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ABSTRACT

Network representation learning is one of the important works of analyzing network information. Its 
purpose is to learn a vector for each node in the network and map it into the vector space, and the 
resulting number of node dimensions is much smaller than the number of nodes in the network. Most 
of the current work only considers local features and ignores other features in the network, such as 
attribute features. Aiming at such problems, this paper proposes novel mechanisms of combining 
network topology, which models node text information and node clustering information on the basis 
of network structure and then constrains the learning process of network representation to obtain 
the optimal network node vector. The method is experimentally verified on three datasets: Citeseer 
(M10), DBLP (V4), and SDBLP. Experimental results show that the proposed method is better than 
the algorithm based on network topology and text feature. Good experimental results are obtained, 
which verifies the feasibility of the algorithm and achieves the expected experimental results.
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INTRODUCTION

The data scale of network structures has increased with the advent of the era of big data. So, too, has 
the difficulty of processing such data. Improved processing of data has, therefore, become a hot issue 
in current research. It is important to discover hidden information within the network when dealing 
with the network structure data. Network representation learning aims to learn a vector representation 
for each node in the network and map it into a vector space. The vector dimension learned is far 
smaller than the size of the network size, which is conducive to discovering information hidden in 
the network. By representing the node vector learned by the learning algorithm, it can be directly 
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used for the processing of subsequent tasks like node classification (Tang et al., 2016; Zhou et al., 
2006) and link prediction (Cao et al., 2010; Yang et al., 2019).

At present, most work is based on network local structure or combined with a kind of feature 
information to obtain the representation of the node vector. This kind of work has not done much to 
improve the quality of network embedding. In this paper, we based on DeepWalk algorithm (Perozzi et 
al., 2014) to make better use of other information within the network. It presents a CTNRL algorithm 
which can combine multiple feature information in the network, so as to improve the quality of 
network embedding.

In the first stage of training, the CTNRL algorithm gathers the nodes in the network through 
an unsupervised clustering algorithm to obtain the clustering information of each node. At the 
same time, a random walk is carried out on the network to obtain the random walk sequence of 
nodes. In the case of a given central node, the probability of the occurrence of context nodes 
is maximized to obtain the topology neighborhood relationship of network nodes to model the 
topology relationship of nodes in the network. Second, it evaluates the relevance of the network 
node content, maximizing the probability of the same word appearing at the node, capturing the 
relevance of text information of a given node, training and constraining the process of representing 
learning, and adding the clustering information of each node, directly modeling the node clustering 
information with the context, and learning the input vector and output vector of word clustering. 
The embedding of the target node is determined by the topology and text characteristics of the 
node to obtain the optimal network node vector.

RELATED WORKS

The early work of network representation learning is mainly based on matrix eigenvector calculation. 
This includes local linear representation and Laplace feature table. This method requires high spatial 
complexity and time complexity, which makes such algorithms unable to be used on large networks.

Inspired by the Word2vec (Mikolov, Sutskever, et al., 2013; Mikolov, Chen et al., 2013; 
Mikolov et al., 2015) algorithm, the DeepWalk algorithm introduces a neural network into network 
representation learning. The algorithm first carries out a random walk on the network. Then, it 
inputs the node sequence into the neural network to obtain the vector representation of nodes. The 
subsequent Node2vec (Grover & Leskovec, 2016) algorithm and LINE (Tang et al., 2015) algorithm 
are inspired by DeepWalk algorithm. Unlike methods like DeepWalk, which uses shallow neural 
networks, the SDNE (Wang et al., 2016) algorithm uses an unsupervised deep autoencoder for the 
training of network nodes. Different from the DeepWalk algorithm and SDNE algorithm based on 
the near neighbor hypothesis, the struc2vec (Ribeiro et al., 2017) algorithm believes that two nodes 
that are not close neighbors may have high similarities.

Matrix-based decomposition is another research focus of network representation learning. 
It decomposes the target matrix into several matrix multiplication forms to obtain the vector 
representation of nodes. The GraRep (Cao et al., 2015) algorithm, as a representation learning 
algorithm of classical matrix decomposition, considers a special relational matrix. It performs SVD 
decomposition on the special relational matrix to obtain the vector representation of each node. 
Subsequently, Cheng et al. (2015) first proved that the DeepWalk algorithm based on neural networks 
is equivalent to matrix decomposition. The TADW algorithm was proposed by combining the text 
information matrix based on this information.

In recent years, researchers have been studying how to use other abundant information in the 
network to improve the effect of network node classification. Li et al. (2020) combined semantic 
information to improve the accuracy of node classification. This method integrated hash learning, 
semantic information, and structural information in the same framework for the first time. The CANE 
algorithm was proposed to solve the different roles of the target node when interacting with other 
nodes (Tu et al., 2017). This introduces a mutual attention mechanism that integrates the structural 
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information and text information of the node. In addition to the textual features, Xu et al. (2021) 
proposed CAJE in combination with the global attention mechanism. This introduced a convolutional 
neural network into representation learning to understand the attribute information of neighbor nodes 
and obtain node vectors.

Chen and Li (2021) made use of the rich information contained in the graph by proposing 
MAGCN, a network representation learning model that integrates multiorder neighborhood 
information based on attention mechanism. Ni et al. (2021) proposed the DPBCNE algorithm, which 
considers both edge perspective and node perspective. It obtains node vector and side vector through 
coupling learning. Sun et al. (2019) proposed a representation learning method, vGraph, which can 
detect overlapping communities and nonoverlapping communities and learn nodes and community 
embedding at the same time. It designs a smooth regularizer in the potential space to make adjacent 
nodes more similar in the vector space. Wang et al. (2021) proposed the NTF algorithm, inspired 
by the energy-level dissipation method. The work constructed an influence subgraph for the central 
node to reduce the influence of noise on the training process. Zhang and Lu et al. (2020) proposed the 
ANEMF algorithm for matrix decomposition based on cosine similarity. It decomposed first-order 
structural similarity matrix and second-order structural similarity matrix and attribute matrix, which 
could preserve the characteristic information of the network.

Zhang and Chai et al. (2020) proposed the ANESC algorithm. At the initial stage of training, 
the algorithm combines the network structure with attribute information. It restrains the vector 
representation of nodes by clustering features during training. Zhang and Yin (2021) proposed the 
HINSC algorithm using meta-path and clustering information on heterogeneous networks. Other 
network representation learning work can refer to the work of Sun et al. (2021). In the current 
work, the network structure, node text features, node clustering information cannot be integrated 
into a framework.

To make better use of the information in the network, this article proposes the CTNRL 
algorithm. It employs the network structure, text features, and clustering features to improve the 
effect of node classification. At the network level (to obtain the clustering information of each 
node), the algorithm first conducts clustering on the whole network. Second, the network structure, 
which is modeled by a random walk, combines the clustering feature and text feature of nodes to 
obtain a good node embedding.

DEFINITIONS

Define the network as G V E W S= ( ), , , , where V v v
N

= ……{ }1
, ,  is the node set of the network, 

N V=  is the total number of nodes in the network, E e i j N
ij

= < ≤{ | , }0  is the edge set of the 
network, e

ij
 is represented as an edge of the node i to node j, W is the external text features of the 

nodes in the network, and S s s
N

= …{ }1
, ,  is the clustering feature of the network.

Given a network G V E W S= ( ), , , , network representation learning aims to learn a low-
dimensional vector representation v V

i
∈ , where d N<< . Therefore, in the network, the nodes 

with close topology, the same text features, and the same cluster information are closer in the 
vector space.

BASIC KNOWLEDGE

DeepWalk
Word2vec, as a classic algorithm in word representation learning, has a profound impact on the field 
of representation learning. In this algorithm, there are two classical frameworks, including Skip-Gram 
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and CBOW. For a word sequence W w w
n

= { }1
, ,� , Skip-Gram maximizes the occurrence probability 

of context words when the target word is given:

L W logPr w w
i

N

k j k i j i( ) =
= − ≤ ≤ +∑ ∑1 ( | ) 	

where k is the sliding window size and w
i
 is the current word.

Inspired by Word2vec, the DeepWalk algorithm introduces the neural network method 
into representation learning. In the DeepWalk algorithm, assuming that the embedding of the 
current node is related to the context node, the algorithm first randomly wanders on the network 
to generate the node sequence V v v

n
= ( )1

, ,� . It then selects the context node set c v( )  through 
the sliding window, maximizing the probability of the occurrence of the context node given 
the current node:

L V logPr v v
i

N

k j k i j i( ) =
= − ≤ ≤ +∑ ∑1 ( | ) 	

where Pr( | )v v
i j i+  is the predicted probability of the context node under the current node, formally 

defined by the softmax function:

Pr( | ) Pr( | )
exp( )

'
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where v
i j+  and v

i
 are the embeddings of the context node and the current node, respectively.

Clustering Property
In the network, nodes of the same kind are usually clustered together. Therefore, the vector 
representation of nodes of the same category is closer according to the clustering information of each 
node. As one of the classical algorithms of clustering algorithms, the k-means algorithm has been 
widely used for its simple implementation and good effect. In the early stage of network representation 
learning, the clustering algorithm is first used to cluster the network to obtain the clustering information 
of each node. The corresponding objective function is:

L vc c C i c
i

N

= −
∈

=
∑min

2

2

� �µ
1

	

where S is the number of clusters and µ
s
 is the center of cluster s.

PROPOSED APPROACH

Most of the previous network representation learning work was carried out on the network structure. 
It ignored other information contained in the network, such as attribute characteristics. To better 
combine other information of the network to obtain good node vector representation, this article 
proposes the CTNRL algorithm. This is a good combination of network structure, text features, and 
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clustering features. In turn, it can better learn vector mapping for nodes in the network. The framework 
of CTNRL algorithm is shown in Figure 1.

In the CTNRL model, a random walk is carried out on the network structure to model the 
topological relationship between nodes. At the same time, the relevance of the node textual features 
is evaluated, and two Skip-Gram frames are linked through the target node. Finally, the clustering 
information of the node is used as the input to learn the input clustering information vector and the 
output node vector. The vector of the target node is jointly affected by the topology of the node and 
the node text characteristics. The objective function of the CTNRL algorithm is as follows:

LV v v w v
i j i

k j ki

N

j i
k j ki

( ) logPr( | ) ( ) logPr( | )= + −+
− ≤ ≤= − ≤ ≤
∑∑ ∑α α1

1 ==

− ≤ ≤=

∑

∑∑+ −

1

1

1

N

j i
k j ki

S

w s        ( ) logPr( | )
| |

α
	

where α  is the weight coefficient that balances the network structure, text feature, and clustering 
feature; k is the sliding window size; v

i j+  is the context node of node v
i
; w

j
 is the jth word in the 

context window; and s
i
 is the clustering information of node v

i
. The probability of the occurrence 

of the context node under the current node, denoted Pr( | )v v
i j i+ , is defined by:

Pr( | )
exp( )
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where v
i j+  and v

i
 are the embeddings of the context node and the current node, respectively. The 

probability of the occurrence of the context node words under the current node, denoted as Pr( | )w v
j i

, 
is defined by:

Pr( | )
exp( )
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Figure 1. CTNRL Model Framework
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where w
j
 and v

i
 are the embeddings of the context words and the current node, and W is the number 

of different words of the entire network node. The probability of the occurrence of the context node 
words under the current community, denoted as Pr( | )w s

j i
, is defined by:

Pr( | )
exp( )

exp( )
w s

s w

s w
j i

i j

w

W

i

=
⋅

⋅
=∑

Τ

Τ

1

	

where w
j
 and s

i
 are the embeddings of the context words and the current community.

EXPERIMENTAL

To verify the experimental results of the CTNRL algorithm, three datasets—Citeseer (M10), DBLP 
(V4), and SDBLP—are selected for experimentation. Table 1 shows the metrics associated with 
the data set.

If there are isolated nodes in the network, the random walk results of CTNRL algorithm and 
comparison algorithm of the same category will be affected. In order to ensure that the results of the 
experiment are not affected, isolated nodes in the Citeseer dataset and DBLP dataset were deleted. 
After the isolated nodes were deleted, 4,610 nodes in the Citeseer dataset and 17,725 nodes in the 
DBLP dataset remained. To verify the experimental results in a dense network, nodes with fewer 
than three edges in the SDBLP dataset were deleted. In total, 3,119 nodes remained in the SDBLP 
dataset after the processing was completed.

Comparison Algorithms

1. 	 DeepWalk: The DeepWalk algorithm introduces deep learning into network representation 
learning. It trains neural networks to obtain vector representation of nodes.

2. 	 LINE: The LINE algorithm considers the first- and second-order similarity, which is more 
suitable for large-scale networks.

3. 	 Node2vec: The Node2vec algorithm improves the random walk mode of the DeepWalk algorithm.
4. 	 GraRep: The GraRep algorithm considers a special relationship matrix. It uses SVD to decompose 

the relationship matrix and obtain a vector representation of the node.
5. 	 Text Feature (TF): This converts the text feature of the node into a co-occurrence matrix and 

uses SVD to decompose the co-occurrence matrix to obtain a vector representation of the node.
6. 	 DW + TF: This method is a combination of DeepWalk and the Text Feature algorithm. The 

obtained vectors are spliced in the form of column vector expansion.
7. 	 MFDW: MFDW belongs to the representation learning algorithm of matrix decomposition, 

which obtains the vector representation of nodes through SVD decomposition.

Table 1. Data Description

DS Original 
Nodes

Original 
Edges

Isolated 
Node

Remaining 
Nodes

Remaining 
Edges

Average 
Degree

Citeseer 10310 5923 5700 4610 5923 2.57

DBLP 60744 105781 43019 17725 105781 11.936

SDBLP 60744 105781 0 3119 39516 25.339
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Experimental Parameter Settings
In the experiment, the training set was divided into nine training sets with different proportions. These 
increased in proportion (0.10 to 0.90). The remaining data serves as a test dataset for the algorithm. The 
number of random walk sequences was set to 10 times, each walking 40 nodes. The window size was 
5, and the balance weight coefficient as 0.2. To ensure the accuracy of the experiment, it was repeated 
10 times for all the algorithms. The result of the experiment was the average of the 10 experiments.

Balance Weight Coefficient and Number of Cluster Centers
The balance weight coefficient α  is an important parameter among the balance network structure, 
text features, and clustering features. Setting different balance weight coefficients has a great influence 
on the overall experiment. The optimal value of the balance weight coefficient is selected through 
experimental analysis to ensure good performance of the experiment.

The Citeseer dataset was selected as the reference dataset in the experiment. With other parameters 
unchanged, the balance weight coefficient was set to increase from 0.1 to 0.9, with an interval of 0.2. 
Table 2 shows the experimental results of different values of balance weight coefficients.

The selection of the number of network clusters will directly affect the vector representation 
of nodes in the network. In the experiment of observing node classification performance by 
selecting different numbers of clusters, the most appropriate number of clusters can be selected 
for the algorithm, which makes the experiment have good performance. Using the Citeseer dataset 
as the reference dataset, the number of clusters was increased from 5 to 30 at a time. The other 
parameters were constant. Table 3 shows the influence of different cluster numbers on network 
node classification performance.

In order to more intuitively observe the impact of different parameter values of balance weight 
coefficient and number of network clusters on the whole CTNRL algorithm, Figure 2 shows the 
experimental results of accuracy of network node classification on different proportion training sets 
and different number of clusters.

From the experimental results of different balance weight coefficient values, it can be found that 
the effect of network node classification decreases with the increasing value of balance coefficient. 
According to the experimental results in Figure 2, it can be found more intuitively that when the 
balance weight coefficient is set between 0.1 and 0.3, the node classification performance is the best. 
Therefore, to ensure more scientific experimental results, the value of the balance weight coefficient 
is set between 0.1 and 0.3 on the three datasets.

As can be seen from the experimental results of different cluster number values in Figure 2, the 
classification performance of network nodes changes with the change of cluster number. When the 
number of clusters is 20, the experimental results show a high value. This further proves that clustering 
features play a crucial role in the training process of network representation learning.

Table 2. Experimental Results Under Different Balance Weight Coefficients

Parameter Setting 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 Avg

α = 0 1. 0.7353 0.7421 0.7511 0.7555 0.7482 0.7533 0.7543 0.7505 0.7609 0.7501

α = 0 3. 0.7331 0.7435 0.7484 0.7496 0.7534 0.7478 0.7501 0.7491 0.7502 0.7472

α = 0 5. 0.7254 0.7375 0.7440 0.7414 0.7466 0.7458 0.7461 0.7501 0.7467 0.7426

α = 0 7. 0.6937 0.7136 0.7234 0.7289 0.7255 0.7285 0.7351 0.7315 0.7380 0.7243

α = 0 9. 0.5650 0.6291 0.6421 0.6541 0.6595 0.6650 0.6563 0.6620 0.6783 0.6457
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Results and Analysis
Table 4, Table 5 and Table 6 show the experimental results of the algorithm on different data sets.

From the experimental results of the Citeseer dataset, it can be found that the results obtained 
by the proposed method in this article are better than other comparison algorithms. In addition, 
the accuracy of network node classification is 0.07 to 0.24 higher than that of other comparison 
algorithms. Compared with other algorithms based on network structure or matrix decomposition, 

Table 3. Experimental Results Under Different Cluster Numbers

Clusters Number 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 Avg

S = 5 0.6847 0.6979 0.6978 0.7036 0.6959 0.6997 0.7025 0.7081 0.6954 0.6984

S = 10 0.6827 0.6940 0.6983 0.7000 0.6988 0.7071 0.7040 0.7087 0.7000 0.6993

S = 15 0.7053 0.7159 0.7214 0.7203 0.7222 0.7277 0.7236 0.7240 0.7178 0.7198

S = 20 0.7396 0.7487 0.7461 0.7496 0.7538 0.7517 0.7522 0.7625 0.7537 0.7509

S = 25 0.7083 0.7175 0.7236 0.7247 0.7230 0.7275 0.7316 0.7350 0.7239 0.7239

S = 30 0.7164 0.7292 0.7338 0.7333 0.7349 0.7371 0.7397 0.7366 0.7293 0.7323

Figure 2. Average Value of Experimental Results

Table 4. Average Classification Performance of Nodes on the Citeseer(M10) Dataset

Algorithm 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 Avg

DeepWalk 0.5589 0.5930 0.6089 0.6148 0.6219 0.6230 0.6262 0.6233 0.6395 0.6122

LINE 0.4264 0.4706 0.4804 0.4957 0.5043 0.5102 0.5118 0.5307 0.5363 0.4963

Node2vec 0.6247 0.6561 0.6600 0.6707 0.6740 0.6715 0.6746 0.6807 0.6856 0.6664

GraRep 0.3938 0.5309 0.5785 0.5975 0.5997 0.6105 0.6157 0.6209 0.6089 0.5729

TF 0.5769 0.6130 0.6276 0.6305 0.6348 0.6330 0.6287 0.6219 0.6395 0.6229

DW+TF 0.5831 0.6115 0.6273 0.6337 0.6418 0.6396 0.6550 0.6549 0.6530 0.6333

MFDW 0.5762 0.6079 0.6233 0.6305 0.6296 0.6300 0.6300 0.6348 0.6430 0.6228

CTNRL 0.7264 0.7384 0.7430 0.7460 0.7481 0.7463 0.7393 0.7485 0.7446 0.7423
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the CTNRL algorithm also considers the external text features and clustering to obtain better results 
and expected experimental results.

Compared with the Citeseer dataset, the number of nodes and edges in the DBLP dataset is 
greater than that of the Citeseer dataset. The average degree of the DBLP dataset is also higher than 
that of the Citeseer dataset, which is a larger and denser dataset. On the DBLP dataset, the proposed 
algorithm achieves the desired results on different proportions of training sets compared with other 
comparison algorithms. Experimental results of CTNRL algorithm on DBLP dataset show that the 
algorithm can be well adapted to large networks.

The SDBLP dataset is a dense dataset with more than three edges reserved. It is a smaller and 
denser dataset compared with other datasets. In the SDBLP dataset, the CTNRL algorithm has 
better node classification performance than the partial comparison algorithm in different proportions 
of training sets. Overall, the CTNRL algorithm has a poor effect. Due to the excessive density of 
the network, some nodes are incorrectly clustered in the clustering process. This influences the 
experimental results and causes errors in the node classification effect.

The experimental results of the CTNRL algorithm are compared with those of the DeepWalk 
algorithm based on local feature structure and the Text Feature(TF) algorithm based on text features, 
as shown in Figure 3.

As seen from the results in Figure 3, the CTNRL algorithm has better experimental results 
than the DeepWalk algorithm and TF algorithm on the Citeseer dataset and DBLP dataset due to 
the combination of network structure, text features, and clustering features. On the SDBLP dataset, 
the experimental results of the CTNRL algorithm are worse than the DeepWalk algorithm. Because 
SDBLP data set is a dense data set, DeepWalk algorithm gets better experimental results.

Table 5. Average Classification Performance of Nodes on the DBLP(V4) Dataset

Algorithm 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 Avg

DeepWalk 0.6226 0.6434 0.6542 0.6598 0.6624 0.6618 0.6660 0.6703 0.6677 0.6565

LINE 0.6449 0.6653 0.6749 0.6787 0.6798 0.6830 0.6903 0.6889 0.6886 0.6772

Node2vec 0.7339 0.7398 0.7525 0.7561 0.7570 0.7585 0.7579 0.7573 0.7636 0.7530

GraRep 0.5890 0.6590 0.6726 0.6792 0.6877 0.6888 0.6926 0.6956 0.6979 0.6736

TF 0.6617 0.6946 0.7049 0.7115 0.7129 0.7144 0.7154 0.7157 0.7183 0.7055

DW+TF 0.6261 0.6515 0.6599 0.6622 0.6637 0.6660 0.6703 0.6691 0.6761 0.6605

MFDW 0.6502 0.7468 0.7488 0.7502 0.7505 0.7513 0.7522 0.7457 0.7551 0.7390

CTNRL 0.7475 0.7530 0.7546 0.7554 0.7570 0.7550 0.7588 0.7586 0.7558 0.7551

Table 6. Average Classification Performance of Nodes on the SDBLP Dataset

Algorithm 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 Avg

DeepWalk 0.7976 0.8065 0.8188 0.8149 0.8256 0.8235 0.8273 0.8271 0.8337 0.8194

LINE 0.7379 0.7701 0.7811 0.7828 0.7931 0.7897 0.7963 0.7882 0.7877 0.7808

Node2vec 0.8217 0.8287 0.8309 0.8451 0.8445 0.8401 0.8484 0.8473 0.8498 0.8396

GraRep 0.8099 0.8252 0.8414 0.8478 0.8497 0.8417 0.8536 0.8527 0.8495 0.8413

TF 0.6503 0.7123 0.7264 0.7386 0.7454 0.7507 0.7514 0.7600 0.7533 0.7320

DW+TF 0.7939 0.8095 0.8160 0.8144 0.8255 0.8222 0.8210 0.8258 0.8315 0.8178

MFDW 0.7979 0.8308 0.8438 0.8412 0.8453 0.8429 0.8470 0.8455 0.8453 0.8377

CTNRL 0.7651 0.7786 0.7879 0.7900 0.7931 0.7915 0.7942 0.8016 0.7887 0.7879
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The experimental results on Citeseer, DBLP, and SDBLP datasets show that the CTNRL algorithm 
has better experimental results on the larger network with smaller network averageness. However, 
the training results on the smaller network with denser network are worse. The main reason is that 
in the process of clustering, the nodes belonging to the same class are divided into different classes 
of nodes, resulting in the deviation of experimental results.

Visualization
Network visualization is an important means to evaluate the classification of network nodes. In network 
visualization analysis, the classification effect of network nodes can be presented more intuitively. If 
the node classification effect is good, there will be an obvious clustering phenomenon and obvious 
clustering boundary in the visualization task. This will facilitate subsequent tasks.

In the Citeseer dataset, DBLP dataset, and SDBLP dataset, three categories are randomly selected. 
Two hundred nodes are randomly selected in each category for visualization task analysis. Figure 4 
shows the visualization results of the CTNRL algorithm on three datasets.

It can be seen from the visualization results that CTNRL algorithm has obvious clustering 
effects on the Citeseer, DBLP, and SDBLP datasets. Among them, the clustering effect 
is more pronounced on the Citeseer dataset. In addition, the Citeseer dataset has obvious 

Figure 3. Experimental Results

Figure 4. CTNRL Visualization
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clustering boundaries. The DBLP datasets has a clustering of nodes of the same category; 
however, the clustering boundaries are not clear. The SDBLP dataset has a clustering effect 
and a clustering boundary. The clustering boundary is obvious compared to the DBLP 
dataset. There are four categories in the DBLP dataset. While there are many nodes in each 
category, the clustering is unsupervised. This results in the incorrect classification of nodes 
of the same kind in the process of clustering. Hence, the visualization results are worse than 
the Citeseer dataset.

Case Studies
The Citeseer dataset is selected for case analysis to further verify the experimental effect. First, we 
randomly select a node in the dataset, titled “Topological Quantum Information Theory” and class 
labeled “8.” In the CTNRL algorithm, the five nodes with the highest cosine similarity to the selected 
target node are obtained for analysis. The results obtained are shown in Table 7.

As seen in Table 7, the titles of the five returned nodes have the same words as those of 
the target node. The class labeled of these nodes is the same. For example, in the first node 
returned, the node is titled “Topological Quantum Field Theory for Calabi-Yau Three Folds 
and G2 manifolds.” The same words exist as the target node (“Topological,” “Quantum,” 
“Theory”) and the class label of the returned node is the same as the class label of the target 
node. This shows that the algorithm considers the external text features of nodes when 
learning node vector representation. It also proves that the clustering information of nodes 
play a key role in the final node vector representation, which further verifies the feasibility 
of the algorithm.

CONCLUSION

In this paper, we propose a network representation learning algorithm CTNRL which can combine 
multiple feature information. The algorithm first conducts clustering on the network to obtain 
the clustering characteristics of the network. Then, it conducts a random walk on the network 
structure to model the relationship between nodes. Simultaneously, the nodes and clustering 
information are modeled to learn the input clustering vector and the output word vector. The 
vector of the target node is affected by both the network structure and node text feature. The 
experimental results show that the quality of node vector can be improved by adding text feature 
and clustering feature based on network structure. The experiment was validated on three datasets. 
The expected results were obtained.

Table 7. Case Analysis

Algorithm Vertex Title Cosine 
Similarity

Class 
Label

CTNRL

Topological Quantum Field Theory for Calabi-Yau Three folds and 
G2 manifolds 0.9668 8

Ed Nelson’s Work in Quantum Theory 0.9139 8

Quantum Information Theory 0.9052 8

The Search for the Holy Grailin Quantum Cryptography 0.8947 8

Quantum Cryptography 0.8868 8
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