fell to 81.31% and 
the F1 score dropped to 83.59%. In addition, we explored the contribution of character embedding to 
the model. If the character embedding was removed, the accuracy would decrease to 85.33%, while 
the F1 score would fall to 86.26%. This shows that character embedding can effectively alleviate the 
out-of-vocabulary (OOV) problem, and more fine-grained features at the character granularity can 
be extracted with effectiveness.

Experimental results indicate that the SMAEN model outperforms all baseline models on both 
datasets, clearly indicating that the model is accurate and generalizable.

Table 6. Ablation study on LCQMC dataset

  Ablation Model   Accuracy (%)   F1 (%)

  Base model   85.88   86.62

  -NIN   84.76   86.02

  -modeling Bi-SRU   84.58   85.76

  -encoding Bi-SRU   80.43   83.09

  -All Bi-SRU   81.27   83.27

  -avg pool   83.54   85.20

  -max pool   83.65   85.28

  -diff/prod   81.31   83.59

  -char embedding   85.33   86.26
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CoNCLUSIoN

In this paper, we propose a new model named SMAEN to solve the problem of insufficient sentence 
interaction information and the complexity of Chinese semantic features in semantic text similarity 
calculation. SMAEN shows excellent performance on the Chinese public datasets LCQMC and 
PAWS-X using the baseline method, with an accuracy increase by 1.56% and 3.11%, respectively. 
In our approach, character embedding and word embedding are fused, and the use of two granular 
embeddings helps to capture finer-grained semantic feature information in Chinese text.

In addition, an easily extensible Bi-SRU is used instead of Bi-LSTM to extract sentence syntax 
and semantic information to reduce the computational load of the model. To reduce the loss of partial 
global feature information caused by global similarity modeling of sentence interactions from a 
single perspective, we model the global similarity of sentence interactions from three perspectives of 
semantics, time, and space to capture richer global similarity information. It provides a solid foundation 
for big data application research. The proposed method can produce more precise matching results 
and support the extraction of crucial data from massive data.

Future research will investigate the robustness and generalizability of the proposed language 
model on various tasks involving NLP. Simultaneously, we intend to integrate graph convolutional 
networks and knowledge graphs into the language model to enrich semantic interaction data.
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