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ABSTRACT

It has been widely known that long non-coding RNA (lncRNA) plays an important role in gene 
expression and regulation. However, due to a few characteristics of lncRNA (e.g., huge amounts of 
data, high dimension, lack of noted samples, etc.), identifying key lncRNA closely related to specific 
disease is nearly impossible. In this paper, the authors propose a computational method to predict 
key lncRNA closely related to its corresponding disease. The proposed solution implements a BPSO 
based intelligent algorithm to select possible optimal lncRNA subset, and then uses ML-ELM based 
deep learning model to evaluate each lncRNA subset. After that, wrapper feature extraction method 
is used to select lncRNAs, which are closely related to the pathophysiology of disease from massive 
data. Experimentation on three typical open datasets proves the feasibility and efficiency of our 
proposed solution. This proposed solution achieves above 93% accuracy, the best ever.

KEyWORDS
Binary Particle Swarm Optimization, Expression Profile, Extreme Learning Machine, Long Non-Coding RNA

INTRODUCTION

Bioinformatics research of Long non-coding RNAs (lncRNAs) has attracted much attention in 
academia and industry because of the important role of gene expression in the genome. lncRNAs 
are defined as transcripts larger than 200nt in length with limited protein-coding potential. LncRNAs 
cover a large part of the non-coding information of the human DNA, representing over 90% of the 
whole genome. Furthermore, recent studies showed that lncRNAs are involved in the pathophysiology 
in various ways, e.g., gene expression, transcription, and post-translational processing.
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The initial lncRNA bioinformatics research mainly focuses on sequence acquisition and data 
collection, e.g., the functionalities to collect and annotate lncRNAs. However, with the deepening 
understanding of the datasets, more and more research has been transferred to data analysis and 
application. For instance, via the hypothesis of “Expression-related genes have a relevant function,” 
“Interacting molecules have a relevant function,” it is possible to evaluate the similarity between 
different lncRNAs and thus predict the relationship between lncRNA and corresponding disease. 
However, there are several pending technical challenges:

1.  Feature Extraction Challenge: High-throughput genomics data has specific features, e.g., 
high dimension features and lack of noted samples. Therefore, the key technical challenge is the 
exploration of data distribution, characteristic patent, and potential relationships based on prior 
knowledge from a few labeled samples.

2.  Computation Challenge: Under the circumstances of the huge amount of genomics data, the 
design of computation models, especially lightweight, intelligent, and efficient computation 
algorithms, is waiting for an urgent answer.

3.  Transfer Learning Challenge: In case of data distribution changes (for instance, gene expression 
data change from one species to another), the seamless transfer from the previous training model 
to another field is another technical challenge.

This paper investigates lncRNA-related issues and proposes a generic, lightweight, intelligent, 
and efficient computing model to predict key lncRNA related to disease pathophysiology. There are 
three contributions in our work:

1.  We proposed a Binary PSO-based algorithm for selecting possible lncRNA subsets based on 
extracted features and logical connections. As a result, it is possible to acquire optimal lncRNA 
subset via multiple and iterative optimization.

2.  ELM-based classification model is imported and implemented to evaluate each lncRNA’s 
influence on disease. The evaluation result is used to guide future selection preferences.

3.  We selected three datasets for experiment and evaluation: breast invasive carcinoma, carcinoma 
of the colon, and lung adenocarcinoma data. The result shows that our proposed solution achieves 
93.6% classification accurate, which is the best.

The rest of the paper is organized as follows. We first present the relationship between lncRNA 
and disease (especially in the field of cancer), and then describes existing machine learning-based 
lncRNA research. Next, we introduce the lncRNA data collection, pretreatment, and noise filtering. 
The next section introduces the proposed BPSO-ML-ELM solution for lncRNA function prediction. 
We then illustrate the corresponding experiment, evaluation, and discuss the proposed solution in 
three datasets. Finally, the conclusion and future works are suggested.

RELATED WORKS

LncRNA and Disease
LncRNAs are a group of RNA transcripts ranging in length from 200 nt to 100 kilobases (kb), yet 
lack significant open reading frames (ORFs) and have no protein-coding capacity. However, recent 
research has found their aberrant regulation in various diseases, especially in different cancers. 
Biological experiments have shown that mis-regulated lncRNAs expression across many cancer 
types shows that aberrant lncRNAs expression is a major contributor to tumorigenesis. Conversely, 
many lncRNA that are up-regulated in cancers play an important role in promoting cell proliferation, 
invasion, and metastasis, such as H19, HOTAIR, MALAT1, and HULC.
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However, with the rapid development of high throughput sequencing and lncRNA chip 
technology, more and more lncRNAs have been found. In the meantime, traditional biological 
experiments show more and more technical limitations, especially in time consumption and 
laborious work. Therefore, the import of machine learning concepts in the research of genomics 
data for predicting key lncRNA, is urgent.

LncRNA Bioinformatics Research
The initial bioinformatics research in lncRNA is to obtain sequence data and construct a database 
from mainly two aspects: the experimental data collected from published literature (for example, 
lncRNA sequence and relational database LncRNAdb, LncRNA2Target, and LncRNADisease), and 
high-throughput gene databases, such as lncRNA gene expression information database ChIPBase, 
lncRNA-protein interaction database NPInter, and lncRNA-cancer control database starBase.

After that, lncRNA bioinformatics research shifted from data acquisition to data application. For 
example, the literature imports network inference algorithm into collected lncRNA-gene regulation 
data to predict potential regulation relationships, and establish a new lncRNA-gene regulation database 
LncReg. Literature establishes lncRNA and gene co-expression network based on genechip data and 
then uses network propagation algorithm to carry out the lncRNA function annotation to improve 
prediction accuracy. Upon the priori data of LncRNADisease database, the literature implements a 
semi-supervised learning framework to predict the relationship between lncRNA and disease and 
achieves 81.3% -84.7% accuracy.

DATASET COLLECTION

DataSet Selection
We crawled the experimental datasets from Cancer RNA-Seq Nexus (CRN), the first public database 
providing phenotypes-specific coding transcript/lncRNA expression profiles and mRNA-lncRNA 
coexpression networks in cancer cells. CRN contains 54 human cancer RNA-Seq data sets, including 
326 phenotype-specific subsets and 11030 samples. Each subset is a group of RNA-Seq samples 
associated with a specific phenotype or genotype, e.g., breast cancer stage II, ER+ breast cancer, and 
Her2+ breast cancer. CRN also provides a user-friendly interface to efficiently organize and visualize 
coding-transcript/lncRNA expression profiles.

Inside the CRN database, we choose breast invasive carcinoma, colon adenocarcinoma, and 
lung adenocarcinoma as the experimental datasets for three reasons. First, the three datasets have 
representativeness. For instance, breast cancer is the leading cause of cancer deaths among women 
worldwide; colon adenocarcinoma is thought to have the third highest incidence of cancer worldwide; 
lung cancer has been one of the most malignant diseases with the highest morbidity and mortality 
and the greatest threat to people’s health and life. Second, the three data sets have relatively mature 
preliminary research and a reliable labeled sample. Third, the computational models available for 
three different gene expression profiles shows good generalization capability.

DateSet Crawler
We developed a data crawler to achieve three datasets from CRN via three steps:

1.  We selected breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), and lung 
adenocarcinoma (LUAD), and from these three datasets, we selected two control subsets with a 
high-quality and suitable scale from each dataset.

2.  We set appropriate selection parameters, then crawled the chosen six subsets from the expression 
profiles page on CRN.
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3.  We divided crawled data into several parts through lncRNA’s name, transcript ID, and FPKM 
(Fragments Per Kilobase per Million). Then, classified storage facilitates the next preprocessing.

Finally, three types of datasets were achieved, and the description is illustrated in Table 1. 
Specifically, we show the details of the three types of data sets in Table 2.

An early cancer diagnosis is crucial to effective treatment of the patients and higher survival 
rates. So that we crawled cancer subsets at the early stage (Stage I) and normal stage to make our 
experiment more meaningful in early cancer prediction.

Table 1. Three Typical Open Data Sets

Disease LncRNAs number Subset Number Total Samples Selected Subset Samples

Breast invasive carcinoma 1286 13 1191
Stage I 90

Normal 111

Colon adenocarcinoma 1221 10 479
Stage I 74

Normal 40

Lung adenocarcinoma 1044 9 572
Stage IA 133

Normal 59

Table 2. The Detail of Three Typical Open Data Sets

Selection
Breast invasive carcinoma Colon adenocarcinoma Lung adenocarcinoma

Subset Name Samples Subset Name Samples Subset Name Subset 
Name

1 Stage I 90 Stage I Stage I Stage IA 133

2 Normal (adjacent 
normal) 111 Normal (adjacent 

normal)
Normal (adjacent 

normal)
Normal (adjacent 

normal) 59

Metastatic Stage 
IIB 3 Stage II Stage II Stage I 5

Stage IA 84 Stage IIA Stage IIA Stage IB 140

Stage IB 9 Stage IIB Stage IIB Stage IIA 51

Stage II 3 Stage III Stage III Stage IIB 73

Stage IIA 360 Stage IIIA Stage IIIA Stage IIIA 73

Stage IIB 246 Stage IIIB Stage IIIB Stage IIIB 11

Stage IIIA 152 Stage IIIC Stage IIIC Stage IV 27

Stage IIIB 29 Stage IV Stage IV

Stage IIIC 65 Stage IV Stage IV

Stage IV 22

Stage X 14



International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

5

COMPUTATION MODEL

System Framework
Figure 1 illustrates the proposed computation model, with a description in the following three steps:

Step 1: Data Pre-Processing. The information gain ratio is proposed to reduce high dimensional 
features in lncRNA expression data and generate lncRNA candidate subsets.

Step 2: Optimum lncRNA Subset Selection. A binary PSO approach (with particle position and 
velocity parameters randomly initialized) is imported to select the possible optimum lncRNA 
subsets in the search space.

Step 3: Key lncRNA prediction. ML-ELM based approach is implemented to evaluate and predict 
possible optimum lncRNA subset selected.

Note that steps (3) and (2) could be iterated until the optimal classification accuracy reached a 
predefined threshold value.

Feature Extraction
To extract features from raw data, we import the approach of information gain ratio for dealing with 
high-dimensional data sets. First, the information gain ratio method can quickly filter many non-
critical noise characteristics and narrow the optimization feature subset search range. Second, this 

Figure 1. Computational Model
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approach is more reliable than the original information gain, which may contain too much deviation 
value. We illustrate the computational formula as follows.

Inside, Gain(A) could be calculated:

Gain ratio Gain A I− = ( )/  (1)

Gain S A E S E S A, ,( ) = ( )− ( )  (2)

E S p p
i

c

i i( ) = − ( )
=
∑
1

2
log  (3)

E S A
S

S
E S

v Value A

v

v
,( ) = ( )

∈ ( )
∑  (4)

where A refers to a specific attribute, S refers to a sample set, S
v
 refers to the sample subset whose 

attribute A is equal to v in S.
Therefore, the information gain rate for each lncRNA could be computed to obtain an expression 

ratio value representing lncRNA-Disease interaction. We set a predefined threshold value as 0.6, and 
finally, 312 lncRNA are selected.

Binary Particle Swarm Optimization
Particle Swarm Optimization (PSO) algorithm is primarily used to solve numerical calculation issues. 
In PSO, particles flying through the multidimensional space to find the optimum typically model the 
swarm. We represent a potential solution to a problem as a particle with coordinates X

i
 and rate of 

change V
i
 in a multidimensional space. If the search space is D-dimensional and there are s particles 

in the swarm, the position of particle i is represented by the D-dimensional vector 
X x x x
i i id iD
= … …( )1

, , , , . The velocity of this particle can be denoted as another vector 
V v v v
i i id iD
= … …( )1

, , , , , which determines the flying direction and distance of the particle. The 
velocity of each particle and its new position can be updated according to formulas (5) and (6):

v t wv t c r p t x t c r p x t
id id id id gd id
+( ) = ( )+ ( )− ( )
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  (5)

x t x t v t
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where t = 1, 2, ...; d = 1, 2, ..., D; i = 1, 2, ..., s; w is the inertia weight; c
1
 and c

2
 are the acceleration 

constants; r
1
 and r

2
 are random numbers uniformly distributed in [0, 1]; v t

id ( )  and x
id

 are the speed 
and the position of particle i in the dth dimensional component at the t-th iteration, respectively
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Furthermore, BPSO extends the application of PSO algorithm to optimize the discrete 
combinatorial problem [14]. In BPSO, particles represent the positions in a binary space. Each 
particle’s position vector component receives a binary value, 0 or 1. Formally, x b

i n
∈ , or x

id
∈ { }0 1, . 

In a binary space, we may see a particle to move within a hypercube by flipping various numbers of 
bits; their velocity represents the probability that a bit will be in one state or the other. Since it is a 
probability, it should be constrained to the interval [0,1]. A sigmoid function sig v

id( )  can be used 
to accomplish this modification as:

sig v
e

id vid
( ) =

+ −

1

1
 (7)

The resulting position change is redefined as:

x t
rand sig v t

id
id+( ) = < +( )( )

1
1 1

0

, ()

,

      

                                      else








 (8)

where rand () is a random number selected from a uniform distribution interval [0, 1].
Considering that selecting optimal subsets in the massive lncRNA portfolio is a discrete 

combinatorial optimization problem, BPSO will be a typically suitable solution. Specifically, we 
consider all lncRNA as the input in the search space of BPSO. An optimal binary particle (an 
optimum lncRNA subset) could eventually be acquired via iterative particle swarm learning and 
self-improvement.

Multi-Layer Extreme Learning Machine
Furthermore, we propose a Multi-Layer Extreme Learning Machine based approach to evaluate 
the prediction accuracy of selected lncRNA subsets, and to give feedback on adjusting fitness 
function for BPSO. The Extreme Learning Machine (ELM) is a simple and effective learning 
algorithm based on single hidden layer feed-forward neural networks (SLFNs). Associate 
professor Huang Guangbin of Nanyang Technology University proposed the method in 2004. 
Unlike conventional neural network algorithms, ELM uses SLFNs to achieve fast training and 
overcome the over-fitting problem (Figure 2).

Suppose there are N random samples x t
i i
,( ) , in which:

[ , ,..., ]X x x x R
i i i in

T n= ∈
1 2

 (9)

[ , ,..., ]t t t t R
i i i im

T m= ∈
1 2

 (10)

One SLFN contains L hidden layer nodes can be shown as:

i

L

i i j i j
g w x b o j N

=∑ ⋅ +( ) = =
1

1 2β , , ,...,  (11)
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In formula (4.10), g x( )  is inspirit function, [ , ,..., ]W w w w
i i i in

T=
1 2

 is input weight, 
[ , ,..., ]β β β β
i i i

T
im

=
1 2

 is output weight, b
j
 is the bias of, w x

i j
⋅  is the inner product of w

i
 and x

j
.

The ML-ELM is an efficient algorithm combined with deep learning concepts for self-encoding. 
It can realize the feature expression of high latitude, equal dimension, and low latitude for original 
data. Widrow et al. (2013) proposed an ELM Automatic Encoder (ELM-AE) based on the least 
mean square method. Orthogonalization of randomly generated hidden parameters can enhance the 
generalization capability of ELM-AE.

The ELM-AE features a slight improvement from the ELM model. The network structure of the 
ELM-AE is shown in Figure 3. The hidden layer’s input weights and bias parameters can be randomly 

Figure 2. The Structure of SLFN

Figure 3. The Structure of ML-ELM-AE
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set and normalized, which enables the mapping of input data into different dimensions to realize the 
expression of distinct features. Compared to the traditional deep learning network, the ML-ELM is 
based on initializing the hidden-layer weights according to the ELM-AE. However, the ML-ELM does 
not require an iterative adjustment. The network architecture of the ML-ELM is shown in Figure 4.

The ML-ELM hidden-layer activation function can be linear or nonlinear. If the number of nodes 
L
k

 in the k
th

 hidden layer is equal to the number of nodes L
k -1

 in the k
th

−1  hidden layer, then the 
activation function can be linear; otherwise, it is nonlinear, such as the sigmoidal function:

H g Hk k
T

k= ( )







−β 1  (12)

where Hk  is the i
th

 hidden-layer output matrix. We selected some key lncRNAs as classification 
features in our experiments, then used ML-ELM to build the classifier. All health and cancer samples 
were divided into two parts: training samples and testing samples. ML-ELM was used on the training 
samples to generate the classification model. Meanwhile, ML-ELM was used on the testing sample 
to generate prediction results. According to the prediction results, we evaluated the performance of 
the classification model built by key lncRNAs subsets.

We show the flow of the whole experiment in Figure 5.

EXPERIMENT AND ANALySIS

Experimental Setup
To verify the validity of the algorithm, we carried out a simulation experiment on the breast cancer 
data sets. We implemented all simulation experiments in MATLAB r2014a. Our computer used an 
Intel(R) Core (TM) i7-7700HQ CPU and had 8.00GB RAM. We had 201 breast cancer data sets 
samples, including 101 training sets, 50 validation sets, and 50 testing sets. We set the number of 

Figure 4. The Structure of ML-ELM
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particles to 10, the maximum number of iterations as 30, and the number of key lncRNA to 10. 
The activation function used by the ML-ELM classifier is sigmoid, and we increase the number 
of nodes in the hidden layer from one to equal to the number of the training sample. We divided 
the lncRNA expression profiles into training, testing, and validation sets at 50%, 25%, and 25%, 
respectively (Table 3).

Performance
Figures 6 and 7 show that with the increasing number of hidden layer nodes, the prediction accuracy 
and precision of training are gradually rising. When hidden layer nodes are 40, our algorithm 
achieves the best possible accuracy, and then the accuracy decreases gradually. Therefore, we set the 
number of hidden layer nodes as 40 in the following experiments. In the figures below, each colored 
point represents a set of experimental accuracy, and the broken line represents the overall trend of 
experimental accuracy with the change in the number of hidden nodes.

Figure 8 shows that the classification accuracy of the randomly generated lncRNA sets is very 
low, but with the increase in the number of iterations, the iterative precision increases and finally 
becomes stable.

We conducted a series of experiments and showed the influence of a different number of key lncRNA 
on the experiment accuracy (shown in Table 4). Finally, we selected a group of 10 key lncRNAs and 
achieved a 99.47% training accuracy and a prediction accuracy of 93.81% on the breast cancer data set.

Figure 5. The Flow of the Whole Experiment

Table 3. The Number of Samples in Each Subsets

Subset name Total subset Training sets Testing sets Validation sets

Breast invasive carcinoma 201 100 51 50

Colon adenocarcinoma 114 57 29 28

Lung adenocarcinoma 192 96 48 48
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Algorithm Comparison
Finally, we evaluated the effect of ML-ELM by replacing the ML-ELM model with a conventional 
machine learning method (KNN algorithm).

We compared our prediction model with other classical methods. To ensure the reliability of 
algorithm comparison, we used other classical methods to predict the same data set and compared the 

Figure 6. Comparison of Prediction Accuracy of Different Number of Hidden Nodes

Figure 7. Comparison of Training Accuracy of Different Number of Hidden Nodes
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prediction accuracy and computing speed. We chose PSO-KNN to compare with our core predictive 
model (Table 5).

K-nearest neighbor classification algorithm (KNN) is one of the most classical methods 
in data mining classification. PSO-KNN is the classical algorithm in feature selection and 
has been applied in gene selection research. Figure 9 and Figure 10 show that the PSO-ELM 
algorithm can achieve better accuracy. Besides, the computation time is significantly reduced 
in our proposed approach.

Figure 8. Comparison of Prediction Accuracy of Different Number of Iterations

Table 4. The Influence of a Different Number of Key lncRNA on the Experiment Accuracy

The number of key lncRNA Prediction accuracy Training accuracy

5 91.49 99.12

10 93.81 99.47

15 93.69 98.57

20 90.45 98.73

Table 5. PSO-ELM VS PSO KNN

Classification 
Method Iterations

Breast invasive 
carcinoma Colon adenocarcinoma Lung adenocarcinoma

Time Accuracy Time Accuracy Time Accuracy

PSO-ML-ELM

10 1.8267 88.03 2.3723 94.20 3.5187 88.67

20 7.1833 92.21 5.3427 96.09 6.9730 92.87

30 7.94 93.26 8.1543 96.10 10.5090 94.13

PSO-KNN

10 12.3967 88.67 8.7833 84.94 8.7773 91.11

20 19.6593 89.33 16.7633 90.29 17.0587 92.11

30 34.1763 90.00 25.3207 92.48 25.8733 91.67
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Performance Evaluation
To quantify the classification performance, we used seven kinds of standard metrics: Sensitivity 
(TPR), False negative rate (FNR), False positive rate (FPR), Specificity (TNR), Positive predictive 
value (PPV), Accuracy, and F-score, which are defined as follows:

Sensitivity
TP

TP FN
=

+( )
 (13)

FNR
FN

TP FN
=

+( )
 (14)

FPR
FP

FP TN
=

+( )
 (15)

Figure 9. Comparison of the Time of ML-ELM and KNN

Figure 10. Comparison of the Accuracy of ML-ELM and KNN
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Specificity
TN

TN FP
=

+( )
 (16)

PPV
TP

TP FP
=

+( )
 (17)

Accuracy
TP TN

P N
=

+
+

 (18)

F score
Sensitivity PPV

Sensitivity PPV
− =

⋅ ⋅
+

2  (19)

In these formulas, T is the number of cancer samples, and P is the number of healthy samples. 
TP is the number of correctly classified cancer samples, TN is the number of correctly classified 
healthy samples, FP is the number of falsely classified cancer samples, and FN is the number of falsely 
classified healthy samples. Sensitivity is the proportion of correctly classified cancer samples in the 
set of all cancer samples. FNR is the proportion of falsely classified cancer samples in the set of all 
cancer samples. FPR is the proportion of falsely classified healthy samples in the set of all healthy 
samples. Specificity is the proportion of correctly classified healthy samples in the set of all healthy 
samples. PPV is a ratio of true cancer samples to combined true and false cancer samples. Accuracy 
is the ratio of correctly classified samples in all samples. F-score is the harmonic mean of sensitivity, 
and we can use PPV as a single measure for the overall classification performance.

The performance evaluation result in Table 6 illustrates that our model is accurate and sensitive.
Through the performance evaluation of the experimental results, we find that our prediction 

model can get desired results in the three data sets, especially in the colon adenocarcinoma data set, 
we get an accuracy of 0.956 and the misdiagnosis rate of only 0.041, which proves that the prediction 
model is very reliable.

DISCUSSION

From the computation model description and the experiment work, the following crucial points 
should be noted. Given a specific disease and corresponding lncRNA, selecting key lncRNA that is 
closely related to the specific disease is feasible. Reversely, according to the change of some specific 

Table 6. Performance Evaluation

Cancer Sensitivity FNR FPR Specificity PPV Accuracy F-score

Breast invasive carcinoma 0.944 0.056 0.072 0.928 0.914 0.935 0.929

Colon adenocarcinoma 0.959 0.041 0.050 0.950 0.973 0.956 0.966

Lung adenocarcinoma 0.940 0.060 0.051 0.949 0.977 0.943 0.958
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lncRNAs, it may be also possible to predict possible disease. This outcome will be typically important 
for researching the pathogenesis of the disease and therapy.

Besides, through querying LncRNA-disease, we found that some of the key lncRNA we acquired 
(such as DLEU2, SNHG3, and TINCR) were labeled as cancer-related lncRNA (Table 7). The 
description of three key lncRNA we gained in LncRNA-disease further proved that our approach 
can provide guidance for biological discovery of lncRNAs closely related to cancer in the future.

The performance of the proposed computation model depends on a few features. First, the reliable 
noted dataset in lncRNA-disease relationship is the foundation for the accuracy of model training 
and later testing; Second, the computation time mainly depends on the complexity of the proposed 
machine learning algorithm.

Theoretically, the proposed computation model is a generic and lightweight solution applicable 
in any “lncRNA-disease” annotation use case. Furthermore, we have also tested and proved the 
experiment’s feasibility and correctness in three specific and representative cancer datasets. Therefore, 
it is convincible that the model contains good transfer capability.

CONCLUSION AND FUTURE WORKS

This paper proposes a computation model for the annotation between key lncRNA and corresponding 
disease. The proposed solution is based on the combination of BPSO and ML-ELM algorithms. The 
theoretical analysis and experimental results show that the proposed solution can predict an optimal 
lncRNA subset closely related to specific diseases and may also predict specific diseases according to 

Table 7. The Description of Three Key lncRNA we Acquired in LncRNA-Disease

LncRNA 
name Disease name Dysfunction 

type Description Chr Start End Strand Species

DLEU1
chronic 
lymphocytic 
leukemia

Locus

In 13q14.3, where 
several tumor 
suppressor genes, 
including the 
miRNA genes 
miR-16-1 and 
miR-15a, are 
co-regulated 
by the two long 
non-coding RNA 
genes DLEU1 and 
DLEU2 that span 
the critical region.

chr13 50082169 50528643 + Human

SNHG3 hepatocellular 
carcinoma Expression

SNHG3 correlates 
with malignant 
status and poor 
prognosis in 
hepatocellular 
carcinoma.

chr1 28505943 28510892 + Human

TINCR squamous cell 
carcinoma Expression

Interestingly, the 
lncRNA TINCR, 
which is highly 
induced during 
keratinocyte 
differentiation, 
is repressed 
in squamous 
cell carcinoma 
specimens 
compared to the 
normal adjacent 
epidermis.

chr19 5558167 5568034 - Human
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the change in lncRNA expression profile. The work is constructive with the development of disease 
precision in medical therapy.
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