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ABSTRACT

Clustering is a basic primer of exploratory tasks. In order to obtain valuable results, the parameters 
in the clustering algorithm, the number of clusters must be set appropriately. Existing methods for 
determining the number of clusters perform well on low-dimensional small datasets, but how to 
effectively determine the optimal number of clusters on large high-dimensional datasets is still a 
challenging problem. In this paper, the authors design a method for effectively estimating the optimal 
number of clusters on large-scale high-dimensional datasets that can overcome the shortcomings of 
existing estimation methods and accurately and quickly estimate the optimal number of clusters on 
large-scale high-dimensional datasets. Extensive experiments show that it (1) outperforms existing 
estimation methods in accuracy and efficiency, (2) generalizes across different datasets, and (3) is 
suitable for high-dimensional large datasets.
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Introduction

Clustering is the main task of exploratory data mining and a common technique for statistical data 
analysis. Clustering is widely used, in addition to data mining, pattern recognition, image processing 
(Bhatia & Deogun, 1998), computer vision (Frigui & Krishnapuram, 1999; Shi & Malik, 2000), and 
other fields; it is also used in fraud detection, market segmentation, and many other aspects. For 
example, in fraud detection, outliers in the cluster may predict the existence of fraud. In e-commerce, 
clustering can help e-commerce enterprises to understand their customers and provide them with 
more appropriate services by grouping customers with similar browsing behaviors and analyzing 
their common characteristics (Punj & Stewart, 1983). Clustering has been identified in these and 
more areas. Clustering methods are used to describe data, measure the similarity between different 
data points, and classify data points into different clusters.

The k-means algorithm is widely used for clustering due to its excellent performance in terms 
of runtime in practical applications (Chiang & Mirkin, 2010; Dunn, 1974). k-Means (Celebi et al., 
2013; Jain, 2010; Wang et al., 2020) aims to partition a dataset with n entities into k (k n< ) clusters, 
where each entity is assigned to the closest cluster to the centroid. When performing the k-means 
algorithm, the number of clusters must be specified. However, the optimal number of clusters in a 
dataset is often unknown and the k-value is difficult to estimate and give in advance. Setting an 
inappropriate number of clusters when performing clustering algorithms can lead to structural, 
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grouping or compression errors. Most of the existing methods for estimating the optimal number of 
clusters focus on low-dimensional and small datasets.

The elbow method (Thorndike, 1953) is a commonly used and intuitive method to estimate the 
number of clusters in a dataset. It performs k-means algorithm for each k in a given search space, 
then uses the sum of squared errors (SSE) (Arbelaitz et al., 2013) to draw the elbow graph, and 
determines the optimal number of clusters by judging the inflection point of the elbow graph. As the 
number of cluster k increases, the compactness of each cluster gradually increases, so the SSE gradually 
decreases. When k reaches the optimal number of clusters, the reduction of SSE decreases sharply, 
and then tends to be flat as the value of k continues to increase. The SSE is the sum of the distances 
of all entities to their cluster centers. The elbow method uses the SSE as the measure of clustering 
effectiveness because it can be derived directly from the k-means algorithm. However, the elbow 
method also has obvious downsides. First, it has to perform the k-means algorithm for each value of 
k in the search space R  to get the SSE, which can be very computationally expensive for large datasets 
or high- dimensional datasets because it takes a lot of time to calculate the SSE before an estimate 
can be made. Secondly, the optimal number of clusters is not well determined if there is no obvious 
bend in the elbow graph or if there are multiple bends.

As previously stated, the elbow method has serious drawbacks, which makes it difficult to estimate 
the optimal number of clusters in a dataset using the elbow method in practical applications. Fritz et 
al. (2020) proposed LOG-Means as a new estimation method that exploits the valuable properties of 
the elbow rule to estimate the optimal number of clusters in a dataset by a specialized search strategy. 
LOG-Means estimates the optimal number of clusters in the dataset by calculating the SSE ratio of 
nondirectly adjacent k values in the search space. Although LOG-Means provides an efficient search 
strategy, it also has serious drawbacks. First, LOG-Means performs the k-means algorithm directly 
on the data, which suffers from the curse of dimensionality (Giraud, 2021) when the data points 
are high-dimensional, which, in turn, affects the SSE calculation. Second, the k-means algorithm is 
expensive to execute in a single pass on high-dimensional data, especially for large high-dimensional 
datasets (Arthur & Vassilvitskii, 2006).

Most of the existing methods for estimating the optimal number of clusters focus on small data 
sets in low dimensions, and they do not perform well on high-dimensional large-scale data sets (e.g., 
when calculating the SSE, which is affected by the curse of dimensionality because the data points 
are high-dimensional). In this paper, the author aims to investigate how to quickly and accurately 
estimate the optimal number of clusters on a dataset while reducing the computational cost of high-
dimensional large-scale data. The author designs a new method, based on locality-sensitive hashing 
(LSH) and named LSH-Means, to estimate the optimal number of clusters in high-dimensional large 
datasets, which overcomes the inadequacies of existing methods in high-dimensional space estimation. 
LSH-Means aims to reduce the dimensionality (Fodor, 2002) and scale of the dataset (Fern, 2003; 
Meng, 2013; Xie et al., 2017) before estimation while maintaining the similarity in the original 
dataset..; Then, LSH-Means utilizes the search strategy of LOG-means to effectively estimate the 
optimal number of clusters in high-dimensional large datasets.

The contributions of this paper are as follows:

•	 The author proposes their approach LSH-Means and discusses it by comparing it with LOG-
Means. They specify how their method estimates the optimal number of clusters in high-
dimensional large datasets.

•	 The author analyzes LSH-Means and proves its effectiveness. It has strong fitting ability for 
high-dimensional large datasets.

•	 The authors’ experimental results show that LSH-Means outperforms LOG-Means in terms of 
runtime while maintaining accuracy.
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The rest of the paper is structured in five sections as follows: The second section provides the 
literature review; the third section introduces the preliminaries and problem definition; the fourth 
section details the author’s approach LSH-Means; the fifth section illustrates the author’s experimental 
results and offers a comparison with LOG-Means and the elbow method; finally, the sixth section 
summarizes the author’s work.

Related Work

Existing estimation methods follow three steps: (1) Determine which parameter in the search space 
R is to be executed next; (2) execute the clustering algorithm using the determined parameters; (3) 
evaluate the results. Since k-means performs well in practical applications, it is usually used in the 
second step.

Estimation methods can be divided into exhaustive and nonexhaustive methods, where the 
exhaustive method performs a clustering algorithm for each k in the search space and the nonexhaustive 
performs a clustering algorithm for nonexhaustive search. The exhaustive algorithm performs a 
clustering algorithm for each k, evaluates the results based on the validity measure, and finally 
selects the best result as an estimate of k. The main difference between these methods is that the 
validity measures evaluated are different, and the validity measure of existing clusters is mainly the 
tightness of the clusters. Nonexhaustive methods search in the search space according to a certain 
pattern and stop the search immediately when almost no difference occurs in the evaluation criteria, 
such as X-Means and G-Means.

Existing methods are mainly used in low-dimensional spaces; in this paper, the author proposes 
LSH-Means, which reduces the execution of the clustering algorithm and the calculation of the SSE, 
while avoiding the effect of the curse of dimensionality. As a result, the optimal number of clusters 
can be estimated quickly and accurately on large high-dimensional datasets.

Preliminaries and Problem Definition

Before detailing on their approach, the author will cover the preliminaries required for this paper 
and problem definition.

LOG-Means
The purpose of LOG-Means is to find the k value at the maximum bend in the elbow graph; this 
value is also the optimal number of clusters. LOG-Means uses the property of elbow graph to find 
the k value of the elbow graph at the largest bend by binary search strategy. LOG-Means computes 
the SSE ratio of two k values that are not directly adjacent in the search space R  (lines 8 to lines 
12); it takes the two k values with the larger SSE ratio as the search space for the next search, iteratively 
calculates the SSE ratio, and compares the size of the SSE ratio (lines 13 to 18). When two k values 
are directly adjacent in the search space, the k value on the right is the k value with the maximum 
bending in the elbow graph, which is also the estimated optimal number of clusters. Algorithm 1 
outlines the pseudocode of LOG-Means.

Algorithm 1. LOG-Means

Input: dataset X, R k k
low high

=

� ,

Output: k
est
.

1: κ ¬φ 
2:  м ¬φ 
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3: SSE
low
 ¬ SSE obtained by performing k-means with k

low

4: κ¬k k SSE
low low

È {( , )}

5: SSE
high

 ¬ SSE obtained by performing k-means with k
high

6: κ¬k k SSE
high high

È {( , )}

7:  while (k
low
 and k

high
 are not directly adjacent) do

8:     k k k
mid low high
= +



�/�2

9:     SSE
mid

 ¬ SSE obtained by performing k-means with k
mid

10:     κ¬k k SSE
mid mid

È {( , )}

11:    ratio SSE SSE
low low mid

= /

12:    ratio SSE SSE
high mid high

= /

13:    м ¬ store or update k ratio
mid low

,( ){ }
14:    м ¬ store or update k ratio

high high
,( ){ }

15:    k
high

 ¬ k at the highest ratio from м

16:    k
low
 ¬ left adjacent value of k

high
 from м

17:    SSE
high

 ¬ SSE for k
high

 from м

18:    SSE
low
 ¬ SSE for k

low
 from м

19: k
est
 ¬ k with highest ratio in м

20: return k
est

LOG-Means is a nonexhaustive method which determines the search space for the next search 
by comparing SSE SSE

low mid
/  and SSE SSE

mid high
/ , where SSE

mid
 is the SSE at k k k

mid low high
= + . 

When the former is greater than the latter, the search space becomes R k k k
low high mid

= =



� , , and 

when the latter is greater than the former, the search space becomes R k k k
low mid high

= =



� , . The 

above operations are iteratively performed until two values of k are directly adjacent in the search 
space. LOG-Means denotes the value for k with the highest SSE ratio of k

low
 and k

low
 of last iteration 

as k
est

 and the estimated number of clusters for the dataset as k
est

.

Locality-Sensitive Hashing
LSH technology is a method Indyk and Motwani (2012) proposed to find high-dimensional similarity 
patterns based on available data volume linear dependence. It is a probability-based method for 
searching nearest neighbors in high-dimensional space. The basic idea is to hash data points through 
a set of hash functions, so that data points that are close to each other in the original data space have 
higher similarity in the new space. The definition of similarity is determined according to the specific 
applications, and, for different similarity measurement methods (Datar et al., 2004; Gorisse et al., 
2011; Lv et al., 2007; Paulevé et al., 2010; Sun et al., 2014; Slaney et al., 2012), the hash function of 
LSH is also different. No matter which algorithm, it reduces the high-dimensional data to the low-
dimensional data, while keeping the similarity of the original data unchanged to a certain extent. 
LSH is defined as follows:

A family of hash functions H = {h1, …, hl} is called (r1, r2, p1, p2)-sensitive for distance measure 
function D if it satisfies the following two conditions:

•	 If D v q r,( ) ≤ 1
 then Pr h q h v p

H ( ) = ( )



 ≥ 1

.
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•	 If D v q r,( ) ≥ 2
then Pr h q h v p

H ( ) = ( )



 ≤ 2

.

To make sure that the set of LSH functions is valid, its parameters must satisfy the inequality 
p p
1 2
>  and r r

1 2
< .

Problem Definition
The k-means algorithm clustering has been widely studied by extension and applied in various 
substantive fields. With the development of technology, data collection becomes easier, leading to 
larger and more complex databases, such as various types of trade transaction data, Web documents, 
and gene expression data. Their attributes can often reach hundreds, even thousands, of dimensions. 
However, due to the influence of “dimensional curse,” many clustering algorithms that perform 
well in low-dimensional data space often fail to achieve good clustering effect when applied to high-
dimensional space.

k-Means clustering algorithm requires the number of clusters in advance. Generally speaking, 
the number of clusters is unknown. In this case, validity measure to assess the quality of individual 
clustering results, such as Bayesian information criterion, Akaike information criterion, Dunn index, 
silhouette coefficient, and SSE, can be used to find a cluster number. However, the cost and reliability 
of calculating these effectiveness metrics on high-dimensional data are unacceptable. The aim of this 
study is to reduce the computational cost of the SSE for high-dimensional data while ensuring the 
reliability of the SSE, and then to accurately estimate the optimal number of clusters for the original 
high-dimensional dataset by the value of k at the maximum change of the SSE in the elbow graph.

LOG-Means provides valuable properties that the author can exploit, and, since these properties 
are valid independently of the dataset, the author’s approach LSH-Means utilizes these properties to 
maintain generality. LOG-Means formalizes the decrease of the SSE as � /SSE SSE SSE

ratiok k k
= −1 . 

This ratio can be exploited to investigate the trend of the SSE variation in the entire search space. 
The k value at the maximum SSE

ratio
 represents the most curved place in the elbow diagram, that 

is, the optimal k value. Table 1 summarizes the symbols the author frequently used in this paper.

Table 1. Symbols

Symbols Meaning

X x x
N

d= …{ } ∈1
, ,  d-dimensional dataset with N entities

D v v
N

l= …{ } ∈1
, ,  l-dimensional dataset with N entities

S s s
N

l= …{ } ∈1
, ,  Dataset after sampling

j Sample rate

R k k
low high

= 

, Search space

SSE The sum of squared errors

k
est Estimated number of the cluster
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Example
The SSE decreases gradually with increasing k values in the elbow diagram, and decreases sharply 
when k reaches the optimal number of clusters, so the author’s problem transforms from finding 
the k value at the most curved point of the SSE in the elbow diagram to finding the k value at the 
maximum SSE ratio.

Cluster Number Estimation Problem

In a d-dimensional dataset X x x
N

= …{ } ∈1
, ,  with n entities, the cluster number estimation aims 

to find the k
est

 value for X , where k
est

= arg  maxk � /SSE SSE
k k-1 . Intuitively, k

est
 is the optimal 

number of clusters for X  since it represents the maximum bend in the elbow graph of X .

The Author’s Approach: Locality-Sensitive Hashing Means

As the author discussed above, when LOG-Means estimates optimal number of clusters in a dataset, 
it directly uses the high-dimensional data to perform the k-means algorithm to obtain the SSE. When 
k-means processes massive high-dimensional data, calculating the distance from a single point to the 
central point is very expensive. If there are n data points, k center points, the data dimension is d, the 
distance calculation cost of k-means is O n k d* *( ) . Therefore, in order to reduce the complexity of 
the comparison calculation, the author adopted the method of reducing the data dimension and data 
scale to obtain the sample dataset. Then, the author used the logarithmic search principle of LOG-
Means to find the number of clustering in the sample dataset, which they used as the optimal number 
of clustering in the original dataset.

The LSH-Means method the author proposed in this paper consists of the following two main steps:

1. 	 The original dataset is dimensionally reduced using a LSH function, and the sample dataset is 
obtained by sampling the reduced dataset.

2. 	 The sample dataset is obtained as k
est

'  using the search strategy provided by LOG-Means, and 
k
est

'  is estimated as the optimal number of clusters k
est

 in the original dataset.

Formally, each hash function h x
ba, ( ) : d → Ν  maps a d dimensional vector x to an integer, 

where a is, with the same dimensions as the vector x, a d-dimensional vector with each dimension 
chosen independently from Gaussian distribution and b is a real number chosen independently from 

the range 0,r

 . For a fixed a, b, the author sets the hash function as h x

ax b

rba, ( ) =
+ . The function 

of r is to divide a line into segments of equal length and length r, assign the same hash value to points 
mapped to the same segment, and assign different hash values to points mapped to different segments.

Each hash function h
a b,

 can map the eigenvector x to a real number, and we use l such hash 
function h

a b,
. We use l such hash functions, so that the vector x is projected into the l -dimensional 

space. The coordinates of the vector x in the l -dimensional space are the real numbers mapped by 
the l hash functions.

The above dimensional reduction is performed on each vector in the original dataset 
X x x

N
d= …{ } ∈1

, ,   to obtain the l-dimensional dataset D v v
N

l= …{ } ∈1
, ,  . Next, dataset D  

is sampled to reduce the size of the data. The sample dataset S s s
N

l= …{ } ∈1
, ,   is obtained by 

simple random sampling of entities in dataset D  with proportion j . Algorithm 2 shows the 
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pseudocode of sample dataset S obtained by dimensionality reduction. The time complexity of 
Algorithm 2 is O N l*( ) .

Algorithm 2. Dimensionality reduction and sampling to get a sample dataset

Input: dataset X, number of hash functions l, sampling rate j , 
search space R
Output: k

est

1: D  ¬φ
2: S  ¬φ
3: a

i
:  {a

i
dÎ  , 1£ £i l }                              // randomly 

generate l d-dimensional vector a
4: b

i
:  {b

i
, 1£ £i l  }                                        // randomly 

generate l real number b from [0,r]
5: for x in X do
6:   for a  in a

i
 do

7:      h x
ax b

rba, ( ) =
+

                              // b is random 

selected in b
i

8:   v h h l
i l
= … ≤ ≤( )1

1, , , i

9: D  ¬ D v
i

È
10: S  ¬ sample D  at scale j
11: k

est
 ¬ execute LOG-Means with dataset S

12: return k
est

The estimation method involves two steps: (1) Dimensionality reduction of the original dataset, 
and sampling to obtain a sample dataset; (2) the LOG-Means search strategy is used to estimate the 
optimal number of clusters in the sample dataset. In high-dimensional data space, due to the influence 
of the curse of dimensionality, existing methods often cannot accurately estimate the optimal number 
of clusters in a dataset. Furthermore, the larger the data dimension, the more expensive the evaluation 
step, which may lead to worse complexity. Therefore, existing methods require a huge overall runtime 
before an estimate can be made. The aim of the author’s method LSH-Means is to find the value of 
k at the maximum point of bending in the elbow graph; LOG-Means provides an effective strategy 
to find that point by comparing the SSE ratios of k

low
 and k

mid
, k
mid

 and k
high

 in the search space 
to determine the value of k at the maximum point of bending in the elbow graph. LOG-Means finds 
the value of k

est
 by searching the original high-dimensional large-scale dataset which incurs high 

overhead of computation. In contrast, the author’s method performs the LOG-Means to estimate the 
value of k

est
 on a low-dimensional small-sized sampled dataset, which outperforms LOG-Means 

significantly in terms of efficiency while only incurring little accuracy loss. The author guarantees 
that LSH-Means performs better in running time. The author will analyze the complexity of their 
method from two aspects:

1. 	 Dimensionality can be reduced in O l( ) . Since the dot product of l vectors needs to be calculated, 
each dot product is just an arithmetic operation, so the complexity of each dot product is O 1( ) . 
Simple random sampling is used to sample the dimensionality-reduced dataset, so the complexity 
is O 1( ) .
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2. 	 The LOG-Means logarithmic search strategy is used to estimate the optimal number of clusters 
in the sample dataset, so only log R  times the k-means algorithm needs to be performed, with 

a complexity of O log R( ) . The only evaluation is log R  times of clustering results, the 

complexity of the evaluating results is O log R( ) .

In conclusion, the overall complexity of LSH-Means is O l log R log R+ + +( )1 .

Evaluation

The purpose of the author’s evaluation is to compare LSH-Means with the LOG-Means method to 
estimate the optimal number of clusters in high-dimensional large datasets and their running time 
and accuracy. Since the author’s method exploits some properties of the elbow method, they also 
compare the elbow graphs before and after dimensionality reduction.

This section is structured as follows: First, the author discusses experimental setup; Subsequently, 
the author shows the changing trend of the elbow graph of the dataset before and after dimensionality 
reduction on the synthetic dataset; finally, the author shows the running time and accuracy of their 
method.

Hardware and Software
All experiments were performed on a PC with 2.6GHz 4-core AMD processor and 16GB RAM 
running the Linux Ubuntu 20.4. The author’s algorithms run entirely in main memory. They installed 
Python 3.6.

The author’s approach takes into account larger datasets and higher dimensions. For this purpose, 
they used synthetic datasets to validate their approach. Table 2 depicts the characteristics of the 10 
datasets the author used for evaluation, where N is the number of entities in the dataset, d is the 
dimension of dataset, and c is the optimal number of clusters. The dataset has value between [-10,10] 
for each dimension. Each cluster follows a Gaussian distribution with the mean at the center and a 
standard deviation of 0.5. The c centers are chosen randomly and the clusters are nonoverlapping.

Table 2. Characteristics of the 10 Synthetic Datasets

Dataset N d c

I 50,000 100 50

II 100,000 100 100

III 50,000 300 50

IV 100,000 300 100

V 50,000 500 50

VI 100,000 500 100

VII 500,000 100 50

VIII 1,000,000 100 100

IX 500,000 300 50

X 1,000,000 300 100
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Experimental Results
Figure 1 shows the elbow graphs on the synthetic dataset (OD) and the elbow graphs on the dataset 
sampled at different scales after dimensionality reduction, which allows to clearly observe the trend 
of the SSE. Indeed, the SSE is gradually decreasing with the increase of the number of clusters k in 
the horizontal coordinate. After reaching the optimal number of clusters, the SSE does not change 
much. The curves with different colors in Figure 1 indicate the changes of the SSE with the increase 
of the number of clusters k at different sampling ratios. The reduced dimensional dataset can find 
the optimal number of clusters from the change of the SSE, indicating that the author’s reduced 
dimensional dataset can be used to execute the following algorithm instead of the original dataset.

Runtime
Figure 2 shows the runtime for estimation method over all datasets. It evidences that, with the increase 
in the size and dimension of the dataset, the estimation time of the LOG-Means method also increases, 
and it reaches 6026s when it is executed on the dataset X . This makes the estimation time even more 
unacceptable for larger and higher dimensional datasets. The author’s method greatly reduces the 
estimation time. In terms of dataset X , the author’s method only takes 318s. Therefore, this method 
is more efficient on large and high-dimensional data.

Figure 1. Elbow Graphs Before and After Dimensionality Reduction on Synthetic Datasets
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Accuracy
Since the author used synthetic datasets, the researcher is able to know in advance the actual number 
of clusters for each dataset. They take advantage of this to set relative error dk k c c

est
= −( )� / * 100 , 

where  k
est

 denotes the k value estimated by their estimation method. The author compared the obtained 
estimates with the actual number of clusters for all datasets and analyzed the error between them. 
The setting of relative error allows to better judge the accuracy of the author’s method.

As Figure 3 shows, the author’s estimate of the optimal number of clusters is more stable as 
the sampling rate increases. In addition, although the error rate of the method estimate is higher at a 
sampling rate of 5% than the error rate at a sampling rate of 10% on dataset II and XII, large fluctuations 
in estimation error are due to low sampling rate. Nevertheless, Figure 3 shows that the average relative 
error of the LSH-Means method is about -2%, thus providing a very accurate overall estimate.

Evaluation on Real-World Data
Although the author conducted previous experiments on synthetic datasets, they also investigated the 
effect of LSH-means on real-world datasets. The author used three real-world classification datasets 
from the UCI machine learning library. When using these data, the author removes all nonnumeric 
and symbolic values, ids, timestamps, empty labels, and null values. Table 3 summarizes the 
characteristics of these datasets.

Figure 2. Runtime Across All Synthetic

Figure 3. Accuracy at Different Sampling Ratios
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The results in Table 4 show that LSH-means is the fastest and most accurate method compared 
with elbow method and LOG-Means.

Concluding, the author’s experiments reveal that LSH-means can also achieve accurate and fast 
estimation on real-world datasets, and often outperforms existing estimation methods in estimating 
the number of clusters in a dataset.

Effect of Parameters
The author evaluated the performance of their method when varying the values of three different 
parameters. The researcher only reports the results on dataset II because similar results are observed 
on other datasets.

Sampling Ratio j
The author investigated the estimation effect of sampling the dimensionality-reduced dataset at 
different scales. It is clear that the larger the sampling scale is, the more accurate the author’s estimation 
is. Balancing accuracy and running time, they found that a sampling ratio of j =� %10  works well 
for valid results.

Setting of Segment Length r in Hash Function
When dimensionality reduction is performed, the difference of the author’s segmentation will affect 
their hash result, resulting in the change of the vector coordinates after dimensionality reduction. 
Without loss of generality, the author set their r to r =�1 .

The Number of Hash Functions l
In order to check the effect of data dimension on k estimation after dimensionality reduction, the 
author first evaluated the impact of the number of hash functions, that is, the dimension after 
dimensionality reduction, on the accuracy. To this end, the researcher experimented with variations 

Table 3. Real-World Datasets and Their Characteristics

Abbr. Dataset N d c

A MNIST 60,000 784 10

B KDD Cup 1999 Data 4,898,431 34 23

C KITSUNE 21,017,597 115 10

Table 4. Relative Error dk  and Overall Runtime

Est. Method dk  (%) Runtime(s)

A B C A B C

ELM -50 -13 -40 1995 1076 6026

LOG-Means -40 0 -25 210 139 783

LSH-Means -20* 0 -10* 72* 35* 137*

Note: * indicates best results per dataset.
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of l =� ,� ,�5 10 20  on dataset II. Table 5 shows the estimation accuracy of different hash number under 
different sampling ratios. The author found that the larger l, the higher the accuracy can be achieved. 
For example, at l =�20 , our error dk  is -1% at the sampling ratio j =� %10 , and at l =�10 , 
dk = −� %2 . On the other hand, when l is larger, although higher accuracy can be obtained, the 
improvement of accuracy is limited. Therefore, the author set l =�10  by default.

Conclusion

In this paper, the author proposed LSH-Means, an efficient method based on location-sensitive 
hashing and sampling, which is well suited for estimating the number of clusters in high-dimensional 
large-scale datasets, using the properties of elbow methods and the search strategy of LOG-Means 
logarithmic search. Experiments on several large-scale high-dimensional datasets show that LSH-
Means improves the estimation time by a factor of several or even 10 compared with the fastest 
existing LOG-Means method, and surpasses LOG-Means method in terms of estimation accuracy. 
Also, the author’s method outperforms on real-world datasets, doubling in precision and improving 
at least three times in runtime compared to the LOG-Means method.

Table 5. Accuracy of Different Hash Numbers Under Different Sampling Ratios

l dk  (%)

φ

5 10 20

5% -4 -2 -2

10% -2 -2 -1

20% -2 -1 -1
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