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ABSTRACT

Parkinson’s disease (PD) is a devastating disorder with serious impacts on the health and quality of 
life for a wide group of patients. While the early diagnosis of PD is a critical step in managing its 
symptoms, measuring its progression would be the cornerstone for the development of treatment 
protocols suitable for each patient. This paper proposes a novel approach to digital PPMI measures 
and its combination with spirals drawings to increase the accuracy rate of a neural network to the 
maximum possible. The results show a well performing CNN model with an accuracy of 1(100%). 
Thus, the end-users of the proposed approach could be more confident when evaluating the progression 
of PD. The trained, validated, and tested model was able to classify the PD’s progression as High, 
Medium, or Low, with high sureness.
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1. INTRoDUCTIoN

Individuals in their 60s are increasingly affected by neurological conditions. Parkinson’s disease 
(PD) is the second most common neurological syndrome in the central nervous system (Benba et 
al. 2016a). There is a consensus among neurologists and researchers that Parkinson’s is caused by 
aberrations in dopamine signaling in the brain; that is, the dopaminergic neurons fail to release enough 
signaling substance (dopamine) due to the demise of a significant percentage of them. Bradykinesia 
(slowness of movement), dysphonia (voice impairment), rigidity, tremor, and poor balance are common 
symptoms of PD that raise alerts regarding the loss of dopaminergic neurons in the substantia nigra 
of the brain (Diaz et al. 2022, Louis et.al 2015, Duffy, 2013), that is, the etiology of PD (Kouli et al., 
2018). Multiple techniques have been used to detect PD at early stages. For instance, the accuracy 
of Magnetic Resonance Imaging (MRI) of the brain has increased; thus, MRI has been a part of PD 
diagnosis (Heim, et al. 2017, Fioravanti, et al. 2015). Physicians have visually and quantitatively 
interpreted MR images based on changes in brain structure and different types of tissues to identify 
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PD (Tolosa et al.2021, Pyatigorskaya et al., 2018, Heim, 2017, Sterling et al. 2016, Fioravanti, 2015). 
Moreover, acoustic analysis of patients could help detect voice impairments, which is one of the signs 
of early PD (Fernández-García et al. 2021, Al-Fatlawi et al., 2016).

Certainly, each PD patient experiences dissimilar progression, cadence, occurrence, evolution 
and severity of symptoms (Raket et al., 2022), therefore, monitoring these manifestations is of great 
medical value in order to identify patients with a higher risk of rapid disease progression at early or 
at advanced stages of the disorder. The benefit of gauging the disease progression is to reassess the 
level of attention and monitoring required for these patients to cope with the aggressive evolution of 
their PD symptomatology. Consequently, this helps to ensure an acceptable level of quality of life, 
which requires careful adjustment of the PD’s management plans.

Isolating potential markers that accelerate PD’s progression could provide insights into the 
intricate mechanisms behind the manifestation and evolution of symptoms. Studying patients 
who experience faster worsening of PD, offers a golden opportunity to understand the disease 
and the factors contributing to such rapid progression. These factors might be amplified and thus 
easier to detect (e.g., brain connectivity networks, enzymes, proteins, and variations in metabolic 
paths). Cerebrospinal fluid (CSF) is often used to detect changes in the homeostasis of the central 
nervous system. Furthermore, the most accurate approach for determining the progression rate of 
PD is to estimate the deterioration status of specific brain networks using imagery (Sterling et al. 
2016). However, motor and non-motor symptoms evaluation is easier and more cost effective. For 
instance, Unified Parkinson’s Disease Rating Scale (UPDRS) offers accurate alternatives for rating 
PD progression; however, computer-assisted technologies can be used to monitor patients and their 
motor impairments, regardless of the probable uncertainty in the clinical ratings (Lu et al. 2021). 
Furthermore, motor symptoms progression differs from patient to patient; thus, it can be used as a 
metric to monitor the haste (rapid or slow) of the progression of the disorder. Roede et al. (2013) 
reported considerable variations in the annual worsening rate between the rapid (5.95) and slower 
(1.45) groups using UPDRS-III. Moreover, Fereshtehnejad et al. (2015) suggested that orthostatic 
hypotension, a rapid eye movement sleep behavior disorder, and signs of cognitive impairment could 
signal the decline of motor symptoms in patients. Undoubtedly, non-motor symptoms attributed to PD 
have an influence on patients and must be monitored and treated. For instance, cognitive impairment 
can be predicted based on the patient’s age, presence of olfactory disturbances, sleep disturbances, 
and CSF biomarkers, as suggested by Schrag et al. (2017). In recent years, much attention has been 
given to the development of diagnostic systems based on artificial intelligence concepts, such as 
machine learning, and data mining to detect PD. A variety of data sources have been available to 
provide valuable datasets, such as handwritten patterns, speech recordings, voice signals, physiological 
signals, and collected data from wearable sensors for gait and others. These datasets can be used to 
predict PD using neural networks (Liaqat et al. 2019a; Liaqat et al. 2019b; Al-Fatlawi et al., 2019; 
Parisi et al., 2018 ; Naranjo et al.,2017a; Guruler et al. 2017 ; Naranjo et al., 2016; Sakar et al., 2013 
; Tsanas et al., 2012; Rigas et al. 2012; Das et al., 2010; Little et al. 2009). For instance, speech 
recordings, as a dataset, have been the target of multiple techniques used to detect PD. Little et al. 
(2009) applied a support vector machine (SVM) to replicate data from 31 subjects, which, resulted 
in 91.4% detection accuracy. Furthermore, complex-valued artificial neural networks with k-means 
clustering and feature weighting approaches had been applied to the same dataset, which increased 
the classification accuracy to 99.52% (Orozco-Arroyave et al. 2016). Despite the promising reported 
results, the issue is that the dataset is imbalanced; thus, most machine learning algorithms, which 
are very sensitive to imbalanced classes, led to flawed outcomes. Moreover, most studies used the 
conventional k-fold cross-validation approach. This ensured that all observations from the original 
dataset had the chance to appear in the training and test sets. However, this causes a subject overlap, 
which is a major issue. Subsequently, new balanced datasets had been created, such as the training 
and testing databases collected by Sarkar et al. (2013). The authors applied the k-nearest neighbor 
model and SVM classifiers to these new datasets, which surprisingly resulted in a 55% accuracy rate. 
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To improve accuracy, a variety of feature selection approaches had been tested (Guruler et al. 2017, 
Parisi et al. 2018, Naranjo et al. 2017b, Benba et al., 2016b, Canturk and F. Karabiber, 2016, Li, 2017, 
Benba, 2017, Ozcift, 2012, Al-Fatlawi et al., 2019). For instance, Canturk and Karabiber explored a 
variety of feature selection and classification algorithms and achieved an accuracy of 57.5% under 
leave-one-subject-out (LOSO) cross-validation (CV) (Canturk and F. Karabiber, 2016). Moreover, 
hybrid feature learning and SVM adopted by Li et al. achieved 82.5% accuracy (Li et al., 2017); 
further, mel-frequency cepstral coefficients (MFCCs) and SVM by Benba et al. (2016b) also achieved 
an accuracy of 82.5% for LOSO and CV. Other authors had sought to improve the accuracy rate by 
enhancing the datasets. For instance, Benba et al. (2017) achieved 87.5% accuracy using vowel samples 
and a subset of human factor cepstral coefficients (HFCCs), which is a transformation in temporal 
domains. Furthermore, voice recordings of PD patients and healthy subjects were used in a deep-
learning setup aimed at transition detection by Vasquez-Correa et al. (2018). The use of AI techniques 
to detect and predict various diseases shows tremendous potential, thus, they have flourished. In 
addition to PD detection, more diseases had benefited from these AI techniques. The classification 
of hepatitis disease with an accuracy of 94.16% (Dogantekin et al., 2009), the classification of liver 
images using ResNet50 with an accuracy of 86.4% (Pasyar et al. 2021), the automatic detection of 
epilepsy (Subasi and Gursoy, 2010), and the classification of diabetes (Asgari et al., 2021) are a few 
successful applications of AI concepts.

There is no doubt that the PD progression rate is of significant medical value after diagnosis, 
and the use of AI concepts to predict PD is promising (Oludare et al. 2018). However, many 
challenges have to be mitigated to reach the set promises. For instance, while gait disturbances are 
major factors involved in the motor manifestation of PD, traditional motor deficit tests, such as the 
Unified Parkinson’s Disease Rating Scale (UPDRS), fail to detect minor changes in people at risk 
or have PD. Therefore, more sensitive motor function tests are required to improve the likelihood 
of detecting pre-diagnosis motor alterations. Thus, ideas such as combining quantitative gait and 
mobility measurements and spiral drawings might be a sound technique to monitor pre-diagnosis 
alterations, as well as illness progression.

In line with efforts to ease these challenges and motivated by the significance and importance 
of PD progression monitoring to patients and their caregivers, the author of this paper proposes a 
novel approach to create a dataset of graphical profiles based on data received from the Parkinson’s 
Progression Markers Initiative (PPMI) and apply convolutional neural networks to assess PD 
progression.

The remainder of this paper is organized as follows: Section (2) presents the methodology and 
tools; section (3) exhibits and discusses the results of the study; section (4) discusses the limitations 
and recommendations; and the last section concludes this research article.

2. METHoDoLoGy AND TooLS

Within the framework of the Parkinson’s PPMI, a gait study has been conducted to acquire quantitative 
and objective motor measurements that might provide information on pre-clinical symptoms, 
progression indicators, and dynamic changes in functions during the disorder, as well as potential 
modifiers and mediators of motor symptoms. The gait study is part of the PPMI genetic cohort 
project to supplement the present PPMI procedure and dataset with additional data. The system used 
to collect the data consisted of three lightweight wireless wearable sensors with three axial sensors 
(accelerometer, gyroscope, and magnetometer). The system measures the acceleration of movement 
on three orthogonal axes, in addition to gait measurements as a function of time. The protocol adopted 
included an assessment of each of the participants for every visit. Data were collected using six tests 
and validated in a large cohort. The first test consisted of swaying for 30s with eyes open, which was 
used to capture the mass displacement during normal conditions; the second test was the same as the 
first test, but with closed eyes, which is used to capture the mass displacement during challenging 
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conditions; the third test includes Timed Up and Go (TUG 1), which is designed to assess movement, 
transfers, and turns; the fourth test, Timed Up and Go (TUG 2), which consists of repeated tasks; 
the fifth and sixth tests include usual walking for 1 min with preferred walking speed, and dual task 
walk for 1 min while computing some basic operations such as subtractions.

The dataset, as described in Appendix (A), has been subjected to a rigorous process of cleanup, 
normalization, and missing values generation using stochastic regression imputation. All measured 
values were normalized to make them suitable for constructing meaningful profiles. Using SPSS 
22, the cleaned data were imported and a regression model was built to predict the observed values 
based on other variables when tolerated.

The generated model was used to produce the values (fitted values) for cases with missing 
measurements. The choice of stochastic regression is supported by its error handling as it adds the 
average regression variance to the regression imputations. Moreover, this technique has less bias than 
the mean and regression imputations (Zhang et al. 2022; López et al 2021). The resulting dataset 
was filtered to select only subjects that had been assessed at least twice, in order to create subject’s 
PD progression profiles. The operation of creating profiles requires at least two values measured 
at two different times (months or years). The records of each participant were used to compute the 
degree of change in PD symptoms (i.e., PD progression) during the assessment period. However, a 
set of coefficients totaling to one was used to rheostat the effect of each variable. Three classes were 
identified to categorize the PD progress: a class named High (i.e., fast), which is used to label profiles 
with fast progression, a class named Medium (i.e., typical), and a class named Low (i.e., slow), each 
of which labels medium and low PD progression respectively. To construct the profile images, Python 
programming language was used to manipulate the data. The values for each subject are plotted using 
different symbols and colors (Figure (1), Figure (6)). The same symbols and colors were preserved for 
each variable of each participant’s record. The spirals drawings dataset has to be converted to images, 
since the dataset is delimited as CSV values in the form of X; Y; Z; Pressure; Grip Angle; Timestamp; 
and Test ID. The latter is used to identify the test type, 0 for the static spiral test (draw on the given 
spiral pattern), 1 for Dynamic Spiral Test (spiral pattern will blink in a certain time, so subjects need 
to continue on their draw), and 2 for the circular motion test (subject draws circles around a red point). 
A Python script was used to generate spirals for both periods using the data collected during two 
different visits, as shown in Figure (2). The plotted values are superimposed on the two generated 
spirals of the same subject with respect to the same visits (Figure (9)); that is, the spirals are used 
as a background (see Figure (13)). The three datasets (dataset 1: profile using measurement values 
provided by PPMI, dataset 2: spirals drawings generated from the data collected, dataset 3: profiles 
and spirals drawings are superimposed and used to train, validate, and verify the generated model, and 
eventually check the performance indicators such as accuracy and loss. The resulting model must be 
tuned to improve its performance. A variety of techniques for performance improvement have been 
gaining ground, such as hyper-parameter tuning, data redesigning, data augmentation, and model 
optimization. In this study, data augmentation was adopted, and the profile images were rotated to 
change their orientation. Moreover, the most used CNN optimizers (sgd, rmsprop, adagrad, adam) 
are used to identify the best. The number of epochs reflects the number of times the weights of the 
network were adapted. The validation and training error behaviors are deciding factors to choose the 
epoch number; as long as both validation and training errors are dropping, training should continue; 
however, it should stop otherwise or overfitting will be an issue (see Figure (3)).

2.1. VALIDATIoN METHoDS AND EVALUATIoN METRICS

2.1.1. Validation Methods
Various validation methods have been suggested in the literature to enhance and evaluate the 
performance of a learning model (Maleki et al. 2020). These include k-fold, train-test holdout, and 
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Figure 1. Profile from PPMI data collected

Figure 2. Generated spiral drawing

Figure 3. Targeted area to avoid overfitting or underfitting



International Journal of Software Innovation
Volume 11 • Issue 1

6

leave-one-out cross-validations. The issue with the first and second methods is that they are subject 
to overlap when subjects have multiple related samples. To mitigate this problem, the leave-one-
subject-out cross-validation method is appropriate.

2.1.2. Evaluation/Performance Metrics
In addition to the accuracy and loss indicators, to further evaluate the performance of the CNNs, 
precision, recall, F-measure, and support were computed. Precision instinctively reflects the ability of 
the model to avoid misclassifying negative samples as positive. This is computed using equation (1):

precision
tp

tp fp
=

+( )
 (1)

where true positives is noted by tp, and false positives is noted by tp.
Recall is the ability to identify all positive samples. This is computed using equation (2):

recall
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where the number of true positives is noted by tp and the number of false negatives is noted by fn.
The F1 score is the harmonic average of recall and precision. This is computed using equation (3):
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Support is the number of occurrences or frequency of each class.
While the macro average is the typical average, the weighted average reflects the number of times 

each class is involved in its computation; thus, the less the participation of a class, the less impact its 
precision/recall/F1 scores have on the weighted average.

2.1.3. Precision for Multi-Class Classification
Precision is not limited to binary classification problems, but can be applied to multiclass classification 
problems, such as this study. The dataset used in this research was balanced (see Figure (4), Table 
(1)) and the precision was computed using equation (4):
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where n is the number of classes.

2.1.4. Recall (Sensitivity) for Multi-Class Classification
Recall is not limited to binary classification problems, it is calculated using equation (5):



International Journal of Software Innovation
Volume 11 • Issue 1

7

Recall
TruePositives

TruePositives Fal

i

n

i

i

n

i i

n
� �

� �
=

+

=

= =

∑
∑ ∑

1

1 1
sseNegatives

i









 (5)

where n is the number of classes.

2.1.5. F-Measure for Imbalanced Classification
Precision and recall are important indicators; however, they can be combined into a single measure 
that captures both properties. It is the harmonic mean of precision and recall, computed as in Equation 
(6) (Berger and Guda, 2020); the scores corresponding to every class represent the accuracy of the 
classifier in classifying the data points in that particular class compared with all other classes, it is 
calculated using equation (6):

Recall
Precision Recall

Precision Recall
� �=
× ×

+( )
2  (6)

2.1.6. Support Value for Multi-Class Classification
The number of actual instances of the class in the provided dataset is known as support. Imbalanced 
support in the training data may reveal fundamental problems in the classifier’s reported scores, 
necessitating stratified sampling or rebalancing. Support does not change depending on the model, 
but rather diagnoses the evaluation process.

2.1.7. Macro Averaged F1 Score
Among the several averaging approaches, macro-averaging is the most basic. The arithmetic mean 
(unweighted mean) of all per-class F1 scores is used to obtain the macro-averaged F1 score (or macro 
F1 score). Moreover, this method is applied to all classes, regardless of their support values.

2.1.8. Weighted Average
The weighted-average F1 score is generated by taking the mean of all per-class F1 scores and factoring 
in the support for each class.

2.1.9. Support
The number of actual instances of the class in the dataset is referred to as support. For example, the 
support value of 1 in the High Class indicates that there is only one observation with the actual label 
of the High Class.

2.2. Prediction Techniques
Currently, artificial intelligence (AI) is applied across most research disciplines. One of the core 
objectives of AI is prediction. Various mechanisms have been developed; their computational 
techniques are briefly described below.

2.2.1. Artificial Neural Network (ANN)
Inspired by the behavior of biological neurons, ANN has been adopted as a computing technique 
for prediction. A set of layers of artificial neurons, herein referred to as nodes are interconnected in 
such that the associations between the input and the output are modeled by activating each node and 
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transmitting its response to the output nodes. The conventional ANN architecture consists of three 
main types of layers: input, hidden (multiple layers), and output layers of neurons wired together. 
An activation function was used to determine the state (fire or not to fire) of the neurons. Each layer 
acts as both an input and an output layer, enabling the ANN to understand more complex objects. A 
variety of parameters are used to define an ANN, such as the connection mode, learning technique, 
and activation function (Wang and Srinivasan 2017). Backpropagation is a paramount concept in 
ANN. It consists of sending backward error information during the supervised training phase to 
adjust the weights according to their responsibility towards the error. This allows the ANN to adjust 
the output while considering errors. Therefore, the error due to the disparity between the desired 
and predicted outcomes is used to recalibrate the weights of the ANN. The aim of this recalibration 
is to learn how to minimize the chances of errors and undesired outcomes. ANN has been applied 
to a variety of problems, including image processing, speech recognition, robotic control, and data 
mining (Abiodun et al., 2018). There is no systematic approach to determine the optimal size of the 
hidden layers for an ANN; thus, trials and errors during network training are still required to reduce 
the weight errors as much as possible (Uzair and Jamil, 2020). However, ANN has its own limitations, 
such as model overfitting, random weight optimization sensitivity, and probability of local optima 
convergence (Chu et al., 2021, Novak et al. 2018, Zhang et al. 2019).

2.2.2. Deep Belief Network (DBN)
DBNs have been applied successfully in the field of AI, such as image recognition, classification, 
and filtering. DBN might be seen as an unsupervised network of Restricted Boltzmann machine 
(RBM), and logistic regression layer (Wang et al. 2016). The first is used to extract features, whereas 
the logistic regression layer is used for predictions. Furthermore, a DBN might consists of a set of 
layers of multiple RBMs, where hidden layer for each subnet is the visible layer for the subsequent 
layers (Wang et al. 2016).

2.2.3. Recurrent Neural Network (RNN)
An RNN is characterized by its connections along time series, which enables temporal dynamic 
behavior; thus, it might be termed as a dynamic artificial neural network (Ashour, and Abbas, 2018). 
RNNs use their memory to process input sequences and model temporal dependencies (Dupond, 
2019, Abiodun, et al. 2018, Tealab, 2018). They used feedback connections to recall previous time 
step values as in equation (7):

F m w F w F
j i i j i

m
j i
m

, , ,
= ( )+ ( )−y y

2
1  (7)

where F
j i
m
,

 is the activation function, j represents the output mode, m represents the layer and t 
represents time. In a Recurrent Neural Network, dependencies are related to a given time steps (Sun 
et al., 2022). Moreover, various strategies are used in RNNs designs, such as long short-term memory 
(LSTM) (Yu et al., 2019) and gated recurrent units (GRU) (Chung et al., 2014). Examples of RNNs 
applications include handwriting recognition (Chen et al. 2020), and speech recognition (Shivakumar 
et al. 2022, Li, et al. 2014). 

2.2.4. Nonlinear Autoregressive Neural Network (NAR and NARX).
Each type of neural network is efficient in some specific areas. The nonlinear autoregressive network 
with exogenous inputs (NARX) is a variant network of RNNs, which is a recurrent and dynamic 
network enclosed by several layers with feedback connections, making it’ suitable for time-series 
forecasts (Wang, et al. 2016, Cadenas, et al. 2016). In line with recurrent systems behavior, the NARX 
model can decrease the output errors with self-learning, thus enhancing the estimation of the ANN. 
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According to Chan et al. (2015), subsequent NARX values are forecasted based on previous data as 
in equation (8).

yˆ t f u t u t u t nu y t y t ny e t( ) = ( ) −( ) −( ) −( ) −( )



 + ( ), , , , , ,1 1   (8)

where y(t) is the target variable; y^(t) is the predicted variable; u(t) is the input variable of the network; 
nu and ny are the time delays of the input and output variables respectively; and e(t) is the model 
variance between the target and prediction (Liu et al.2020).

2.2.5. Convolutional Neural Network (CNN)
Convolutional neural networks (CNNs), also called ConvNets were introduced by Yann LeCun in 
the 1990’s, one of the main achievements of early versions of CNNs was successfully recognizing 
handwritten digits. CNNs have found fertile areas for applications such as postal services and 
banking. However, despite their success in reading zip codes and digits on checks, they could not 
flourish because of serious issues when scaled. Larger size or high-resolution images have hindered 
the spread of CNNs, because they require higher computing resources and larger datasets, which 
were not available at early times. However, in the last couple of decades, the social/mobile Web 
(Web 2.0), semantic Web (Web 3.0), and upcoming intelligent Web (Web 4.0) have been supporting 
the creation of a mammoth of content, including images and videos. Coupled with the power of 
today’s computing systems, available datasets such as ImageNet, which includes millions of labeled 
pictures, could be used to train complex CNN designs for computer vision tasks that were previously 
unthinkable. Various applications have proven the success of CNNs in many areas, such as natural 
language processing (NLP), speech recognition, and image classification, including handwritten digit 
recognition (LeCun et al., 1998), which represents the first successful implementation. Since then, 
various improvements have been introduced to CNNs’ architecture, such as the innovation of new 
layers and integration of different computer vision techniques (Srivastava et al. 2014). CNNs have 
provided tremendous opportunities through ImageNet challenges using various datasets (Wang et 
al. 2022). In the past decade, CNN has been less performant than humans in terms of the detection 
of image datasets. As claimed by Yang and Hospedales (2015), the human accuracy rate on a typical 
dataset is 73.1%, whereas the accuracy rate achieved by trained CNNs on the same dataset is limited 
to 64%. However, after many enhancement and optimization attempts, CNNs outperformed humans 
(73.1% accuracy rate) on the same datasets, as the CNNs reached a 74.9% accuracy rate. Since then, 
further improvements have been adopted such as stroke order capturing, innovative feature detectors, 
descriptor advanced techniques, and optimized and sound designed classification algorithms (Ballester, 
and Araújo, 2016).

CNN architecture is quite special as it includes:
2.2.5.1. The Convolution Layer
It is the workhorse of the complete network, as it handles the main computational load. A dot product 
between kernels (i.e., a set of learnable parameters or filters) and the matrix representing the restricted 
area of the receptive field is used to perform operations such as edge detection, box blur, Gaussian 
blur, and sharpening. Assuming that WxWxD is the size of the input, and Dout the number of kernels 
with a special size f with strides (i.e., number of pixels shift), and p is the amount of padding (i.e., 
number of 0’s to add to the image, if the last shifts of the kernels do not fit), then the size of the output 
volume can be computed as in equation (9) and equation (10):

V W W D
output out out out

= × ×  (9)
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where

W
W f p

sout
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− +
+

2
1  (10)

Owing to its effectiveness, the rectified linear unit (ReLU) activation function was adopted for 
nonlinear operations.

The output is:  f x x( ) = ( )max 0,  (11)
The transformation performed by this layer involves both activations in the input volume and 

the parameters (weights and biases) of the neurons.
2.2.5.2. The Pooling Layer
The main role of the pooling layer is to down-sample the images by reducing the dimensionality 
of each map; however, this requires the preservation of important information. Moreover, different 
approaches are available such as maximum, average, and sum pooling. For instance, max pooling 
takes the maximum value from a rectified feature map (Zhao et al. 2017). The main goal of a pooling 
layer is to minimize the number of parameters in the input tensor, which helps to reduce overfitting, 
extract representative features from the input tensor, and aid efficiency by reducing computation.
2.2.5.3. Fully Connected (FC) Layer
The main task of this layer is to determine class scores and identify the category of the input image. 
The structure of this layer is the same as that of a normal Neural Network. The input of the FC is 
the flattened output from the final pooling or convolutional layers. The transformation conducted 
by the FC layer involves both activations in the input and the parameters (weights and biases) of the 
neurons. In contrast, the pooling layers implement a fixed activation function.

The aim of CNNs is to learn abstract features, by assembling and interchanging the pooling 
and convolution layers (see Figure (4)). The convolution layers convolve the input data through a 
variety of kernels to transform local features, and the pooling reduces the dimensionality of each 
map (Zhao, et al. 2017).

In this study, a conventional neural network (CNN) was designed, trained, validated, and used 
to predict the Parkinson’s disease progression category based on the subject’s constructed profiles.

Figure 4. Neural network architecture (Prabh, 2018).
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3. RESULTS AND DISCUSSIoN

After the creation of each profile and the generation of the equivalent images in each phase (Phase 1: 
Data profiles only, Phase 2: Spirals drawings only, Phase 3: Both combined); the data set is subdivided 
on training, validation, and verification subsets. The designed CNNs with multiple optimizers are 
trained and validated using the data subsets. Multiple optimizers are used for comparison reasons. 
The numbers of epochs used are one hundred and two hundreds; however, the accuracy did not 
change significantly, therefore, the one hundred epochs’ case is discussed in details. A small set of 
profiles’ images is reserved for testing the generated models. Certainly, classifiers should be trained 
and validated by using k-fold cross validation. That is, the training and validation sets are portioned 
into k subsets of folds {s1,s2,…,sk},while the k-1 folds are used to train the classifier, the remaining 
fold is used to assess the classification performance. Each fold is used for validation for k times when 
performance metrics are computed; the average of the metrics for each fold is used in computing the 
global performance. Due to issues such as subjects overlap as mentioned earlier, only training and 
validation datasets approach is adopted.

A balanced dataset of profiles was generated that included 187 profiles (some classes were 
balanced by augmentation). Eighty percent of the cleaned and balanced data, that is, 153 profiles, 
were used for training (figure (5)), and the remaining 34 profiles were split as a set of 30 used for 
validation, and four were used for verification (Table (1)). The designed CNNs with multiple optimizers 
(for performance comparison) were trained and validated using these data subsets.

3.1. Selected PPMI Data Profiles Dataset
Accuracy, which is the proportion of correctly predicted observations to the total number of 
observations, is the most intuitive measure of the performance of CNNs. Higher accuracy does not 
guarantee that the model is best, only if the datasets used are symmetric, that is, with balanced false-
positive and false-negative results. Therefore, other parameters such as precision, recall, and f1-score 
must be investigated to elucidate the model’s performance (see Table (2)). Applying the model to the 

Figure 5. Count of training dataset 
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Table 1. Data set distribution

Data distribution

Label Training Validation Verification

High 51 10 2

Medium 51 10 1

Low 51 10 1

Figure 6. Generated profile from PPMI measures

Figure 7. Training and validation loss curve for sgc, rmsprop, adagrad, and adam algorithms
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images generated from the profiles selected from the PPMI dataset achieved an accuracy of 80%, and 
the precision for class Low was 0.5, which is barely acceptable; however, it is unacceptable for the 
class Medium as the precision value is 0.00. Moreover, the precision for class High is 1.0, which is 
perfect for this class, because the higher the precision, the lower the false positive rate. Furthermore, 
in this section of the article, the recall values 1.00, 0.00, and 1.00 suggest that the first recall value of 
class Low and the third recall value for class High are very satisfactory; however, the second value of 
0 is unsatisfactory for class Medium, as it is less than 0.5. The F1 score is not as easy to understand 
as accuracy when it has an uneven class distribution. In this paper, the author has been cautious about 
this issue; thus, the data were balanced by using selectivity and augmentation. F1 scores are 0.67, 
0.00, and 1.00 for Class Low, Class Medium, and Class High, which means relatively acceptable for 
the first class, and perfect for the last class; however, for Class Medium the F1score is 0, because 
both precision and recall are 0s.

3.2. Profile Using Spirals Drawings Dataset
As mentioned earlier, a higher accuracy does not systematically mean that the model is best; therefore, 
other parameters such as precision, recall, and f1-score (Table (3)) must be investigated to shed light 
on the model’s performance. Applying the model to the spiral drawing dataset led to an accuracy of 
83%. In this section of the article, the precision for class Low is 1.00, which is a perfect precision; 

Figure 8. Training and validation accuraccy curve for sgc, rmsprop, adagrad, and adam algorithms

Table 2. Adam optimizer results for PPMI data profiles

Probability: [[8.89760554e-01 1.10230878e-01 8.64232516e-06] 
[5.03172696e-01 4.96825606e-01 1.74236004e-06] 
[4.44767778e-08 1.04522645e-04 9.99895453e-01] 
[6.20392839e-08 8.53807308e-07 9.99999046e-01] 
[2.09857058e-06 8.47504707e-05 9.99913096e-01]] 
To predict y set: [0 1 2 2 2] 
Predicted Classes for y: [0 0 2 2 2] 
precision recall f1-score support 
Class Low 0.50 1.00 0.67 1 
Class Medium 0.00 0.00 0.00 1 
Class High 1.00 1.00 1.00 3 
accuracy 0.80 5 
macro avg 0.00 0.00 0.00 1 
weighted avg 0.70 0.80 0.73 5
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however, it is acceptable for the class medium as the precision value is 0.67, and the precision for 
class High is 1.0, which is perfect for this class, as the higher the precision, the lower the false positive 
rate. Furthermore, the recall values of 1.00, 1.00, and 0.50 suggested that the first recall value of class 
Low and the second recall value of class Medium are perfect; however, the third recall value of 0.50 
is barely acceptable for class High. F1 scores are 1.00, 0.80, and 0.67 for Class Low, Class Medium, 
and Class High, which is perfect for the first class, and very satisfactory for the second class. For 
Class High, the F1score is 0.67, which is acceptable as it is greater than 0.5.

3.3. Profiles Combining Numerical Data and Spirals
The analysis of the generated figures and collected data concerning all phases suggests that the Adam 
optimizer is the best performing algorithm of the tested set of optimizers (Figures (7)-(17); Tables 
(4)-(7)). Thus, the focus is on the results produced by the model using the adam optimizer.

Despites the slight ups and downs, and the loss decreases over time, the model keeps learning, 
as shown in the figure of training and validation loss for the adam optimizer (Figure (14)(d), figure 
(15)(d)). As the author observes (Figure (16), Figure (17)), 100 epochs is sufficient for the adam 
optimizer, therefore, the execution of model with 100 epochs was adopted in this study.

Figure 10. Count of training dataset 

Figure 9. Spirals drawings for one subject
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In line with the training and validation loss behavior using the adam optimizer, the model 
performance increases as the number of iterations progresses, which means that the model is improving 
with experience, that is, it is learning. However, it is clear that before 100 epochs, the model reaches 
a plateau, meaning it is no longer able to learn. This validates the earlier observations concerning 
the training and validation losses in figure (15 adam) and figure (16d).

Figure 11. Training and validation loss curve for sgc, rmsprop, adagrad, and adam algorithm

Figure 12. Training and validation accuraccy curve for sgc, rmsprop, adagrad, and adam algorithms
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Figure 13. Progression profiles samples(Combined)

Figure 14. Training and validation loss curve for sgc, rmsprop, adagrad, and adam algorithms (200 Epochs)

Table 3. adam optimizer results for spirals drawings

Probability: [[9.9998939e-01 5.2209281e-10 1.0561393e-05] 
[9.9998939e-01 5.2209281e-10 1.0561393e-05] 
[4.3724486e-07 9.9985337e-01 1.4608701e-04] 
[4.3724486e-07 9.9985337e-01 1.4608701e-04] 
[1.6452427e-08 7.6973373e-03 9.9230266e-01] 
[5.7641308e-05 9.3937582e-01 6.0566530e-02]] 
To predict y set: [0 0 1 1 2 2] 
Predicted Classes for y: [0 0 1 1 2 1] 
precision recall f1-score support 
Class Low 1.00 1.00 1.00 2 
Class Medium 0.67 1.00 0.80 2 
Class High 1.00 0.50 0.67 2 
accuracy 0.83 6 
macro avg 0.89 0.83 0.82 6 
weighted avg 0.89 0.83 0.82 6
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Likewise, in figure (17) for the adam optimizer, the model performance (i.e., accuracy) improves 
as the number of iterations progresses, which means that the model is learning with experience. 
However, it is clear that a 75 epochs might be sufficient for this model, because after this epoch it 
is no longer learning.

After execution, the CNN produces a probability distribution of possible input classes. 
Accordingly, the most probable class was selected, as shown in Tables (4)-(7). To predict the class 
of the first input (i.e., the image of a profile), the model computes the probabilities suggesting the 
target class. The generated image of the first profile is classified in the Parkinson’s low progression 

Figure 15. Training and validation accuracy curve for sgc, rmsprop, adagrad, and adam algorithms (200 Epochs)

Figure 16. Training and validation loss curve for sgc, rmsprop, adagrad, and adam algorithms (200 Epochs)



International Journal of Software Innovation
Volume 11 • Issue 1

18

category with a probability value of 9.9998236e-01 for class 0, the probability value of 1.7691382e-
05 for class 1, and the probability value of 1.5363933e-14 for class 2. Furthermore, the precision is 
1.0, 1.0, and 1.0, for the low, medium, and high classes, respectively, which means that the inputs 
classified as a class low, a class medium, or a class high, are all (100%) perfectly placed where they 
really should be. Moreover, the macro-average precision is 1.0, which is the same as the weighted 
average. The weighted average is higher across all classes for this model because the precision did 
not decrease for all classes, as all were equally represented in the weighted average.

In this study, the author evaluated the progression of Parkinson’s disease by converting indicators’ 
measures and spirals drawings to an image that reflects the progression of the disease in a more 
complex manner that neither the indicators’ measures alone nor the drawings alone might reflect. In 
other words, CNN tools offer an opportunity to detect hidden patterns in a profile (Figure 13) that 
might not be detected otherwise. As the results show, this novel approach increased the accuracy to 
100% for the dataset under study, which is an important achievement. Subsequently, the accuracy 
has improved from 80% for the numerical data profile images and from 83% for spirals drawings to 
100% when both combining to a single profile.

4. LIMITATIoNS AND RECoMMENDATIoNS

It is clear that the size of the dataset is somewhat limited, because of the exclusion of subjects that 
do not have the required data to build their profiles; however, data augmentation used in this research 
has improved the performance of the generated CNN models. Future research should evaluate the 
performance of such models using different datasets.

5. CoNCLUSIoN

Certainly, the fact that PD is the second most frequent neurological syndrome of the central nervous 
system’ deserves substantial attention from researchers of different fields. Currently, there is no cure 
for this devastating neurological disease, which is a dilemma. Consequently, tracking its progression is 

Figure 17. Training and validation accuracy curve for sgc, rmsprop, adagrad, and adam algorithms (100 Epochs)
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a major step towards symptoms management and medication protocol adaptation. This research paper 
has emerged from the need to mitigate this dilemma. AI solutions have flourished in many scientific 
and engineering fields. Therefore, a CNN is designed and used to categorize PD patients according the 
disease progression rate. The novel idea of combining numerical measurements of a set of indicators 
of the disease and spiral drawings of patients in a periodic manner has been successful in gaging its 
progression. The constructed graphical profiles helped to reach a very high accuracy (100%) when 
classifying the progression of PD using the designed CNN. The diversity of the measured indicators 
has been a major contributor to the convergence of an identifying disease progression profile. Neither 
the profiles without spiral drawings (accuracy 80%) nor the spirals drawings by themselves (accuracy 
83%) reached the high accuracy rate of (100%) achieved by the same model when both profiles are 
combined by superimposition. Thus, the proposed novel approach is a major contribution to the 
evaluation of PD’s progression. However, the approach might be scaled to a more granular scale 
than the used one with the limited three classes (high speed, medium speed, low speed). A five-
point Likert scale (very slow, slow, average, fast, very fast) or 7 Likert scale (extremely slow, very 
slow, slow, average, fast, very fast, extremely fast) could help capture a more accurate and refined 
evaluation of PD progression.
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APPENDICES

Appendix Table A. Brief data description and computing methods.

Measure Descriptive Calculation method

Walk

SP_U 
SP_DT

Speed base walking and Dual task walking 
(m/sec)

Calculated from the 10m walking time. Same procedure for usual 
walking and dual task walking

RA_AMP_U 
RA_AMP_DT

Right arm amplitude base and Dual task 
walking (deg)

Average Amplitude of the Right arm presented in degrees. Calculated 
from the right wrist accelerometers as the range from peak anterior 
movement to posterior movement (rotational movement included into 
calculation based on Euler angles)

LA_AMP_U 
LA_AMP_DT

Left arm amplitude base and Dual task 
walking (deg) Average Amplitude of the Left arm degree (same as above for the left)

RA_STD_U 
RA_STD_DT

Right arm variability (standard deviation) in 
base walking and Right arm standard deviation 
in Dual task walking (%)

Standard deviation of the average amplitude of the Right arms 
presented in degrees. Calculated from the right wrist accelerometers 
as the range from peak anterior movement to posterior movement 
(rotational movement included into calculation based on Euler angles)

LA_STD_U 
LA_STD_DT

Left arm standard deviation in base walking 
Left arm standard deviation in Dual task 
walking (%)

Standard deviation of the Left arm degree (same as above)

SYM_U 
SYM_DT

Between arm symmetry base walking Between 
arm symmetry Dual task walking (%)

Appendix Table B

Measure Descriptive Calculation method

Walk

�
�45 100 arctan( )* %

GreaterHandAmplitude
SmallerHandAmplitude

990

The ASA is designed to represent asymmetry in arm swing magnitude between each 
arm. A value of 0.00 would indicate that both arms are moving exactly the same 
magnitude.

ASYM 
_IND_U 
ASYM 
_IND_DT

Asymmetry index calculated 
from arms in base and dual 
task walking (%)

Asymmetry index 

�
�

�

Av AV Amplitude
Av AV Amplitude

AmplitudeL R

AmplitudeL R

_

_
* %100

:

TRA_U 
TRA_DT

Trunk Rotation asymmetry 
index in base walking and 
dual task (%)

Calculated from the acceleration signal from the lower back sensor, we quantified trunk 
rotation to the left and to the right as thetransverse plane angular rotation of the thorax. 
The magnitude of trunk rotation was quantified as the total side-‐to-‐side rotation of the 
thorax during a stride cycle. We then calculated the trunk rotation asymmetry (TRA) as 
follows TRA 

�
�45 100

90

 arctan( )* %
Trunk magnitude
Trunk magnitude

more

less

T_AMP_U 
T_AMP_DT

Average trunk amplitude of 
rotational movement in base 
and Dual task walking (deg) 

Average Amplitude of rotational movement around the vertical axis of the trunk in 
degrees. Calculated from the Euler angles from the lower back sensor

CAD_U 
CAD_DT

Cadence in base and Dual 
task walking (step/min)

Number of gait cycles taken within one minute of walking. Calculated from the 
acceleration signal from the lower back sensor

STR_T_U 
STR_T_DT

Average stride time in base 
and dual task walking (sec)

Stride time average during straight-line walking (turns excluded). Calculated from the 
vertical acceleration signal from the lower back sensor.
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Appendix Table C

Measure Descriptive Calculation method

Walk

STR_CV_U 
STR_CV_DT

Stride variability (coefficient of variation- 
CV) in base and Dual task walking (%)

Average Stride CV from straight-line walking (turns excluded). 
Calculated from the vertical acceleration signal from the lower 
back sensor. 

STEP_REG_U 
STEP_REG_DT

Step Regularity in base and Dual task walking 
(g^2)

Derived from the autocorrelation signal of the vertical acceleration 
from the lower back sensor. Steps of both legs are averaged to 
provide one measure. Perfect regularity (i.e., no variability) result 
in correlation coefficients of 1. 

STEP_SYM_U 
STEP_SYM_DT Step Symmetry in base and dual task walking Step symmetry were derived from frequency analysis of vertical 

acceleration signals using autocorrelation.

JERK_T_U 
JERK_T_DT

Jerk of the acceleration movement of the legs 
during base and dual task walking (m/sec^3)

Jerk calculated as the time- derivative of trunk acceleration, to 
quantify smoothness.

SW_VEL_OP 
SW_VEL_CL

Sway velocity (m/sec) in Eyes open and Eyes 
closed conditions (30 sec each)

Mean velocity is obtained through the derivative of the 
displacement the anterior-posterior (AP) and medial- lateral (ML) 
acceleration of the sensor on the lower back

SW_PATH_OP 
SW_PATH_CL

Sway path (m/sec^2) in Eyes open and Eyes 
closed conditions (30 sec each)

Total length of CoP (Center of pressure)) trajectory, calculated 
from the anterior-posterior (AP) and medial- lateral (ML) 
acceleration of the sensor on the lower back

Appendix Table D

Measure Descriptive Calculation method

Walk

SW_FREQ_OP 
SW_PATH_CL

Centroidal frequency (HZ) in 
Eyes open and Eyes closed 
conditions (30 sec each)

The frequency at which the spectral mass is concentrated. Calculated 
from the anteriorposterior (AP) acceleration using Fast Fourier 
Transformation (FFT).

SW_JERK_OP 
SW_JERK_CL

Jerk sway (m/sec^3) in 
Eyes open and Eyes closed 
conditions (30 sec each)

A measure of Sway smoothness. Calculated as the time-derivative of the 
anterior-posterior (AP) and medial- lateral (ML) acceleration from the 
sensor on the lower back.

TUG1_DUR 
TUG2_DUR TUG 1 and 2 duration (sec)

The time from start of sit-to-stand (the minimum AP acceleration peak 
before the signal started to rise from steady state), until end of stand-to-
sit (the minimum acceleration peak when the AP acceleration reached 
steady state).

TUG1_STEP_NUM 
TUG2_STEP_NUM

TUG 1 and 2 number of step 
(#number) Number of steps throughout the duration of the task including turns.

TUG1_STRAIGHT_DUR 
TUG2_STRAIGHT_DUR

TUG 1 and 2 Average step 
duration during straight 
walking (sec)

Average time initial gait step (detected from back sensor vertical 
acceleration) until 1st turn (detected from back sensor gyroscope –yaw) 
+ duration from end of 1st turn until beginning of turn to sit

TUG1_TURNS_DUR 
TUG2_TURNS_DUR

TUG 1 and 2 Average step 
duration during turns (sec)

Turning measures were derived from the yaw axis of the back gyroscope. 
The start and end points of each turn were determined as the points 
in the yaw signal in which it crossed 0.1 of the maximum yaw peak 
amplitude of the turn. Average step duration for these segments is 
calculated from the vertical acceleration signal

TUG1_STEP_REG 
TUG2_STEP_REG

TUG 1 and 2 Step regularity 
(g^2)

Step regularity was derived from the autocorrelation signal of the 
vertical acceleration.

TUG1_STEP_SYM 
TUG2_STEP_SYM TUG 1 and 2 step symmetry Step symmetry= stepregularity

strideregularity
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Appendix CNN Model Architecture Code
model = Sequential() 
model.add(Conv2D(32, 3, padding=”same”, activation=”relu”, input_
shape=(224, 224, 3))) 
model.add(MaxPool2D()) 
model.add(Conv2D(32, 3, padding=”same”, activation=”relu”))
model.add(MaxPool2D()) 
model.add(Conv2D(64, 3, padding=”same”, activation=”relu”))
model.add(MaxPool2D()) 
model.add(Conv2D(64, 3, padding=”same”, activation=”relu”))
model.add(MaxPool2D()) 
model.add(Dropout(0.4)) 
model.add(Flatten()) 
model.add(Dense(128, activation=”relu”))
model.add(Dense(3, activation=”softmax”))

Appendix Structure of the CNN Network

Figure 18. Flowchart of the CNN network


