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ABSTRACT

Spatial keyword query has attracted the attention of many researchers. Most of the existing spatial 
keyword indexes do not consider the differences in keyword distribution, so their efficiencies are not 
high when data are skewed. To this end, this paper proposes a novel association rule mining based 
spatial keyword index, ARM-SQ, whose inverted lists are materialized by the frequent item sets mined 
by association rules; thus, intersections of long lists can be avoided. To prevent excessive space costs 
caused by materialization, a depth-based materialization strategy is introduced, which maintains a 
good balance between query and space costs. To select the right frequent item sets for answering a 
query, the authors further implement a benefit-based greedy frequent item set selection algorithm, 
BGF-Selection. The experimental results show that this algorithm significantly outperforms the 
existing algorithms, and its efficiency can be an order of magnitude higher than SFC-Quad.
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Introduction

The rapid development of mobile devices has produced many location-based services, and an increasing 
number of online objects have both spatial and textual properties. For example, social services such 
as Twitter and Foursquare allow users to send their tweets with location; navigation services such as 
Google Maps and Baidu Map allow users to search for points of interest nearby. These applications 
require efficient spatio-textual indexes to support numerous spatial keyword queries.

https://orcid.org/0000-0002-0269-9017
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There are three common spatial keyword queries: Boolean range query (BRQ), Boolean kNN 
query (BkQ) and the top-k kNN query (TkQ) (Chen et al., 2013). This paper focuses on BRQ, which 
is fundamental to many spatial textual applications (Salgado et al., 2018; Tampakis et al., 2021; Wang 
et al., 2021; Wang et al., 2020). Given a collection of spatio-textual data, a spatial keyword query q  
(comprising a spatial region R  and a set of keywords W ), BRQ aims to find all objects, each of 
which is in R  and contains all keywords in W .

In Figure 1, a user may want to find a restaurant in a certain area (query region in a dashed 
rectangle) that sells hamburgers and coffee (query keywords) together. He can issue his query to a 
BRQ server and obtain point 1 as the returned result. Although points 3 and 4 are also in this area, 
they do not contain all the query keywords. For example, P2 sells hamburgers and coffee together, 
but they are too far away.

The spatial keyword index is the heart of an efficient spatial keyword query. We can consider it 
a spatial and textual index combination, either in a space-first or text-first way. Based on the spatial 
indexes used, existing studies can be R-tree-based, grid-based, and space-filling curve-based. From 
the textual perspective, we can also classify these studies into inverted index-based and bitmap-based 
studies. Chen et al. (2013) experimentally evaluated 12 spatial-textual indexes, such as IR-Tree (Wu 
et al., 2012b), WIBR-Tree (Wu et al., 2012a), and SFC-Quad (Christoforaki et al., 2011), and the 
results show that SFC-Quad performs the best both in query time and space on BRQ.

The excellent performance of SFC-Quad is because of the simple core structure: an inverted 
index ordered by space-filling curves. The objects in each inverted list are sorted according to the 
Z-curve order, so the objects close in the original space are as close as possible in the inverted lists, 
thus leading to a better query performance.

Although many studies followed the study by Chen et al. (2013) into BRQ, most turn to in-memory 
or streaming data spatial keyword query (Chen et al., 2017; Mahmood et al., 2018), collaborative 
spatial keyword query (Zhao et al., 2017), semantic spatial keyword query (Qian et al., 2018; Sun et 
al., 2017), privacy-preserving spatial keyword query (Cui et al., 2019; Su et al., 2015), and spatial 
keyword query on road network (Han et al., 2015; Zheng et al., 2016). We can see from recent surveys 
(Chen et al., 2020; Chen et al., 2021) that SFC-Quad is still the best representative in disk-based 
BRQ algorithms.

However, most of the existing indexes do not consider the differences in keyword distribution, so 
the efficiency is not high when data are skewed. Skewed distribution is ubiquitous in real scenarios. 
A large variety of keywords appear only in a few objects, while a few appear in many objects. 
Therefore, treating all keywords equally will inevitably lead to a decrease in query efficiency. The 
experimental results of this paper show that the query time of SFC-Quad increases sharply with the 
increase in frequent words. Therefore, it is necessary to consider effective measures to improve query 
efficiency under a skewed distribution. Although WIBR-tree has considered the skewed distribution, 

Figure 1. A BRQ Example
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its iterative bipartition manner on the most frequent word cannot fully make use of the characteristics 
of the skewed distribution.

Considering that list intersections are the most expensive operations in SFC-Quad and 
materialization is an effective way to improve the efficiency, this paper designs a novel association 
rule mining (ARM) based spatial keyword index, ARM-SQ. The inverted lists in ARM-SQ are 
materialized by the mined frequent itemsets (FIS); thus, intersections of long lists can be avoided. 
A depth-based materialization strategy is introduced to prevent excessive space costs caused by 
materialization, which maintains a good balance between time and space costs. To select the right 
FISs for answering a query, we further implement a benefit-based greedy frequent itemsets selection 
algorithm, BGF-Selection. The experimental results show that our algorithm significantly outperforms 
existing algorithms, and its efficiency can be an order of magnitude higher than SFC-Quad.

The contributions of this paper are as follows:

1. 	 To the best of our knowledge, this is the first study combining ARM and spatial keyword query 
to improve the performance of high-frequency words.

2. 	 A novel depth-based materialization strategy is proposed, which maintains a good balance 
between time and space costs. As a result, ARM-SQ can decrease query time significantly by 
introducing only small space overheads.

3. 	 BGF-Selection, an efficient benefit-based greedy frequent itemset selection strategy, is 
designed, which can quickly select an approximate optimal frequent itemset combination to 
answer the query.

4. 	 Extensive experiments on multiple real datasets show that the proposed algorithm significantly 
outperforms existing algorithms. Furthermore, our algorithm runs up to an order of magnitude 
faster than SFC-Quad and has a better scalability with increasing the query range.

The rest of this paper is organized as follows. We next introduce the problem definitions and 
necessary preliminaries. Next, our core ARM-SQ index and the corresponding algorithm are presented 
before we present the experimental results. We then conclude the paper.

Problem Definition and Precondition

Basic Definition

Given a spatial keyword dataset D, each object o D∈  is defined as o oC oW= . , . , where oC.  is 
a coordinate consisting of longitude and latitude and oW.  is a set of keywords. Each object o  has a 
unique identifier o ID. . In this paper, D  is denoted as the number of objects in the dataset, oW.  
is denoted as the number of elements in oW.  and oW i. 


  is denoted as the i-th element in oW.  (

0 1≤ ≤ −i oW. ). A spatial keyword query has a form of q q R qW= . , . , where q R.  is a rectangular 
query region bounded by the upper-left and lower-right coordinates. qW.  is the corresponding set 
of query keywords.

Based on these discussions, the definition of spatial keyword query is given as follows:

Definition 1: Spatial keyword query: Given a query q q R qW= . , . , a BRQ retrieves all objects, 
each of which is in q R.  and contains all keywords in qW. .

Spatial Keyword Query
As a building block for many spatial keyword-based applications, BRQ has been extensively researched 
for a long time. Among all the indexes, R-tree based indexes are the most popular. IR-tree is a typical 
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representative that combines an R-tree and an inverted index. Based on IR-tree, WIBR-tree and many 
other variants have been proposed.

In WIBR-tree, the objects are first partitioned into two groups using the most frequent word 
w1. All objects in the first group contain w1, and no object in the second group contains w1. Each 
of these two groups is then further iteratively partitioned by the next frequent word until the number 
of objects in each group is below a certain threshold. We use the partitioned groups as leaf nodes to 
build the IR-tree in a bottom-up way. Although WIBR-tree has considered the skewed distribution 
of keywords, which is like the main idea of this paper, its iterative bipartition manner on the most 
frequent word cannot fully make use of the characteristics of a skewed distribution. In contrast, our 
algorithm exploits more frequent information in the dataset by employing ARM.

A space-filling curve (SFC) can also accelerate BRQ, and a SFC can transform high-dimensional 
data into 1-dimensional or sort high-dimensional data (Jia et al., 2021). SFC-Quad is an application 
of the latter case, and it sorts objects by Z curve in ascending order and inserts them in inverted lists 
used in sorted order, thus having high efficiency.

A memory-based BRQ was studied by Lee et al. (2015), which employs five memory-based 
optimizations to accelerate in-memory BRQ. Tampakis et al. (2021) mapped space to distance and 
text to similarity, reducing spatial text data to 2-dimensional, and then studied BRQ on the mapped 
data. However, their work is an approximate query from the perspective of the text. Wang et al. (2020) 
studied BRQ in encrypted data, and the index they used is a combination of SFC (gray code) and 
quadtree. For more research in this area, readers are referred to recent research surveys (Chen et al., 
2020; Chen et al., 2021; Gao & Jensen, 2016).

Different from the studies above, this paper aims to design a disk-based algorithm and adopts a 
novel idea of combining ARM and BRQ, which can greatly improve the query performance of existing 
algorithms, especially when the query contains a large number of frequent words.

Association Rule Mining
ARM is a classic problem studied in the data mining community for a long time. The core of ARM 
is to efficiently obtain FISs whose support is greater than a certain threshold. ARM is based on an 
important property: if an itemset is infrequent, all its supersets are also infrequent.

Apriori (Agrawal & Srikant, 1994), FP-Growth (Han et al., 2000), and Eclat (Zaki, 2000) are 
the three classic ARM algorithms. Based on the ideas of these algorithms, existing algorithms 
can be divided into three categories: generation-test-based algorithms, pattern growth-based 
algorithms, and vertical grid-based algorithms. There is a range of recent improvements to the 
three classic algorithms (Alghyaline et al., 2016; Zhang et al., 2019; Zhang et al., 2019; Zhu & 
Liu, 2019; Ding et al., 2022).

This paper generates FISs based on FP-Growth, but other ARM algorithms can also be applied 
here. For ease of description and understanding, the symbols involved in this paper are listed and 
defined in Table 1.

The Proposed Index

Motivation
Although having high efficiency, SFC-Quad also has the following shortcomings:

1. 	 Keywords are generally skewed. Very few keywords appear in many objects, which corresponds 
to long lists. Querying long lists requires more IO operations, which are inefficient.

2. 	 For multiple high-frequency words, expensive list intersections are needed, which leads to the 
degradation of SFC-Quad performance.
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Considering these shortcomings, in this paper, we design an ARM-based index, ARM-SQ, and 
the corresponding query algorithm to improve BRQ efficiency.

ARM-SQ
The main parts of ARM-SQ include a materialized inverted index and a quadtree. For a 
sample dataset in Table 2 (the objects have been sorted in Z ascending order, and we have 
reassigned the IDs as shown in Figure 2), the corresponding ARM-SQ is shown in Figure 
3. Note that although other space-filling curves, e.g., Hilbert curves, can also similarly 
sort the objects, we choose Z order here as it has fast encoding and decoding speed (Jia 
et al., 2021).

Table 1. Symbolic Table

Symbol Description

D A spatial keyword dataset

q q R qW= . , . a spatial keyword query, where q R.  is the query region and qW.  is the query keywords

o oC oW= . , . a spatial keyword object, where oC.  is the coordinate and oW.  is the keywords of o

h a materialized depth

H a set of materialized depths

C
t
h

the normalized query time cost for depth h

C
s
h

the normalized space cost for depth h

th ,sh the query time and space for depth h , respectively

tmax ,smax the maximum query time and space cost for any depth in H , respectively

F the FISs mined for the optimal h

qW qW
f n

. , . the frequent subset and infrequent subset of qW. , respectively

f a FIS

F
qWf. all FISs covered by qW

f
.

B
f

the benefit of f

S S
e f
, the support of element e  and FIS f , respectively

FS the selected FISs after executing BGF-Selection
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Table 2. Sample Dataset

o.ID o.C o.W

0 (0,0) {a,b,c,e}

1 (1,1) {a,b,c,e,f}

2 (3,0) {b,c,g}

3 (0,2) {d,g,h}

4 (1,2) {a,b,d}

5 (1,3) {a,d,f}

Figure 2. Sorted Objects in Table 1 Using a Z Curve

Figure 3. The ARM-SQ Index
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Materialized Inverted Index
The heart of ARM-SQ is the materialized inverted index. To effectively build this index, we introduce 
ARM to generate FISs and materialize the intersections of inverted lists using generated FISs. However, 
when the support is low, numerous FISs will be generated and materializing them is space prohibited.

This paper designs a depth-based materialization strategy to materialize only a small fraction of 
inverted lists. To do this, a depth parameter h  is introduced to materialize only the FISs whose depth 
is not more than h , which can effectively control the growth of storage space. Note that the effect 
of parameter h  on materialization is twofold. On the one hand, as h  increases, more FISs are 
materialized, so more list intersection operations can be avoided. On the other hand, as h  increases, 
more storage space is needed. For a better balance between query time and storage space, given a 
depth set H h h h

n
= { }1 2

, ,...,  containing n  materialized depths, we can calculate the space-time 
comprehensive cost Ch  for a depth h H∈  according to Equation (1):

C C Ch
t
h

s
h= + 	 (1)

where C
t
h  and C

s
h  represent the normalized query time cost and space cost for h , respectively. C

t
h  

and C
s
h  can further be calculated according to Equations (2) and (3) as follows:

C t t
t
h h max= / 	 (2)

C s s
s
h h max= / 	 (3)

In these equations, th  and tmax  are denoted as the corresponding query time for depth h  and 
the maximum query time for any depth in H , respectively. Correspondingly, sh  and smax  are 
denoted as the corresponding space costs for depth h  and the maximum space cost for any depth 
in H , respectively.

In this way, the optimal h  corresponding to the minimum comprehensive cost can be calculated 
by Equation (1); then, the corresponding FISs can be determined and used to materialize the inverted 
lists. For ease of description, we use F  to denote the FISs mined for the optimal h .

To effectively organize the mined FISs, we organize them into a trie. Each FIS in F  is 
represented as a path starting from the root in trie. Each node in trie points to a materialized inverted 
list. The trie resides in memory, while the inverted lists are compressed by OPT-PFD (Yan et al., 
2009) and stored in external memory. The elements in inverted lists are sorted in Z ascending order 
as described before.

Example 1: For the dataset in Table 1, we mine FISs using a support threshold 3 and obtain 
F a b c a b b c d= { } { } { } { } { } { }{ }, , , , , , , ; then, we materialize the intersections for FISs a b,{ }  

and b c,{ } , as shown in Figure 3.

Quadtree
A quadtree is a space partitioning tree where the leaf nodes are data objects and each nonleaf node 
is recursively subdivided into four quadrants. This paper deploys an in-memory quadtree to implement 
fast coarse-grained spatial range queries. We keep an ID interval StartID EndID,



  for each inner 

node representing the descendants’ ID range. Considering that there is a one-one mapping between 
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a quadrant of the quadtree and a partition of the Z curve, the objects satisfying the Z order can be 
obtained by recursively accessing the four quadrants of the quadtree.

Example 2: For the dataset in Table 1, we build a quadtree, as shown in Figure 3. The third child of 
the root corresponds to the southwest partition of the Z curve in the left part of Figure 3. Since 
the third child of the root has three nonempty leaf nodes (filled in black) with IDs 3, 4, and 5, 
the ID interval of this node is [3, 5].

ARM-SQ Based BRQ Algorithm

Based on ARM-SQ, an efficient ARMSQ-BRQ algorithm is proposed in this paper. ARMSQ-BRQ 
adopts a generation-test framework. In the generation stage, we generate candidates; in the test stage, 
we test the candidates and obtain the ultimate answer. The major procedures of ARMSQ-BRQ include 
three major steps.

Spatial Query on Quadtree
As suggested in Christoforaki et al. (2011), a fine-grained spatial query deteriorates the query 
performance. In this paper, we also deploy a coarse-grained spatial query for q R. . Specifically, we 
check whether q R.  is fully contained in a sub-quadrant of the quadtree in a depth manner until we 
reach a depth d , where q R.  is not fully contained in any sub-quadrants at depth d . Then, we directly 
return the ID intervals of those sub-quadrants at depth d  intersecting q R.  as the results of the coarse-
grained spatial query. We denote the set of ID intervals as IVs .

Example 3: For a spatial query q R. , , ,= 






{ }0 1 2 3  shown as the bold rectangle in the left part of 

Figure 3, as q R.  is fully contained in the root of the quadtree, we recursively check it in each of 
the four child nodes of the root. Then, we find that q R.  is not fully contained in any of these 
four child nodes, so we return the ID intervals [0,1] for the first child of the root and [3,5] for 
the third child of the root because these two nodes intersect with q R. . As a result, 
IVs = 







{ }� , ,� ,0 1 3 5 .

FIS Selection and Keyword Query on the Materialized Inverted Index
FIS Selection

The main challenge facing ARMSQ-BRQ is that given a query q q R qW= . , .  and a set of mined 
FISs F , we can choose the appropriate FISs for qW.  to answer the query.

To tackle this challenge, the frequent subsets of qW.  are defined as follows:

Definition 2: The frequent subset of qW. : a subset of qW.  containing all elements in qW.  that 
appear in at least one FIS of F .

We denote qW
f

.  as the frequent subset of qW. . Correspondingly, qW qW qW
n f

. . .= −  is denoted 
as the infrequent subset of qW. . As the inverted lists corresponding to the elements in qW

n
.  will not 

be materialized and each of these lists can be accessed directly, we focus on the accessing strategy 
for qW

f
.  in the later description. Then, the definition of an FIS covered by qW

f
.  is given as follows:

Definition 3: An FIS covered by qW
f

. : an FIS f  is covered by qW
f

.  if f qW
f

⊆ . .
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Correspondingly, all FISs covered by qW
f

.  are denoted as FqWf. .

Example 4: For qW a b c e. , , ,= { }  and the mined FISs F a b c a b b c d= { } { } { } { } { } { }{ }, , , , , , , , we 
first split qW.  into 2 subsets using Definition 2, as element e does not appear in any FIS of F, 
s o  w e  o b t a i n  qW a b c

f
. , ,= { }  a n d  qW e

n
. = { } .  T h e n ,  w e  c a n  o b t a i n 

F a b c a b b c
qWf. , , , , , ,= { } { } { } { } { }{ }  using Definition 3.

As FqWf.  may contain multiple FISs, choosing the appropriate p  FISs f f f
p1 2

, ,...,{ }  satisfying 
the following 3 constraints is the key to this paper:

1. 	 ∪ =
∈


i p i f
f qW

1,
.

2. 	 ∀ ≠i j , f f
i j
∩ = ∅

3. 	 The total query cost is minimized.

Considering that the above problem is essentially a set covering problem with NP complexity, 
we design a benefit-based greedy FIS selection algorithm, BGF-Selection, to calculate an approximate 
optimal solution. Here, the benefit of f  is defined as follows:

Definition 4: The benefit of f : given an FIS f , its benefit is the reduced costs by materializing f .

We denote the benefit of f  as B
f

. It is difficult to precisely calculate B
f

, as it depends on the 
IVs obtained from spatial query, the specific list intersection algorithm, etc. To simplify the calculation, 
we approximately compute B

f
 according to Equation (4) as follows:

B
f
=

e f e f
S S

∈∑ − 	 (4)

where 
e f e
S

∈∑  is the sum of supports for all elements in f , and S
f

 is denoted as the support 
corresponding to FIS f .

Based on the analyses above, BGF-Selection can be implemented as follows:

1. 	 Set FS = ∅ ;
2. 	 Sort the FISs in FqWf.  in descending order of benefit;
3. 	 For each f F

qWf∈ . , if f f∩ = ∅'  for all f FS' ∈ , then FS =F fS ∪{ } .

To efficiently check whether f  intersects with any FIS in FS , a flag array with a length qW
f

.  

is used, in which each element of qW
f

.  corresponds to a unique position in the array. For the current 
accessing FIS f , if the corresponding flag of element e f∈  in the array has been set, then f  must 
intersect with at least one FIS in FS ; otherwise, we set the flags for all elements in f  and append 
f  into FS .
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Example 5: We compute B
f

 according to Definition 4 for each f  in FqWf. . For FIS a b,{ } , as the 
supports for a{ } , b{ } , and a b,{ }  are 4, 4, and 3, respectively, we can compute 
B
a b,{ } = + − =4 4 3 5 . Similarly, we compute the benefits for FIS a{ } , b{ } , c{ } , b c,{ }  as 

0, 0, 0, 4, respectively.

We then sort FqWf.  in benefit descending order and obtain F a b b c a b c
qWf. , , , , , ,= { } { } { } { } { }{ } . 

For the 1st FIS a b,{ }  in FqWf. , we add it directly into FS . For FIS b c,{ } , as it intersects with FIS 

a b,{ }  in FS , we ignore this FIS. We scan each FIS in FqWf.  in a similar way, and finally, we obtain 

F a b cS = { } { }{ }� ,� ,� .

Keyword Query on Materialized Inverted Index

After FISs are selected, we execute a keyword query on the inverted index corresponding to FS  and 
qW

n
. ; then, we store the candidates of the query in C . We use the same DAAT list intersection 

strategy as in SFC-Quad, so we do not discuss it in detail.

Example 6: For the IVs  = {[0, 1], [3, 5]} obtained in the spatial query, we query them in the inverted 
lists pointed by a b,{ } , c{ }  and e{ } . As IDs 0 and 1 appear in all 3 lists, these 2 IDs are stored 
in C  as our candidates.

Candidate Verification
As we use a coarse-grained spatial query in the spatial query stage, the candidates obtained in C  
may not satisfy the spatial constraint. Therefore, we need a verification step here to verify each 
candidate in C  to check whether the object of this candidate is in q R. .

Example 7: For candidates 0 and 1 in example 6, we check their coordinates and find that the 
coordinates (0, 0) of object 0 are not in q R. , so the final result is object 1.

Based on the discussion above, Figure 4 gives the final ARMSQ-BRQ algorithm.

Analysis: Assuming that there m  mined 1-FISs (only one element in the FIS), in the worst case, 

ARM-SQ generates 
i

h
C m i
=∑ ( )
2

,  FISs whose number of elements is between 2 and h . Therefore, 

the additional space overhead for materialization is l C m i
i

h
* ,

=∑ ( )
2

, where l  is the average 

length of the materialized inverted lists and C m i,( )  is a combination number.

The major time overhead for ARMSQ-BRQ is accessing elements in the inverted index. After 
materialization, we can decrease the number of lists to be accessed from qW qW qW

f n
. . .= +  to 

F qWS
n

+ . , where F qWS
f

≤ . . For each list, we access at most 
i

IV
IVs i

=∑ 


1

| |  elements, where 

IVs i

  is the i-th ID interval in IVs  and IVs i


  is the length of IV i


 . Therefore, the maximum 

number of elements that need to be accessed is F qW IVs iS
n i

IV
+( ) 



=∑. *

1
.



International Journal of Data Warehousing and Mining
Volume 19 • Issue 2

11

Experiment

All experiments were conducted on a PC with an Intel i7-11800H CPU running at 2.3 GHz CPU 
and 16 GB RAM running Windows 10. All algorithms were implemented in Java with jdk1.8, and 
IntelliJ IDEA 2021.1.3 x64 was used as the compiler.

Datasets
We use ROAD (http://www.diag.uniroma1.it//challenge9/download.shtml) and EURO (https://www.
pocketgpsworld.com/) as the spatial datasets and RETAIL and KOSARAK (http://fimi.uantwerpen.
be/data) as the keyword datasets. ROAD is the road network dataset of the United States with a total 
of 20 million coordinates. EURO is a European point-of-interest dataset with 100,000 coordinates. 
RETAIL is a sales dataset of a retail store in Belgium, with a total of 88,162 records. KOSARAK is 
the clickstream dataset of a Hungarian online news portal with a total of 990,000 records. We show 
the details of the 2 keyword datasets in Table 3. We combine EURO and RETAIL into a new spatial 
keyword dataset (DS1 in short) by randomly and non-repeatedly assigning a coordinate in EURO 
to each record in RETAIL. Similarly, KOSARAK and ROAD are composed of a dataset DS2 of 
990,000 records.

Parameter Settings
In this paper, ARM-SQ is evaluated with the other 6 indexes: IF-R* (Zhou et al., 2005), WIBR-Tree 
(Wu et al., 2012b), IR-Tree (Wu et al., 2012a), CIBR (Wu et al., 2012b), SFC-Quad (Christoforaki et 
al., 2011), and KR*-Tree (Hariharan et al., 2007). Each of these indexes may involve some specific 
parameters. We experimentally choose the parameter value that gives the corresponding index the 
best performance. For the R-tree and R*-tree-based algorithms, page_size is set to 32K, and fanout 

Figure 4. The ARMSQ-BRQ Algorithm

Table 3. Statistics on Keyword Dataset

Property RETAIL KOSARAK

Total number of objects 88162 990000

Total number of words 90875 8019013

Total number of unique words 16469 41270

Average length of inverted list 6 194

http://www.diag.uniroma1.it//challenge9/download.shtml
https://www.pocketgpsworld.com/
https://www.pocketgpsworld.com/
http://fimi.uantwerpen.be/data
http://fimi.uantwerpen.be/data
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is set to 4000. As WIBR-Tree iteratively divides all objects in the dataset into two groups using the 
most frequent words, we set the number of frequent words to 10 and 20 for DS1 and DS2, respectively. 
For CIBR, we set the number of clusters to 20 and 40 for DS1 and DS2, respectively.

For ARM-SQ, the support thresholds are 400 and 5000 for DS1 and DS2, respectively. Next, we 
evaluate the effects of materialization depth h , the number of high-frequency words x  in a query, 
the number of total words y  in a query, and the query range percentage p  (the ratio of query rectangle 
over the entire region of the corresponding dataset).

The Effects of h
To evaluate the effects of h  on ARM-SQ, we fix x  =4, y  =6, p  =10% and alter h  with 2, 3, 4, 5, and 6 
accordingly, then randomly choose 1000 objects for each h  from the corresponding dataset as queries. The 
results on space cost, query cost, and total cost on the two datasets are shown in Figures 5 and 6, respectively.

Figure 5. The Effects of h on DS1

Figure 6. The Effects of h on DS2
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As seen from Figures 5 and 6, the space cost gradually increases with the increase of h , while 
the query time has exactly the opposite trends. DS1 is relatively small, so the total cost tends to be a 
straight line when h  is not less than four. The total cost is the smallest when h  is three on DS2. We 
observe that a small h  is good enough to achieve a good balance between time and space. For 
simplicity, h  =4 is used as the default materialization depth in the following experiments unless 
otherwise specified. In specific applications, we can adjust h  according to the actual preference for 
space and time.

The Effects of x
To evaluate the effects of x  on ARM-SQ, we fix y  =6, p  =10% and alter x  with 1, 2, 3, 4, 5, and 
6 accordingly, then randomly choose 1000 objects for each x  from the corresponding dataset as 
queries. The results on the two datasets are shown in Figures 7 and 8, respectively. 

Figure 7. The Effects of x on DS1

Figure 8. The Effects of x on DS2
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Figures 7 and 8 show that the query efficiency of ARM-SQ is much better than that of the other 
competitors. The performance improvements of ARM-SQ over SFC-Quad on the two datasets can 
be over 11 and 26 times, respectively. The reason why ARM-SQ significantly outperforms SFC-Quad 
lies in the substantially decreased disk accesses. The average disk accesses of ARM-SQ in DS2 are 
128, 136, 165, 160, 338 and 213 for x  varying from 1 to 6, respectively, whereas these numbers for 
SFC-Quad are 293, 657, 1113, 1875, 3806, and 8546. The query times of ARM-SQ are almost fixed 
with the increase of x , which shows that our materialization strategy can significantly reduce the 
intersection cost of long lists. Except for ARM-SQ and WIBR, the query times of the other algorithms 
increase significantly with the increase of x  in most cases. The curves of SFC-Quad jump sharply 
when x  is not less than five, showing that SFC-Quad suffers more from a larger x . The curve of 
WIBR-tree drops rapidly on DS2 because of a relatively high skewness on the KOSARAK dataset. 
Despite this, the efficiency of WIBR-tree is much lower than ARM-SQ.

The Effects of y
To evaluate the effects of y  on ARM-SQ, we fix x  =4, p  =10% and alter y  with 4, 6, 8, and 10 
accordingly, then randomly choose 1000 objects for each y  from the corresponding dataset as queries. 
The results on the two datasets are shown in Figures 9 and 10, respectively.

It can be seen from Figure 9 and 10 that with the increase in y , the proportion of frequent words 
gradually decreases. Nevertheless, ARM-SQ’s query efficiency is superior to the competitors. The 
performance improvements of ARM-SQ over SFC-Quad on the two datasets can be over 10 and 26 
times, respectively. Similarly, the average disk accesses of ARM-SQ in DS2 are 45, 160, 205, and 
228 for y , varying from four to ten, respectively, whereas these numbers for SFC-Quad are 7652, 
1875, 1274, and 1063. As a result, the query performances can be greatly improved. The query times 
of ARM-SQ, SFC-Quad, and CIBR decrease with increasing y  because they process infrequent 
words first, and more infrequent words lead to a smaller intersection result.

The Effects of p
To evaluate the effects of p on ARM-SQ, we fix x  =4, y  =6 and alter p  by 1%, 5%, 10%, 25%, and 
50% then randomly choose 1000 objects for each p  from the corresponding dataset as queries. The 
results on the two datasets are shown in Figures 11 and 12, respectively.

Figure 9. The Effects of y on DS1
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We can see from Figures 11 and 12 that the query times of all indexes increase with increasing 
p . When p  increases from 1% to 50%, the query times on DS2 of IF-R*, WIBR, IR, CIBR, KR*, 
SFC-Quad, and ARM-SQ increase by 120%, 50%, 231%, 185%, 218%, 84%, and 60%, respectively. 
In this case, the increase ratio of ARM-SQ remains low and is only slightly higher than WIBR-tree, 
which indicates that it has good scalability with the increase of p . The increase ratio of ARM-SQ 
is lower than that of SFC-Quad. The reason lies in that ARM-SQ materializes multiple long lists into 
a smaller list, so the accessed list elements are smaller than those of SFC-Quad.

Conclusion

Given the deficiency that most existing algorithms do not consider the affects of frequent keywords, 
this paper proposes a novel association rule mining-based spatial keyword index ARM-SQ and 

Figure 10. The Effects of y on DS2

Figure 11. The Effects of p on DS1
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the corresponding spatial keyword query algorithm ARMSQ-BRQ. Experimental results show the 
superiority of our structure and algorithm. In addition, our index and algorithm have the following 
good characteristics:

1. 	 Our materialization strategy can be applied to any text-first spatial index, improving the 
performance of many existing applications.

2. 	 ARMSQ-BRQ works well for both scenarios, with and without numerous high-frequency words, 
showing better adaptability to word frequency distribution.

One weakness of ARM-SQ lies in the offline mining process introduced by ARM, which may 
introduce a higher index updating cost. We can alleviate this problem by rebuilding the indexes 
periodically when the server is not busy. Future research should include studies of other efficient 
materialization methods. In addition, extending ARM-SQ to trajectory data, privacy protection, and 
many other scenarios will be fascinating directions.
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