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ABSTRACT

In this paper, the real-time changes of demand-side response factors are accurately considered. First, 
CNN is combined with BiLSTM network to extract the spatio-temporal features of load data; then an 
attention mechanism is introduced to automatically assign the corresponding weights to the hidden 
layer states of BiLSTM. In the optimization part of the network parameters, the PSO algorithm is 
combined to obtain better model parameters. Then, considering the average reduction rate of various 
users under energy efficiency resources and the average load rate under load resources on the original 
forecast load and the original forecast load, the original load is superimposed with the response load 
considering demand-side resources to achieve accurate load forecast. Finally, “price-based” time-of-
use tariff and “incentive-based” emergency demand response are selected to build a load response 
model based on the principle of maximizing customer benefits. The results show that demand-side 
response can reduce the frequency and magnitude of price fluctuations in the wholesale market.

Keywords
Attention Mechanisms, Bidirectional Long-Short Memory Networks, Convolutional Neural Networks, Demand-
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INTRODUCTION

The reform of the electricity market is an inevitable trend of our country’s development and the 
requirements of the times. Electricity supply and demand will maintain a balance of resource utilization 
through real-time transactions, so as to fulfill the global strategic goal of energy conservation and 
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emission reduction. In this context, high-precision short-term load forecasting can formulate efficient 
and economical power generation plans for power dispatch management departments, rationally 
arrange unit output, and ensure the safety and stability of the power system(Kong et al., 2017; 
Lekshmi et al., 2019). At the same time, various facilities such as pumped storage, electric vehicles, 
and energy storage power stations have been connected to the grid one after another, making the 
range and amplitude of the load-side response continue to increase, and the range of preferred users 
for demand-side response has gradually expanded(Hao et al., 2019 ;Mohamed et al., 2018).

The demand-side is an important part of power market planning. By analyzing the characteristics 
of the demand-side and integrating the supply and use methods of the electric energy system, it 
can assist the stable operation of the system and improve the market pricing mechanism.Adenso 
et al. (2002) comprehensively summarized the main problems encountered by OECD countries 
implementing demand side response projects, introduced the implementation experience of various 
countries, and clearly pointed out the important role of two demand side response mechanisms in 
power grid operation. In order to effectively implement demand-side projects,Hopper et al. (2006) 
conducted a study on the success factors of real-time electricity price project operation, emphasizing 
convenience, fairness, and information transparency in the implementation of electricity price 
projects. Based on the implementation of demand response projects under the smart power grid, Fell 
et al. (2014) considered factors such as time-of-use electricity prices, subsidy policies, accounting 
and energy storage technology and distributed power generation technology to construct the power 
distribution income-expense model of demand-side response projects. Under the premise of wind 
power uncertainty, Qadrdan et al. (2017) established a two-tier planning model for wind power system 
dispatch with day-ahead hourly electricity price optimization and incentive demand-side response. 
This model promotes power users to cut peaks and fill valleys, effectively guides the adoption of 
wind power, reduces the cost of thermal power generation, and improves the benefits of power users.

The purpose of this paper is to study the demand-side response problem under the premise 
of power load forecasting and power user comprehensive benefit maximization. Firstly, this paper 
proposes a new ultra-short-term power load forecasting method based on CNN-Bil STM-Attention(AC-
BILSTM) for the characteristics of nonlinearity and timing of power load data. Among them, 
convolutional neural network CNN can effectiely extract the nonlinear local features of power load 
data. BiLSTM layer is used to extract bidirectional timing features of sequence data. The features 
generated by the hidden layer of BiLSTM are taken as the input of the Attention mechanism, and the 
Attention mechanism is used to distinguish the time information extracted from the BiLSTM layer 
by weighting the importance degree to reduce the influence of redundant information on the load 
prediction results. Second, in order to improve the prediction accuracy of electric load, an electric 
load prediction model using particle swarm algorithm (PSO) to optimize the hyperparameters of AC-
BILSTM neural network is proposed. The PSO algorithm is used to find the global optimal solution 
effectively for model hyperparameter search, and the appropriate hyperparameters are found and 
validated by continuous training.The load level of the system is predicted, the potential of regional 
demand side response is fully analyzed, and the response load accounting of the original load and 
demand side resources is superimposed. Perform accurate load forecasting. Finally, a demand-side 
response model based on demand-side revenue maximization is constructed, and the relationship 
between electricity price and power demand after the implementation of the two measures is analyzed 
by examples. By introducing demand-side responses during peak periods of electricity consumption 
in the electricity market, consumers can adjust their consumption patterns according to price signals 
in the market. In addition, demand-side response can also reduce electricity consumption during peak 
load hours, which can generate a certain level of stable revenue in the market.

The contributions of this paper are as follows: 1) A CNN-BilSTM-Attention (AC-BiLSTM) 
based ultra-short-term power load forecasting method is proposed, which is also combined with PSO 
algorithm for model hyperparameter finding; 2) Considering the impact of the average consumption 
reduction rate of each type of users under energy efficiency resources and the average load rate under 
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load resources on the original predicted load, the demand side response potential of this region is 
fully analyzed, and the original load and the response load are superimposed to make a more accurate 
load prediction. 3) Two demand-side response measures, “price-based” TOU price and “incentive-
based” emergency demand response, are selected to construct a load response model according to 
the principle of maximizing user benefits, and analyze the changing relationship between electricity 
price and electricity demand after the implementation of the two measures through examples.

RELATED WORK

Most of the past short-term load forecasting are deterministic forecasts, which can be divided into 
statistical forecasting methods and intelligent forecasting methods based on machine learning according 
to different forecasting principles. Statistical prediction methods mainly include linear regression (LR)
(Geng et al., 2002), support vector regression (SVR)(Jiang et al., 2018), and Bi-LSTM. These models 
are mainly constructed for linear relationships, ignoring the influence of factors such as climate and 
date types on short-term load forecasting, and the forecasting accuracy is low. With the emergence of 
artificial intelligence, machine learning and deep learning methods have been widely used in short-term 
load forecasting. Wu et al. (2016) use a support vector machine (SVM) model, which can obtain the 
optimal solution of the system in the case of limited samples and achieve a relatively ideal prediction 
accuracy, but when the amount of data increases, its application effect is not as good as neural network 
models. Su et al. (2017) adopted an error-based back-propagation (BP) model, which has a simple 
structure and strong applicability, and is widely used in short-term load forecasting. However, the BP 
model tends to fall into a local minimum and cannot obtain the global optimum solution. Zou et al. 
(2005) combined the recurrent neural network (RNN) with the ant colony optimization algorithm. This 
model has both the advantages of ant colony optimization and the timing characteristics of RNN, but 
RNN is prone to the problem of gradient disappearance when processing long time series.Peng et al. 
(2019)proposed a network model based on long-term and short-term memory (LSTM), which can take 
into account the temporal and nonlinear relationship of data and has high prediction accuracy, but it is 
difficult to mine the deep relationship for data samples with high complexity. Lin et al. (2007) showed 
that the SVR algorithm can only perform single-step prediction. For the data with a large amount of 
spurious interference, the prediction error is large and the prediction effect is lagging.

Long short-term memory (LSTM) network has been widely used in the field of power load forecasting 
because of its special memory ability and gate structure, which can simultaneously take into account the 
timing and nonlinearity of load data. Ciechulski et al. (2021) used LSTM neural network in the field of 
power load prediction, and experiments showed that compared with feedforward neural network,LSTM 
model has higher prediction ability and applicability. Lu et al.(2019) proposed a hybrid neural network 
model based on CNN and LSTM, and proved that this model has higher prediction accuracy than ARIMA 
model, random forest model and single structure LSTM model. With the development of deep learning, 
BiLSTM, a bidirectional long short-term memory network, has been proposed as an extension of the 
traditional one-way LSTM network. BiLSTM can learn bidirectional timing features and further improve 
the accuracy of model prediction. Wang et al.(2021) proposed a combination model based on CNN-BIL 
STM for power load prediction. Compared with the single structure LSTM model and CNN-LSTM 
combination model, the proposed CNN-BI LSTM model has advantages.

In recent years, as an efficient resource allocation mechanism, attention mechanism has gradually 
become a research hotspot in the fields of speech recognition, image recognition and machine 
translation. Some scholars try to apply attention mechanism to power load prediction to improve the 
accuracy of load prediction. LIN et al.(2020) proposed an LSTM model based on attention mechanism, 
and tested the effectiveness of the model by using four different types of real load data: housing, large 
industry, commerce and agriculture. Shao et al.(2021) established VMD-IdbigRU load prediction 
model based on attention mechanism. Firstly, VMD was used to decompose the original power load 
data, and then IDBiGRU model based on attention and weight sharing mechanism was used to predict, 
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which improved the accuracy and speed of prediction.Miao et al.(2021) proposeda hybrid model based 
on convolutional neural networks and bidirectional long short-term memory (CNN-BiLSTM) with 
Bayesian optimization (BO) and attention mechanism (AM) for short-term load forecasting.CNN 
is used to capture important features of the input data. BiLSTM is good at time series prediction, 
while AM can reduce the computational complexity of the model. BO can help to automatically tune 
hyperparameter gauges.WU et al.(2021) proposed a CNN-LSTM-BIL based on attention mechanism 
STM is used for load prediction of integrated energy system. In this method, CNN and attention 
mechanism are combined to extract the effective local features of the model, and LSTM and BiLSTM 
are used to extract the temporal characteristics of load data. Compared with traditional methods, the 
proposed model can better predict the power load in the integrated energy system.

METHOD

A combination of CNN-BiLSTM-Attention (AC-BiLSTM) and PSO algorithm is proposed for ultra-
short-term power load forecasting method to address the nonlinear and time-series characteristics 
of power load data. Among them, the convolutional neural network CNN can effectively extract the 
nonlinear local features of the electric load data; the BiLSTM layer is used to extract the bi-directional 
temporal features of the serial data; the features generated by the BiLSTM hidden layer are used as 
the input of the attention mechanism, which distinguishes the importance of the temporal information 
extracted from the BiLSTM layer by weighting to reduce the influence of redundant information on 
the load forecasting results. The PSO algorithm is used for model hyperparameter search.

Convolutional Neural Network CNN
CNNs are mainly composed of these types of layers: input layer, convolutional layer, ReLU layer, 
pooling (Pooling) layer and fully connected layer (fully connected layer is the same as in a regular neural 
network). By stacking these layers together, a complete convolutional neural network can be constructed.
It is one of the most widely used algorithms in the field of deep learning, and has been used in the field 
of power system research because of its efficient feature extraction capability.CNN mainly consists of 
a convolutional layer and a pooling layer, where the convolutional layer uses convolutional kernels for 
effective nonlinear local feature extraction of power load data, and the pooling layer mainly serves to 
downsample (downsampling) without corrupting the recognition results, and is used to compress the 
extracted features and generate more important feature information to improve the generalization ability.

LSTM Neural Network
In traditional neural networks, the model does not pay attention to what information will be available 
in the previous moment of processing for the next moment, and only focuses on the current moment 
of processing each time. the proposed LSTM neural network is a good solution to this problem.
Hochreiter et al. first proposed a novel recurrent network architecture LSTM neural network.LSTM 
strengthens the long-term memory capability by introducing logical control units of three kinds of 
gates: forgetting gate, input gate and output gate to maintain and update the cell state.LSTM is an 
excellent variant model of RNN, which inherits most of the characteristics of RNN model and solves 
the gradient backpropagation process due to gradual reduction and Vanishing Gradient problem, 
which can well solve the problem of gradient disappearance and gradient explosion of RNN.The 
LSTM helps to improve the accuracy of ultra-short-term power load forecasting by learning the long 
time correlation of time-series data so that the network can converge better and faster.The LSTM 
structural unit is shown in Figure 1.

The forgetting gate determines the information to be forgotten from the cell state C(t-1) at moment 
t-1, as shown in equation (1). The forgetting gate reads the hidden state h(t-1) at moment t-1 and the 
input sequence x(t) at moment t,and outputs a value between 0 and 1, with 1 indicating that the complete 
information is retained and 0 indicating that the information is completely discarded.
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where: f(t) is the forgetting gate state at moment t; Wf and bf are the weights and biases of the forgetting 
gate, respectively;σis the bipolar sigmoid activation function.

The input gate reads the input x(t) at moment t and determines the information stored in the neuron. 
Then the temporary state C(t) of the memory cell at moment t is generated by the tanh layer. Finally, 
the cell state is updated again to get the new cell state C(t), and the update process of the input gate 
is shown in equation (2)-equation (4).
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where: i(t) is the input gate state at time t, and the amount of information passed from control x(t) to 
C(t): Wi, bi, are the weight and bias of the input gate, respectively: Wc, bc are the weight matrix and 
bias term of the cell state, respectively; tanh is the hyperbolic tangent activation function:Ä  is the 
Hadamard product.

The output gate selects the important information from the current state. The sigmoid layer first 
decides which part of the neuron state needs to be output, and then the neuron state to be output goes 
through the tanh layer and multiplies with the output of the sigmoid layer to get the output value h(t), 
which is also the input value of the next hidden layer. The output gate is calculated as shown in Eq. 
(5) and Eq. (6)

Figure 1. Structure of LSTM
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where: O(t) is the output gate state at time t; WO and bo are the weight matrix and bias term of the 
output gate, respectively.

BiLSTM Neural Network
LSTM is a one-way recurrent neural network, and the model actually only receives the information 
from “above” without considering the information from “below”. In a practical application scenario, 
the output result may need to be determined by several inputs before and several inputs after, and the 
information of the whole input sequence is obtained.

A complete BILSTM network contains an input layer, a forward LSTM layer, an inverse LSTM 
layer and an output layer.The bi-directional long short-term memory neural network BiLSTM is an 
optimized improvement of the traditional one-way LSTM, which combines a forward LSTM layer 
and a backward LSTM layer, both of which affect the output.The unidirectional LSTM can make 
full use of the load data history information to avoid long-distance dependence, while the BiLSTM 
facilitates both forward and backward sequence information input, fully considering both past and 
future information, which is conducive to further improving the accuracy of model prediction.The 
structure of BiLSTM is shown in Figure 2.

Attention Mechanism
Attention originated from the simulation of the attentional features of the human brain, and the 
method was first applied to the field of image processing. In the field of deep learning, the Attention 
mechanism considers that the importance of different features in each layer of the network is different, 
and the later layers should focus more on the important information and suppress the unimportant 
information. The structure of the Attention unit is shown in Figure 3. 

Figure 2. Structure of BiLSTM memory neural network
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where: ati is the attention layer output value weight value of BiLSTM hidden hi on the current input; 
有y2,y3,..., yt are the input sequences; h1,h2,h3,..., ht are the hidden layer state values corresponding to 
the input sequences y1,y2,y3,..., yt are the hidden layer state values, i.e., ht is the hidden layer state 
value corresponding to the input yt; ¢h t is the final feature vector; V, W, U, B are the learning 
parameters of the model, which are continuously updated with the model training process.

PSO Algorithm
Since the historical data of electric load is a time series data, the AC-BiLSTM model performs well 
in the analysis of time series. And the hyperparameters in the algorithm have a great impact on the 
accuracy of load forecasting. In this paper, we use PSO to find the optimal hyperparameters of AC-
BiLSTM and update their corresponding values in load forecasting.The PSO algorithm is a global 
optimization algorithm derived from simulating the foraging behavior of a flock of birds in nature. 
Each possible particle in the global flock is considered as a particle, and each particle has a different 
direction and speed of motion toward the optimal position. By updating the individual optimal position 
and the global optimal position, the optimal solution of the objective function is obtained, and thus the 
global optimization search is realized. In this paper, PSO is combined with AC-BiLSTM algorithm 
to construct a power load forecasting model.

Figure 3. Structure of Attention
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AC-BiLSTM prediction model structure
In this paper, we propose a combination of AC-BiLSTM model and PSO algorithm for ultra-short-term 
power load forecasting, as shown in Figure 4. First, the collected load data are preprocessed and divided 
into training and test sets. Secondly, the AC-BiLSTM model is constructed. In this paper, a CNN 
framework consisting of a one-dimensional convolutional layer and a pooling layer is used to 
automatically extract the internal features of the load data.BiLSTM hidden layer modeling learns the 
internal dynamics of the local features extracted by CNN and iteratively extracts more complex global 
features from the local features. The features generated by the BiLSTM hidden layer are used as the 
input of the Attention mechanism, and the attention mechanism is used to automatically differentiate 
the importance of the temporal information extracted by the BiLSTM hidden layer by weighting, so 
that the time series properties of the load data itself can be used more effectively to explore the deep 
temporal correlation.The attention mechanism is effective in reducing the loss of historical information 
and highlighting key historical time points to weaken the impact of load forecasting results. The attention 
mechanism can effectively reduce the loss of historical information and highlight information at key 
historical points in time to weaken the impact of redundant information on load prediction results.Then 
the output of the Attention layer is used as the input of the fully connected layer, and the final load 
prediction result is output through the fully connected layer. In addition, a Dropout technique is introduced 
to prevent overfitting, i.e., a Dropout layer is added after each BiLSTM hidden layer, which can improve 
the generalization of the model and reduce the training time of the model while preventing the overfitting.
In the network parameter optimization part of this paper,In this paper, we combine PSO with AC-
BiLSTM neural network by using three key hyperparameters of the algorithm (number of neurons L1 , 
learning rate å , and number of training iterations k) as optimization variables for PSO particles, and 
by updating the velocity and position of the particles to minimize the adaptation initialization population 
value for load prediction and to obtain better model parameters.Finally, the trained AC-BiLSTM model 
is saved and the validity of the model is verified using a test set, and the load prediction results are 
analyzed to identify deficiencies and to continuously optimize the prediction model.

Load forecasting method that takes into account the 
response resources on the demand-side
With the development of active power distribution systems and user-side demand response, diversified 
response resources continue to be added, and more power grid entities participate in market competition. 
On the one hand, power users with different power consumption behaviors exhibit different response 
methods in the operation of active distribution networks. On the other hand, in an environment where 
the electricity sales market is gradually liberalized, in order to avoid the waste of investment caused by 
extensive expansion plans, it is necessary to consider the response potential of demand-side resources 
and take the impact of demand-side resources on the load into account to achieve a more accurate load 
forecasting. Therefore, the load forecasting is divided into the following three steps:

1) 	 Calculate the impact of energy efficiency resources on the load of power users

Considering the change in power consumption of users under the action of various energy 
efficiency resources. Energy efficiency resources can reduce the power consumption of power users 
throughout the forecast period.

Use DQ
t
 to represent the power savings of users at time t , and use DQ

it
 to represent the power 

savings of power users under the action of the i
th

 energy efficiency resource at time t . DQ
it,0

 
represents the initial power consumption of power users before the �i

th�
 energy-efficiency resource 

takes effect at time t , 
öer i,

 is the total consumption reduction rate of the i
th

 energy-efficiency resource, 
and G  is equal to the product of the load penetration rate and the natural power saving rate; h

i
 is 
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the state Coefficient, used to describe whether the i
th

 energy efficiency resource exists, its value is 
0 means it exists, and 1 means it does not exist. Therefore, under the action of energy efficiency 
resources, the power saving of the user at time t . 

∆Q Q h
it it i er i
=

, ,0
j 	 (11)

It can be concluded that under the action of multiple energy efficiency resources, the total amount 
of electricity saved by users at time i  is:

∆ ∆ ∆ ∆Q Q Q Q
t t t mt
= + + +

1 2
... 	 (12)

Among them, m is the total number of types of energy efficiency resources. Therefore, by 
superimposing the change in electricity consumption with the original electricity consumption, the 
electricity consumption at time t  after the user responds to the energy efficiency resources can be 
obtained:

Q Q Q
er t t t, ,
= −

0
∆ 	 (13)

2) 	 Consider the impact of load resources on the user load

Load resources include various administrative measures or economic means. These measures 
are mainly used by demand response users to transfer electricity time or reduce their own electricity 
consumption through voluntary selection in order to achieve the purpose of changing electricity 
load. Among them, administrative measures mainly include direct load control and orderly power 
management. Economic measures mainly include electricity price policies such as tiered electricity 
prices, peak-to-valley electricity prices, interruptible electricity prices, and seasonal electricity prices. 
Under the influence of administrative measures, the load curve mainly shows a downward trend, and 
the load reduction model is:

∆P P Q
ti t t er er t i

lo i
, , , ,

,

= −
0

1
µ
η

	 (14)

In the formula, DP
i t,

 represents the load reduction under the influence of the i
th

 load resource 
at time t ; P

t er, ,0
 is the load after the response of the energy efficiency resource at time t ; 

ìi
 is the 

state coefficient, which describes whether the i
th

 load resource exists, which is 1 means it exists, 
and 0 means it does not exist. 

çlo i,
 represents the load rate of the electric power user under the influence 

of the i
th

 load resource at the time t . The load rate is equal to the product of the average load rate 
and the load penetration rate. Therefore, under the influence of administrative measures, the amount 
of load reduction in response to multiple load resources is:

∆ ∆ ∆ ∆P P P P
t t t t n t
= + + +( ), , ,

...
1 2

s 	 (15)
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In the formula, 
ót

 is the simultaneous rate of load resources acting together; n  is the total number 
of load resources owned by power users. Therefore, the load at time t  under the combined action of 
energy-efficient resources and load resources under administrative measures is:

P P P
t t t
= −

,0
∆ 	 (16)

Among them, P
t,0

 is the original load of the power user without the response resource on the 
demand-side. 

3) 	 Load stacking

On the basis of measuring and calculating the impact value of demand-side response resources 
on user load in the first two steps, it is superimposed with the original load to obtain the load forecast 
value and calculate the forecast error.

Demand-side Response Load Model
The common forms of demand-side response in my country’s power system at this stage are time-of-
use price and emergency demand response. In order to avoid the large difference between the peaks 
and valleys of the load, the policy of time-of-use electricity prices is usually adopted to guide users 
to reduce electricity consumption during the peak period and adjust the electricity consumption 
behavior to the valley period. However, the implementation method of emergency demand response 
is that the power system operator formulates the incentive payment price in advance. When the 
security and stability of the power grid are threatened, the power user can reduce the load usage to 
deal with this emergency that threatens the reliability of the power grid. The following will analyze 
the load adjustment methods of power users and the impact of electricity price changes and incentive 
payments on user demand through the construction of the response model.

Avoidable Load Model
The avoidable load model is related to the self-elasticity coefficient of the price elasticity of demand, 
and users can reduce electricity demand by focusing on moderation or improving management. 
Usually this type of electricity consumption is small, and it has not attracted enough attention from 
users. But when the stimulus of the electricity price policy is large enough, users will take measures 
to reduce the additional electricity consumption. Therefore, the policy formulation mainly focuses 
on the ratio of basic user needs and general demand, sensitivity to electricity prices, electricity price 
grading and incentive policies. The model construction process is as follows.

Assuming that the power user’s power demand at time t  is D t( ) , the incentive compensation 
payment is I t( ) , and the electricity price is P t( ) . When the user participates in the emergency 
demand project, the change in electricity demand is:

∆D t D t D t( ) = ( )− ( )0
	 (17)

Among them, D t( )  is the initial power demand, that is, the power demand that does not participate 
in the response of the demand-side. The total incentive compensation TI  and total revenue B  that 
the user gets at time t  are:
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TI D t I t D t∆ ∆( )( ) = ( )× ( ) 	 (18)

B t B D t D t P t TI D t( )− ( )( )− ( )× ( )+ ( )( )∆ 	 (19)

Among them, B t( )  represents the income when the user’s electricity demand is D t( )  before 
the compensation is paid at time t . The income function is expressed as:

B D t B t P t D t
D t

E t D t
( )( ) = ( )+ ( )× ( )× +

( )
( )× ( )















0 0

0

1
2

∆
∆

	 (20)

Figure 4. Flow chart of power load forecasting under demand side response
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Where B t
0 ( )  represents the income when the user’s initial demand is D t

0 ( ) ; E t( )  is the response 
elasticity coefficient at the time t . According to formula (12) and formula (15):

P t I t P t
D t D t

E t D t
( )+ ( ) = ( )× ( )− ( )

( )× ( )
+















0

0

0

1 	 (21)

Among them, P t
0 ( )  is the initial electricity price. It can be seen from the above formula that if 

I t( ) = 0 , then D t D t( ) = ( )0
. It shows that when there is no incentive to pay, the electricity price 

remains unchanged and E t( )  is zero. 

Transferable Load Model
The transferable load is related to the cross-elasticity coefficient of the price elasticity of demand. 
The transferable load often changes with the development of the entire industry. The greater the user’s 
power consumption, the stronger the sensitivity to the time-of-use electricity price. The load transfer 
period is a common cost control method. In addition to shifting the load during different periods 
of electricity use, other forms of energy will be used to replace the electricity load, such as direct 
purchase of hot water or gas boilers instead of electric heating boilers. The policy formulation mainly 
focuses on basic electricity demand, transfer potential, electricity price grading and incentive policies.

The cross-elasticity coefficients of power users at time t  and time j  are expressed as follows:

E t j
P t

D t

D t

P t
,( ) = ( )

( )
×
∂ ( )
∂ ( )

0

0

	 (22)

The demand under the time-of-use price response can be expressed as:

D t D t E t j P j P j
D t

P jt
( ) = ( )+ ( )× ( )− ( )( )× ( )

( )=∑0 0

23

0

0

0

, 	 (23)

Assuming that the emergency demand measures are implemented at the same time at the time
j , the incentive compensation I j( )  at this time needs to be considered together with the electricity 
price, that is:

∆P j P j P j I j( ) = ( )− ( )+ ( )0
	 (24)

After comprehensively considering the time-of-use electricity price and incentive compensation, 
the demand of power users at time t  can be expressed as:

D t D t
D t

P j
E t j P j

t
( ) = ( )+ ( )

( )
× ( )× ( )

=∑0

0

0
0

23
, ∆ 	 (25)
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Finally, we combined the avoidable load and the transferable load model to obtain the power 
consumption form of the power user at each time of the day, as in equation (26).

D t D t
D t

P j
E t j P j

E t

t
( ) = ( )+ ( )

( )
× ( )× ( )
















× +

( )×
=∑0

0

0
0

23
1, ∆

∆∆P t

P t

( )
( )

















0

	 (26)

EXPERIMENTAL ANALYSIS AND RESULTS

Experimental Environment
This paper uses Intel (R) core (TM) i5-5200 cup2.20-ghz processor and 8GB memory. In terms of data 
sets, the historical load of one year after asynchronous operation of power grid in a certain region is 
taken as the training set database of load model (the sampling period is 15 minutes), the load data of 
the last week of a year is taken as the prediction data set, and the historical load data of the rest of the 
time is taken as the training set. Features related to date and time (load difference from the previous 
24 hours, the hour of the day, the load value before 48 hours, the load value before 24 hours, whether 
it is a working day, the day of a week, and the month of the year) are extracted, and the output of the 
model is the load data of the prediction point. In addition, outliers and missing values in the data were 
treated as missing values, and the average method was used to fill in the missing values (Li Al., 2015).

Power Load Forecast Results
Analysis of Short-Term Load Prediction Results of AC-BiLSTM Model
The short-term load forecasting results and the absolute error (the absolute value of the difference 
between the predicted and actual values) for the dataset using the AC-BiLSTM forecasting model 
are shown in Figure 5.

The forecast results in Fig. 5 show that although the load forecasting model can avoid falling 
into the local optimal, expand the search space, and increase the probability of obtaining the global 
optimal value, which improves the accuracy of load forecasting, there are still some errors in a certain 
period of time. This may be caused by outliers and missing values in the data set.

Results of load forecasting taking into account the demand side response
In order to grasp the historical data pattern and further improve the prediction accuracy. We refine 
the main electricity consumption facilities of various types of users, consider the role of energy 
efficiency class resources and load class resources policies (Table 1), measure the electricity saving 
behaviors occurring in users, and superimpose them to the load forecast values of each moment of 
the AC-BiLSTM forecasting model, and finally calculate the electricity load forecasting results. The 
load forecasting results and absolute errors are shown in Figure 6.

It can be clearly seen that the node effect is significantly improved after the introduction of 
demand-side resources. The forecast deviation is smaller and closer to the actual situation. In addition, 
in order to verify the effectiveness of the prediction model proposed in this paper, several common 
short-term load prediction algorithms in the literature are selected: LSTM network, bidirectional long 
and short-term memory network (Bi-LSTM), and Genetic algorithm improved BP neural network 
(GA-BP-Optimization) as comparative experiments. Figure 7 shows the daily load forecasting effect 
of the selected algorithm randomly selected on the test set and the forecast error calculated by the 
evaluation index selected in this paper, as shown in Table 2.

To further illustrate the power saving effect of demand-side response, we compare and analyze 
the data of annual electricity consumption and maximum load of various users before and after the 
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introduction of demand-side resources, as shown in Table 3 and Table 4. With the effect of demand-
side resources, the electricity consumption of each power user is reduced by more than 10% and 
the maximum load is reduced by more than 20%, both of which show an obvious downward trend, 
achieving the expected effect of demand-side response and reducing the expansion demand of 
substations and lines, with considerable investment saving benefits.

The Impact of Time-of-Use Electricity Prices and Emergency 
Demand Response on the Load Curve
The data set comes from the historical load data of one month after the asynchronous operation of the 
power grid in a certain area. According to the model proposed in this paper, based on the principle of 

Figure 5. AC-BiLSTM models to compare short-term load prediction with actual value

Figure 6. Consider the demand side response load forecast and actual value comparison
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maximizing user benefits, calculate the user’s load demand at each moment. After implementing the 
time-of-use electricity price and emergency demand response, according to the current peak-valley 
price mechanism in the region, the peak electricity price (1.26 RMB/KW·h) and the low electricity 
price (0.42 RMB/KW·h) are respectively at the equilibrium price (0.84 RMB/KW·h), which rises and 

Table 1. The base data of load forecasting as considering

User Type Energy efficiency resources avg Load resources avg

Industry 0. 0243 0.6220

Construction 0. 0325 0.6691

Transport 0. 0365 0.3358

IT 0. 1235 0.9025

Business 0. 1349 0.5236

Accommodation and meals 0. 1267 0.6326

Finance 0. 0885 0.6911

Agency 0. 1475 0.5433

Resident 0. 1565 0.3366

Table 2. Algorithm error comparison

Study Algorithm EMAE/(kW·h) ERMSE/(kW·h)

Wenna et al.(2022) AC-BiLSTM 485.82 713.66

Yixiu et al.(2022) Bi-LSTM 553.35 905.22

Cui et al.(2022) LSTM 842.02 1358.35

Xiao et al.(2020) GA-BP-Optimization 1056.72 1659.65

Figure 7. Comparison of daily load forecast results
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falls by 50%. Assume that the compensation received by power users participating in the response 
is 1.3 RMB/KW·h. When the incentive compensation is reduced, for example, 0. 4 RMB/KW·h, the 
comparison of the load curve results is shown in Figure 8.

It is not difficult to understand that when the incentive compensation decreases, the user response 
level decreases. In addition, in order to obtain high compensation payments, some users will inevitably 
use improper means to reduce the load. In order to prevent this phenomenon from happening, the power 
system operating agencies usually set the lower limit of load usage for users, which is used to stipulate 
the minimum power consumption of power users under normal power consumption conditions. 
Therefore, the introduction of demand-side response during the peak electricity consumption period 
of the electricity market can enable consumers to adjust their own electricity consumption patterns 
according to the price signals in the market. However, in the medium and long term, demand-side 
response can reduce the frequency and amplitude of electricity price fluctuations in the wholesale 
market, realize the linkage between the retail market and the wholesale market, and play a positive 
role in the reliable operation of the system throughout the power supply cycle.

LIMITATIONS AND FUTURE WORK

Although the AC-BiLSTM model and PSO algorithm considering energy efficiency resources are 
beneficial for improving the accuracy of electric load forecasting, since the adopted dataset is a one-

Table 3. Comparison of annual electricity results before and after considering demand-side resources

User Type Unconsider demand side resources (MW·h) Consider demand side resources (MW·h)

Industry 9133. 262 8766. 565

Construction 547. 355 516. 266

Transport 5698. 561 5986. 365

IT 310. 256 298. 362

Business 16523. 154 13950. 845

Accommodation and meals 705. 264 703. 265

Finance 129. 656 126. 325

Agency 225. 365 300.562

Resident 1221. 689 1119. 986

Table 4. Comparison of maximum load results before and after considering

User Type Unconsider demand side resources (MW·h) Consider demand side resources (MW·h)

Industry 4401.562 4090.326

Construction 213. 325 200. 236

Transport 1595. 564 1501. 369

IT 99. 265 88. 639

Business 3684. 856 3416. 691

Accommodation and meals 88. 336 90. 226

Finance 12. 302 9. 365

Agency 3. 396 3. 698

Resident 345. 264 309. 566
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year dataset, future research will use more data to make full use of the advantage of big data to dig 
deeper into the load change pattern and further improve the ultra-short-term electric load forecasting 
accuracy. Secondly, future research will consider the problem of electricity load forecasting in a more 
complex environment with factors such as holiday effects, electricity prices, and rainfall. In addition, 
future research will consider the response potential of more demand-side resources and take into 
account the impact of more demand-side resources on load to achieve more accurate load forecasting.

CONCLUSION

Based on the development background and research status of demand side response in China, this paper 
studies the problem of demand side response under the premise of load forecasting and maximizing 
the comprehensive benefit of power users:

1) 	 In load prediction, AC-BILSTM model is adopted to predict the system load level, give full 
play to the advantages of CNN and effectively extract spatial features. Combined with BiLSTM 
network’s ability to extract bidirectional temporal features of sequence data, and the Attention 
mechanism can selectively pay Attention to the hidden layer state. Thus fully excavate the time 
series attribute of load data itself and obtain the deep time correlation. The attention mechanism 
can also effectively reduce the loss of historical information and highlight the information of key 
historical time points to reduce the influence of miscellaneous information on load prediction 
results.In the network hyperparameter optimization part of this paper, the PSO algorithm is 
used to efficiently find the global optimal solution of hyperparameters for AC-BiLSTM network 
optimization, which can avoid the problem of suboptimal model parameters caused by artificial 
parameter selection and reduce the influence of human factors on the model accuracy.

2) 	 Fully analyze the demand-side response potential of the region, and superimpose the original load 
with the response load considering demand-side resources to achieve accurate load prediction.

3) 	 In terms of customer benefits, two demand-side response measures, namely “price-based” TOU 
price and “incentive-based” emergency demand response, are selected, and a load response model 

Figure 8. Comparison of load curve results after implementing time-of-use electricity prices and emergency demand response 
measures
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is constructed based on the principle of maximizing customer benefits. The relationship between 
electricity price and power demand after the two measures are analyzed. The EXPERIMENT 
SHOWS THAT THE INTRODUCTION OF demanD-SIDE RESPONSE in the peak HOURS 
of the electricity market can make consumers adjust their electricity consumption according to 
the market price signal and reduce the electricity cost. In addition, demand-side response can 
also reduce the power consumption during peak hours, reduce the balance adjustment cost of 
the power system, and save the power related resources for the whole society. In the medium and 
long term, demand-side response can reduce the frequency and amplitude of price fluctuation 
in the wholesale market, realize the linkage between the retail and wholesale markets, and play 
a positive role in the reliable operation of the system in the whole power supply cycle.
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