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ABSTRACT

Dynamic economic dispatch (DED) deals with the allocation of predicted load demand over a certain 
period of time among the thermal generating units at minimum fuel cost. The objective function of 
DED becomes highly complex and nonlinear after considering various operating constraints like valve 
point loading, ramp rate limit, transmission loss, and generation limits. In this study, the sine-cosine 
algorithm has been presented to solve the DED problem with various constraints. The randomly placed 
swarm finds an optimum solution according to their fitness values and keeps the path towards the best 
solution attained by each swarm. The swarm avoid local optima in the exploration stage and move 
towards the solution exploitation stage using sine and cosine functions. The proposed technique has 
been tested in several test systems. The results obtained by the proposed technique have been compared 
with those obtained by other published methods employing the same test systems. The results validate 
the superiority and the effectiveness of the proposed technique over other well-known techniques.

Keywords
Dynamic Economic Dispatch, Ramp- Rate Limit, Sine-Cosine Algorithm, Transmission Loss, Valve Point 
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1. INTRODUCTION

The operation of a power system depends upon the system’s security, reliability, and economy 
(Bhattacharjee, Bhattacharya, & Nee Dey 2014). The Economic Dispatch (ED) is the main function 
of power system operation to reduce the cost of different fuel types. The main aim of the ED is to 
allocate load demand among committed thermal generators at a minimum price while satisfying 
power balance and other system constraints (Nourianfar & Abdi 2021). Thus, the ED problem is a 
highly complex and nonlinear optimization problem. The ED can be classified into Static Economic 
Dispatch (SED) and Dynamic Economic Dispatch (DED) (Verma et al. 1AD). In SED, the thermal 
generating units have been allocated economically to satisfy load demand for a specific time interval. 
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The SED does not consider the fundamental relation of the system between the different periods (Soni 
et al., 2020). The DED, an extension of SED, issues time-varying load demand among the generators 
by satisfying various operating constraints. The DED considers the relation of different operating 
times to meet multiple constraints (Bhattacharjee, Shah, & Soni 2022a). Traditionally, the valve 
point loading effect (VPLE) has been ignored in DED to make the problem tractable (Bhattacharjee 
& Patel 2020). The solution becomes inaccurate and imprecise. The DED problem with VPLE has 
been considered to make the system more (Soni & Pandya, 2018).

DED problem was introduced in 1971 to obtain optimal operation of thermal units for a certain 
pe with satisfying physical and operational constraints such as ramp-rate limits, power generation 
limits, and power balance constraints. The transmission loss should not be ignored due to the large-
scale power systems. The DED problem becomes more complicated after considering transmission 
loss and VPLE. The different optimization methods have been used to get the solutions of the DED 
problem (Bhattacharjee, Shah, & Soni, 2022b). These optimization methods have been classified 
into traditional methods and artificial intelligence methods. Conventional methods like linear 
programming, nonlinear programming, quadratic programming, Lagrange relaxation, and dynamic 
programming have been used to DED problems. These traditional methods suffer from the curse of 
dimensionality and fail to get an in large-scale DED problems (Bhattacharjee & Patel, 2018). With 
the massive development of artificial intelligence methods, their use for DED problems increases due 
to their effectiveness and feasibility. Stochastic search techniques like simulated annealing (SA) (Soni 
& Bhattacharjee, 2022), artificial immune system (AIS) (Bhattacharjee & Patel, 2018), differential 
evolution (DE) (Barisal, 2013), and genetic algorithm (GA) (Mohajeri, Seyedi, & Sabahi, 2015) have 
been successfully applied to solve DED problems due to their ability to find near an optimal global 
solution. The meta-heuristics methods have been developed by the behavior of insects. The swarm 
intelligence techniques like harmony search (HS) (Sivasubramani & Swarup, 2011), particle swarm 
optimization (PSO) (Abarghooee & Aghaei, 2011), cuckoo search (CS) (Chandrasekaran, Simon, & 
Padhy, 2014), artificial bee colony (ABC) (Barisal, 2013), Symbiotic organisms search algorithm 
(SOC) (Guvenc et al., 2018), and imperialist competitive algorithm (ICA) (Morshed and Asgharpour 
2014) have been successfully applied to the DE problem. These techniques use the probabilistic rule 
to get a solution. Thus, these methods do not guarantee finding the global optimum solution. Many 
researchers have recently combined probabilistic and deterministic approaches to solve DED problems. 
Hybrid methods like hybrid bee colony optimization and sequential quadratic programming (BCO-
SQP) (Balamurugan & Subramanian, 2008), hybrid PSO and sequential quadratic programming 
(PSO-SQP) (dos Santos Coelho & Mariani, 2006), Enhanced adaptive particle swarm optimization 
algorithm (EAPSO) (Niknam and Golestaneh 2012), hybrid bacterial foraging and simplified swarm 
optimization algorithm (MBF-SSO) (Balamurugan and Subramanian 2008), Time-varying acceleration 
coefficients IPSO (TVAC-IPSO) (Ghasemi et al., 2020), Covariance matrix adapted evolution strategy 
algorithm (CMAES) (Manoharan et al. 2009), and hybrid Hopfield neural network and quadratic 
programming (HNN-QP) (Jayabarathi & Sadasivam, 2000) have been applied to get solutions of 
DED problems. These above-mentioned methods take more computation time to get the optimum 
solution (Bhattacharjee et al., 2021). Thus, a strong and effective optimization technique is required 
to solve highly complex and nonlinear DED problems (Kaluri and CH 2018).

Recently, the population-based Sine Cosine Algorithm (SCA) has been proposed by Mirjalili et 
al. (Mirjalili, 2016). The nineteen unimodal, multimodal, and composite benchmark functions have 
been solved by Mirjalili et al. (Mirjalili, 2016).In SCA, the multiple initial random populations are 
generated and moved outward or toward the best solution. The trigonometric sine and cosine function 
of SCA is used to find the fitness value of populations. SCA has the exploration and exploitation 
property. The randomly generated solution by SCA gets to benefit from higher exploration and 
avoids local optima value. Such a feature is not available in other algorithms. These properties help 
to prevent local optima and move directly to global optima in significantly less computational time. 
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The advantages of SCA have encouraged present authors to use this newly developed algorithm to 
resolve highly nonlinear and complex DED problems (Kaluri & Reddy, 2017).

Key contributions to this work have been mentioned below:

•	 Recently an efficient soft computing technique called SCA has been proposed by Mirjalili et al. 
The 15 benchmark functions have been optimized by Mirjalili et al. to prove the robustness of 
the above-said algorithm. It has been seen that SCA is giving much better results than most of 
the recently developed algorithms. For this reason, the SCA has been adopted in this paper, for 
the first time, to solve highly complex and non-linear dynamic economic load dispatch problems.

•	 The various operating constraints like valve point loading effect, ramp-rate, transmission loss, 
generation limit, and generation balance have been considered to make the system more realistic

•	 The proposed work has been verified with various test systems.
•	 The comparative assessment for the proposed algorithm with some of the recent techniques 

shows the effectiveness and superiority of the proposed SCA algorithm

The problem formulation of the DED problem is given in Section 2. Section 3 provides information 
on the original SCA method. The steps involved in solving the DED problem using SCA are discussed 
in Section 4. Section 5 shows the simulation results of various test cases. Finally, the conclusion of 
the manuscript is pointed out in Section 6.

2. PROBLEM FORMULATION

The main aim of DED is to operate thermal generating units at minimum cost during a specified 
period (Sivasubramani & Swarup, 2011). The time period can be divided into 24 intervals for a day. 
The VPLE, transmission loss, and other various operating constraints have been considered in this 
research work. The mathematical formulation of DED is expressed in detail:

2.1. Objective Function
The objective function of the DED problem is to minimize total fuel cost over the operating time. It 
can be expressed as:

Total fuelcost min f p
t i

N

t i
� � �

,
= ( )

= =
∑∑
1 1

T

	 (1)

Where f(Pi) is the total fuel cost of the ith thermal generating unit; Pi is the output of the ith thermal 
generating unit; T is the number of hours during overall time period; N is the number of thermal 
generating units.

2.1.1 The Total Cost Function of DED Without VPLE
The objective function of cost for the thermal unit is a second-order polynomial equation 
(Bhattacharjee, Bhattacharya, & nee Dey, 2014). The objective function of cost for DED without 
VPLE is shown as below:

Fuelcostof ith thermal generatingunit f p a b T
t i iT iT i

� � � � � � �
,( ) = +

TT iT iT
c T+ 2 	 (2)

where aiT, biT and ciT are thermal cost co-efficient of ith unit.
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2.1.2 The Total Cost Function of DED With VPLE
To consider the realistic and practical application of the DED problem, the sinusoidal phase of VLPE 
is added in the objective function (Azizivahed et al., 2020). The cost function of DED with VPLE 
is stated as

Fuelcostof ith thermal generatingunit f p a b T
t i iT iT i

� � � � � � �
,( ) = +

TT iT iT iT iT iT
min

iT
c T e sin f T T+ + × −( ){ }2 	 (3)

where eiT and fiT are co-efficient of thermal ith unit representing VPLE. The objective function (2) 
and (3) are minimized subject to subsequent constraints:

2.2. Constraints
The multiple inequality and equality constraints like ramp rate limit constraints, unit capacity 
constraints, and power balance constraints can be considered in the DED problem (Nazari-Heris, 
Mohammadi-Ivatloo, & Nazarpour, 2019). These constraints are for quality of the grid and safety of 
the thermal units and are discussed as follows:

2.2.1 Thermal generator operating limit
The power generated by each generator has a minimum and maximum permissible power limit for 
efficient operation.

T T T iT N
iT iT iT
min max≤ ≤ =; , , ,...,1 2 3 	 (4)

Where Ti
min, Ti

max are the minimum and maximum power limit of each unit

2.2.2 Ramp rate limit
The change in output power of any thermal generating unit must be in an acceptable range to avoid 
undue stresses on the combustion equipment and boiler (Bhattacharya & Chattopadhyay, 2010). The 
ramp rate limit of each generating unit can be expressed as follows:

max , min ,min maxT T DR T T T UR
i i i i i0 0

−( ) ≤ ≤ −( ) 	 (5)

Where UR and DR are the ramp-up and ramp-down limit of the ith thermal generating unit respectively.

2.2.3 Power balance
The total real power generated must balance the total load demand.

iT

N

iT D L
T T T
=
∑ = +( )

1

	 (6)

where TD is total load demand and TL is total transmission loss.

3. SINE COSINE ALGORITHM

SCA starts the optimization using a random search agent because it is a population-based technique 
(Mirjalili, 2016). The random search population is evaluated repetitively and upgraded using a set 
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of rules. SCA has an exploration and exploitation stage. In the exploration stage, all the random 
solutions are combined at a higher randomness rate to get a search space area where there is a higher 
possibility of getting the global solution. In the exploitation stage, the random solutions are changed 
slowly and that variation is significantly less than the exploration stage.

The four parameters g1, g2, g3 and g4 are the main in SCA. The g1 parameter represents the next 
position that can be in space between the solution and destination or exterior of it. The g2 parameter 
represents distance that population have to go in the direction of the solution. The g3 parameter helps 
to find weights for the destination. The weights greater than one and less than one represent emphasize 
and deemphasize on a solution. The g4 parameter switches between sine and cosine terms in (9). The 
trigonometric sine and cosine function is involved in this formulation. Thus, it is called SCA. The 
following equations of SCA are used to update results in every iteration:

P P g g g PO P
h
t

i
t

h
t

h
t+ = + × ( )× −1

1 2 3
sin 	 (7)
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where g1, g2 and g3 are constant variables. The g4 variable is given a random variable between 0 and 
1. The equations (7) and (8) are modified as below:
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where P
h
t+1  is the position of the population at current (t+1)th iteration and hth dimension; P

h
t  is 

position of population at previous tth iteration and hth dimension; PO
h
t  is the position of destination 

point at previous tth iteration and hth dimension. The sequential steps of SCA are given below:

3.1. Sequential Steps of SCA

1. 	 Initialization of lower and upper bound limit of each search agent. Decide the total number of 
iteration and population size.

2. 	 The objective is computed by considering input variables.
3. 	 Evaluate the fitness function value of each population using an objective function.
4. 	 If the fitness function value is lower than the previous one, it is considered as local minima. The 

parameters g1, g2 and g3 are initially assigned. After each iteration, the value of parameters will 
change. The parameter g4 switches between sine and cosine function.

5. 	 The changed values of the population is checked if it violated or not. If yes, fix their boundary 
limits.

6. 	 The search agents will move in the whole search space to find global optima in the exploration stage.
7. 	 Once the destination point is found, the population will move in that direction in the exploitation 

stage.
8. 	 Repeat steps 3 to 7 until termination criteria are reached.

4. SCA USED IN DED PROBLEM

The steps for solving the DED problem by using SCA are discussed in this section. The flowchart 
of the SCA used in solving the DED problem is given in Figure 1. The steps to solve the problem 
as shown below:
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Step 1 Initialize the number of generators, population size, lower bound, and upper bound of thermal 
generators.

Step 2 	 Each search agent randomly initializes the population matrix for thermal power plants and 
evaluates the fitness function. Select best swarm based on fitness value
The main working of SCA algorithm begins at this point. Randomly generate g2, g3 and g4 parameters 

and determine the value of g1.
Step 3 	 If the value of parameter g1 is greater than 1, the swarm moves in opposite direction. And if 
the value of parameter g1 is less than 1, the swarm moves in the same specified direction. The value 
of parameter g2 show distance to swarm for moving in the specified direction. the parameter g3 is 
weighting factor of swarms.
Step 4 	 Update the position of each search agents using equation (9).
Step 5 	 Check for constraint limits of each generator based on equations (4) to (6).
Step 6 	 Compute the fitness function and update the local best position of each search agent. Update 
best mean cost and SD.
Step 7 	 Repeat step (3) until the termination criterion is reached.
5. RESULTS AND DISCUSSION

In this section, the SCA technique is tested by applying it on two test systems with different number 
of generating units. The 24 intervals for a day have been considered in all cases. MATLAB 2021a 
software is used to simulate the problem and validated in 1.7GHz intel core, 4GB RAM personal 
computer.
Case 1: 	 The first case consists of five thermal generating units with considering VPLE, RRL, 
transmission loss, and generation limits.
Case 2: 	 The second case consists of ten thermal generating units with considering VPLE, RRL, 
transmission loss, and generation limits.

The 50 independent trails have been conducted with random initial solution for each run and 
results (Min, Max, and Mean) have been calculated. The value of each parameter has been selected 
from empirical tests by running the algorithm several times with different parameter combination.

5.1. Test Case 1
The input data of five thermal units is given in (Panigrahi et al., 2007). The B-matrix coefficients 
to calculate the transmission loss are given in (Basu, 2011). The various operating constraints like 
VPLE, RRL and generation limits have been considered in this test system. The DED problem has 
been solved by different values of parameters. The optimal values of the parameters are listed as 
g1=0.4, g2=0.5, g3=0.4, g4=0.3. The best generation schedule of five thermal units obtained by SCA 
technique is shown in Table 1. The results obtained by SCA algorithm has been compared with 
various algorithms as shown in Table 2. To examine the quality of the solution, the standard deviation 
from 100 independent runs using the SCA approach is calculated. The standard deviation is equal to 
$23.85. Thus, there is very small variation in the total cost obtained by SCA technique. The results 
show that the SCA method yields improved results over other published methods. The convergence 
characteristic by SCA is shown in Figure 2.

5.2. Test Case 2
The input data of ten thermal units is given in (Basu, 2008). The B-matrix coefficients to calculate 
the transmission loss are given in (Basu, 2011). The various operating constraints like VPLE, RRL 
and generation limits have been considered in this test system. The best generation schedule of each 
thermal units obtained by SCA technique is shown in Table 3. The results obtained by SCA algorithm 
has been compared with various algorithms as shown in Table 4. To examine the quality of the solution, 
the standard deviation from 100 independent runs using the SCA approach is calculated. The standard 
deviation is equal to $81.52. Thus, there is very small variation in the total cost obtained by SCA 
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Figure 1. Flowchart of SCA used in solving DED problem
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technique. The results show that the SCA method show superiority over other published methods. 
The convergence characteristic by SCA is shown in Figure 3.

5.2.1. Tuning the Parameter of the SCA
The parameters of the SCA algorithm should be tuned to obtain optimum solution in less computational 
time. The different values of the parameters ‘g1, g2, g3, and g4’ give different minimum fuel costs. 
For single values of g1 parameter, the values of other parameters ‘g2, g3 and g4’ have to be varied in 
all possible combinations. It takes very large space to show here. Thus, the summarized results of 
minimum fuel costs, after 100 trails run, for all possible combinations have been shown in Table 5. 
The optimal values of the parameters are listed as g1=0.5, g2=0.6, g3=0.3, g4=0.5.

6. CONCLUSION

The SCA optimization technique has been used in this study to get optimal solution of DED problem. 
The various operating constraints like VPLE, transmission loss, RRL, and generation limit have been 
considered to make system more realistic. The proposed technique has been demonstrated using the 

Table 1. The best generation schedule for five unit test system using SCA technique

Time T1 T2 T3 T4 T5 Load Demand Fuel Cost

1 18.326012 98.474924 30.427595 124.09328 138.67819 410 1247.9664

2 42.744966 99.709663 112.43856 42.058983 138.04783 435 1400.4093

3 9.235536 98.108698 102.67908 125.54763 139.42905 475 1416.4085

4 23.639082 29.180815 116.46335 125.70067 235.01609 530 1656.7053

5 10.01392 88.73643 111.9119 124.7604 229.264 558 1616

6 42.53676 103.48262 199.16443 123.35585 139.46035 608 1831.8958

7 75.436075 99.745833 184.22942 125.0195 141.56917 626 1853.0288

8 12.60176 98.55414 112.8777 209.6984 229.5249 654 1798

9 40.180668 101.86111 108.7567 209.29952 229.90201 690 1994.6727

10 64.14043 98.45003 112.6611 209.812 229.4956 704 1997

11 79.597286 98.870156 187.65208 125.27523 228.60525 720 2033.116

12 16.469789 98.023017 194.37315 208.02238 223.11166 740 2066.5538

13 64.28194 98.47242 112.5991 209.7461 229.4596 704 1997

14 31.306577 102.21481 112.75404 213.48848 230.23608 690 1977.7247

15 11.956639 14.378254 112.96724 285.89449 228.80338 654 1896.9873

16 22.045405 97.493032 112.03346 209.92609 138.50202 580 1657.0593

17 10.136708 90.381877 112.25386 208.50809 136.71946 558 1616.7205

18 53.874246 95.047479 110.34173 208.23809 140.49846 608 1808.4793

19 11.55225 99.35399 112.815 209.8138 229.7294 654 1799

20 57.340426 98.637468 192.06793 126.48632 229.46785 704 2024.0381

21 31.973963 99.105121 111.21418 207.67924 230.0275 680 1934.8204

22 36.515257 101.33853 113.87112 213.92607 139.34902 605 1792.971

23 37.019145 15.714886 36.604197 208.12626 229.53551 527 1654.8832

24 66.261275 98.601233 29.311384 41.191828 227.63428 463 1449.3114

Total 42520.752
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Table 2. Total fuel cost comparison for five unit test system

Method Min ($) Max ($) Mean ($) Std. dev.

EAPSO (Niknam and Golestaneh 2012) 43820 44982 44082 NA

MBF-SSO (Abarghooee and Aghaei 2011) 43048 43093 43068 NA

DE (Barisal 2013) 43213 44247 43813 NA

TVAC-IPSO (Barisal 2013) 43136.561 43302.233 43185.664 NA

ABC (Aydin et al. 2014) 44046.83 44218.64 44064.73 NA

ICA (Morshed and Asgharpour 2014) 43117.055 43209.533 43144.472 NA

CMAES (Faramarzi et al. 2020) 43526 44191 43915 10.2351

Lbest-PSO (Huang et al. 2013) 43738 NA NA NA

LPSO-DVS (P. Verma and Parouha 2021) 43125.5166 NA NA NA

SOC (Fang et al. 2019) 43090.5925 43162.2146 43103.0828 NA

LDISS (Bakirtzis 1994) 43213 NA NA NA

BBPSO (Kamboj, Bath, and Dhillon 2016) 43233 44252 43732 274.95

BBO (Bhattacharya and Chattopadhyay 2010) 44433.8165 45276.3973 44763.6307 219.2459

BSO (Barisal 2013) 43376.9956 45234.3971 44194.2096 445.4947

BLPSO (Yadav 2019) 43322.4764 43875.7363 43542.3052 158.6055

CSO (Balamurugan and Subramanian 2008) 43161.843 43956.4777 43450.9566 184.3599

DE/BBO (Sayah and Hamouda 2013) 43047.4645 43683.7981 43292.7217 177.7068

DE/eig (Kaur, Singh, and Dhillon 2021) 43112.8236 43826.9965 43361.4475 190.2852

LETLBO (Nandi and Kamboj 2021) 43304.3385 46205.608 44249.3421 656.9117

LWOA (Maity, Banerjee, and Chanda 2018) 44663.3334 47200.0106 46021.1086 649.404

SATLBO (Hu et al. 2016) 43385.1333 44536.3469 43698.1971 270.6494

SLPSO (Shaw, Ghoshal, and Mukherjee 2011) 43125.0913 44237.2007 43681.8656 245.1994

BBOSB (Xiong and Shi 2018) 43017.9597 43197.0128 43066.4046 83.4913

SCA 42520.752 42854.854 42658.211 23.8541

Figure 2. Convergence characteristics of SCA technique for five unit test system
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Table 3. The best generation schedule for ten unit test system using SCA technique

Hour T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Load (MW) Fuel Cost

1 120.45 103.75 77.48 72.77 243.60 123.87 37.18 121.92 81.22 53.76 1036.00 61225.00

2 145.06 94.74 126.69 125.80 116.30 136.43 127.31 147.03 44.84 45.79 1110.00 64117.01

3 98.02 94.17 194.17 228.49 259.71 110.83 88.20 116.54 15.96 51.90 1258.00 70828.00

4 122.91 119.37 336.60 156.77 258.46 57.62 98.33 136.70 76.27 42.96 1406.00 79802.07

5 132.21 142.30 364.62 94.62 235.15 183.39 84.99 127.31 69.44 45.98 1480.00 83932.65

6 193.88 170.90 269.10 135.59 319.06 178.54 133.29 124.38 58.67 44.59 1628.00 92941.64

7 206.59 185.14 384.91 202.32 168.14 204.45 139.15 147.76 12.81 50.73 1702.00 99663.29

8 165.95 131.62 342.93 345.06 258.19 173.41 153.48 108.29 55.29 41.79 1776.00 99833.04

9 276.00 233.98 325.77 404.80 343.50 149.05 69.69 78.86 26.85 15.48 1924.00 119522.83

10 317.59 233.44 364.58 385.80 199.44 217.64 148.98 77.26 73.20 54.08 2072.00 129610.47

11 295.68 363.84 343.13 294.80 304.90 182.14 138.59 116.47 83.37 23.08 2146.00 136984.13

12 332.66 278.02 436.65 354.69 277.76 167.75 138.96 86.13 96.06 51.32 2220.00 140862.36

13 311.91 305.02 315.66 336.16 233.64 203.16 129.16 108.21 101.42 27.68 2072.00 131103.97

14 274.52 274.25 327.88 395.79 195.94 192.17 74.53 107.41 36.08 45.42 1924.00 121278.55

15 156.39 228.55 372.73 261.57 309.33 126.55 125.72 74.98 77.49 42.69 1776.00 102803.14

16 140.88 151.76 283.12 309.60 149.47 188.06 112.92 147.30 58.02 12.88 1554.00 87930.21

17 135.12 122.42 385.35 175.52 275.23 117.66 88.02 98.97 49.60 32.12 1480.00 83921.18

18 150.49 135.04 312.82 299.98 243.00 160.00 129.64 119.70 79.97 45.36 1628.00 92956.00

19 248.47 163.90 406.02 365.21 227.04 127.53 78.45 77.63 33.17 48.58 1776.00 107561.82

20 309.70 309.53 339.93 300.00 242.83 160.00 129.93 119.99 80.00 54.97 2072.00 129178.00

21 212.90 260.07 359.96 276.82 278.66 183.24 118.66 157.98 36.95 38.76 1924.00 113795.34

22 227.74 168.11 265.17 158.15 323.45 186.09 110.25 62.64 74.48 51.91 1628.00 95866.16

23 154.65 150.49 80.99 222.48 327.27 51.87 163.94 81.85 88.22 10.26 1332.00 76496.29

24 145.28 138.86 74.13 94.02 307.34 105.63 84.08 164.14 30.60 39.92 1184.00 68223.36

Total 2390436.53

Table 4. Total fuel cost comparison for ten-unit test system

Algorithms Min costs ($) Max cost Mean Cost SD

AIS (Naderi, Khalili, and Tavakkoli-Moghaddam 2009) 2519700 2519800 2519732 NA

EP (Venkatesh, Gnanadass, and Padhy 2003) 2585000 2585252 2585132 NA

PSO (Gaing 2003) 2571800 2571963 2571841 NA

DE-SQP (dos Santos Coelho and Mariani 2006) 2465900 2466211 2466200 NA

PSO-SQP (Zhang et al. 2013) 2466800 2466850 2466832 NA

IBFA (Pandit et al. 2012) 2484700 2484854 2484798 NA

CRO (Roy, Bhui, and Paul 2014) 2482600 2482808 2482785 NA

HCRO (Roy, Bhui, and Paul 2014) 2480000 2480465 2480451 NA

SPS-DE (Sayah and Hamouda 2013) 2470000 2471220 2470112 NA

MBDE (Liang et al. 2018) 2602000 2602250 2602201 NA

WOA (Yang et al. 2021) 2470300 2470480 2470415 NA

EEWOA (Yang et al. 2021) 2465200 2465620 2465320 NA

SCA 2390436.53 2390512.41 2390444.62 81.52
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commonly used test systems. These test systems are 5- and 10-unit test systems. The results obtained 
by SCA technique have been compared with other recently reported techniques. The results show that 
the total cost obtained by SCA technique is smaller than those found by other methods. The proposed 
technique is a effective and promising method for solving DED problem and other optimization 
problems. The proposed optimization technique can be used to solve many other complex engineering 
problems like in electric vehicles, mechanical vibration, and battery management system.
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Figure 3.Convergence characteristics of SCA technique for ten-unit test system

Table 5. The minimum fuel cost for different values of SCA parameters

g1 g2 g3 g4 Minimum fuel cost ($ / hr.)

0.1 0.40 0.10 0.1 2390498.33

0.2 0.45 0.15 0.2 2390511.96

0.3 0.50 0.2 0.3 2390441.21

0.4 0.55 0.25 0.4 2390474.63

0.5 0.60 0.30 0.5 2390436.53

0.6 0.65 0.35 0.6 2390452.78

0.7 0.70 0.40 0.7 2390462.88

0.8 0.75 0.45 0.5 2390489.12
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