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ABSTRACT

The study aims to analyze the change in coverage of health issues awareness, printed on the front page 
of Indian e-papers (The Hindustan Times and The Times of India) for the pre- and peri-coronavirus 
period. The collected news articles are examined by performing the latent dirichlet allocation 
algorithm. The sentiment analysis is performed to analyze the change in the emotions aroused from 
news articles. The outcome regarding the pre-coronavirus period reveals that the focus of the e-papers 
was mostly on politics, crime, and economy whereas, in the peri-coronavirus period, the e-papers are 
focusing more (i.e. 40% topics) on publishing the news related to disseminating the awareness about 
the coronavirus disease. The priority of news topics includes the active number of cases, medical 
facilities, and COVID-19 testing. The outcome regarding sentiment analysis reveals that negative 
sentiments are prominent in the peri-coronavirus period due to fear of the outbreak of the virus.
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1. INTRODUCTION

Indian mass media plays a very important role in shaping our country especially the news media (Ram, 
2011). News media is very active in India as there are more than 100000 publishers registered with 
the Registrar of India and have the second-highest selling newspapers in the world1. The recent trend 
now in India is shifting towards the online world as people are showing interest in the e-papers and 
also on various social media platforms such as Facebook, Twitter, etc. (Sahni and Sharma, 2020). The 
public health issue is among one of the most prominent topics discussed these days as we know that 
Indian Health care has a very contradicting landscape (Kasthuri, 2018). On one end people are served 
with high-tech medical facilities especially in urban areas but the scenario is different in the remote 
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areas where people are not able to get full medical facilities as worsened conditions of the health 
care centers (Kasthuri, 2018). There are mainly four main problems that contribute to the worst-case 
scenario that can be presented in four A’s which are lack of Awareness, Access, Affordability, and 
Absence (Kasthuri, 2018). Mass media plays a very crucial role in spreading health information among 
people (Liu and Lo, 2014). The awareness is spread through newspapers by publishing numerous 
articles on hygiene, immunization, population control, mental health, and various deadly pandemic 
like the H1N1 pandemic (Kasthuri, 2018).

The world is going through a deadly pandemic known as Coronavirus (Covid-19) which is one 
of the worst global health crises faced by the human race since World War II (Wang et al., 2020). 
Coronavirus causes an acute respiratory illness that was first observed in the city of Wuhan, China in 
December 2019 and gradually it spread across the globe (Kong et al., 2020). The pandemic has been 
severely affecting India as it has the second most active number of cases2. India has a total of more than 
eleven million active cases and more than 1.5 lakh people have lost their lives3. The whole nation was 
under lockdown in four stages named Phase 1 (March 25- April 14), Phase 2 (April 15- May 3), Phase 
3 (May 4- May 17), and Phase 4 (May 18- May 31). Eventually, in June the government announced 
to give relief in lockdown to put the country’s economy back on track. The stages of giving relief 
were named Unlock1 (June 1- June 30), Unlock 2 (July 1- July 31), and Unlock 3 (Aug 1- Aug 31)4. 
After the unlock procedure started India experienced a steep rise in the Covid-19 cases. During the 
lockdown period, people have started using online platforms such as e-papers, social media (Twitter, 
Facebook, Instagram, etc.) to keep them aware of happenings in India.

The changing scenario around the world due to the pandemic our study enlightens the change in 
health issues coverage during the pre-and peri- Covid-19 period in India printed on the e-paper’s front 
page. The front page of the newspaper is of utmost importance and carries very crucial news about 
the important events occurring around the world (Kim and Chung, 2017). So, a total of 6347 news 
articles are scrapped from the front pages of best-selling newspapers in India namely “The Times 
of India” and “The Hindustan Times” 5 using the data scrapper tool from July 2019 to June 2020. 
From July 2019 to December 2019 is considered a pre-Covid-19 period as there were no coronavirus 
active cases at that time and January 2020 onwards is considered as peri-coronavirus period as the 
active cases started emerging in January in India. According to statistics, The Times of India and 
The Hindustan Times are mostly read English newspapers in India6. Further, our study deals with 
analyzing the change in the sentiments aroused from news articles through sentiment analysis. The 
sentiment analysis is performed as the comprehension of the message by newspapers affects the 
attitude of the people (Wyver and Shrum, 2015). Our study findings will help Government officials, 
researchers, practitioners, and other stakeholders to better understand the prevalence and spreading 
of Coronavirus disease in India. Moreover, Government officials can initiate the formulation of post-
event policies to strengthen the health sector of the country to fight for any future epidemic outbreak.

The paper focuses on the following research objectives:

• Change in health issues coverage printed on the e-paper’s front page during the pre-and peri-
Covid-19 era using the LDA topic modeling technique.

• Examining the change in the sentiments aroused from news articles during the pre-and peri-
Covid-19 era using sentiment analysis.

The rest of the paper is structured as follows. Section 2 deals with the literature review. Section 
3 discusses the methodology opted to analyze the newspaper’s front page. Section 4 discusses the 
findings. Further, section 5 and section 6 deals with the discussion and the conclusion respectively.

1.1. Background
Researchers from various fields including medical, computer science, social science, and various 
others are conducting researches to overcome this deadly virus. In the field of computer science, 
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various researchers performed the analysis of the behavior of the people towards the pandemic by 
using various social media platforms (Jahanbin and Rahmanian, 2020). The Covid-19 pandemic has 
affected the mass media world. There is a tremendous use of technology in the different fields during 
the pandemic time especially in the education system (Garcia-Peñalvo, 2020; Garcia-Peñalvo et al., 
2020, García-Peñalvo et al., 2021). This pandemic has also affected work and employment (Hodder, 
2020). It has given rise to digital inequalities (Beaunoyer et al., 2020). Even the mass media was loaded 
with fake news regarding the pandemic (Apuke and Omar, 2021) Further, numerous researchers have 
performed an analysis of health communication through newspapers of various countries.

One of the studies states that the role of mass media in covering important issues has always been 
remarkable (Sharma and Gupta, 2017). It has been concluded in a study that the role of mass media 
has been crucial in spreading awareness about health education among people. It not only spreads 
awareness but also educates people from time to time.

Gupta and Sinha (2010) conducted a study about the health-related messages coverage that appears 
in print and electronic media. The results concluded that emphasis is laid more on a political subject 
and less stress is laid on health-related news articles. This study uses a manual method to carry out 
the research. On the contrary, we have conducted research using the LDA topic modeling approach 
which automatically extracts the frequent topic covered.

Liu et al. (2020), collected media reports on Covid-19, and an investigation was carried out 
to analyze the role of media in China on the ongoing crisis of Covid-19. The results depicted that 
mass media news reports in China lagged behind the reporting of Covid-19 as the focus of news 
reports was on larger society rather than individuals. The main approach use in this study is topic 
modeling to analyze the situation. In our study, we have inculcated topic modeling to analyze how 
the awareness of the health problems was dealt with during the pre-and peri- coronavirus period 
in Indian newspapers. Moreover, sentiment analysis is also performed to analyze the change in the 
emotions aroused from the news articles.

Further, a researcher carried out a study regarding the COVID-19 and performed a collection of 
tweets of the two Spanish newspapers to understand how Spanish news media cover public health crises 
on a social media platform, and analysis was carried out using two main approaches named topic modeling 
and network analysis (Yu at al., 2020). The main drawback of the study is that it has used tweets which 
are very short texts as compared to full-length articles (Zang et al., 2017). Our study has overcome 
this drawback by scrapping the full-length news articles from the e-papers. Barkur and Vibha (2020) 
conducted a study to check the attitude of the people towards the pandemic. The sentiment analysis 
of the tweets that originated from India was performed after the lockdown announcement. The main 
drawback is that it doesn’t take into account the behavior of people before the outbreak. This drawback 
has been overcome by our study by comparing the sentiments of the pre-and peri- coronavirus period.

Also, a researcher performed the LDA topic modeling technique to extract the most discussed 
topics, and the study includes the sentiment analysis of the tweets (Xue et al., 2020). This study 
analyzed the work using tweets which is not reliant as many tweets are fake. As for the newspapers, 
the articles are fully confirmed before publishing. Researchers have opted for the LDA topic modeling 
approach in enormous fields.

2. MATeRIALS AND MeTHODS

This section described the methodology opted for the discourse analysis of the change in health-issues 
awareness by the newspapers for the pre-and-peri COVID-19 period which includes data collection, data 
cleaning, topic modeling under which LDA and sentiment analysis is performed as illuminated in Figure 1.

2.1. Data Collection
For collecting the news articles from E-papers, we have used the automated scraping tool (Data 
Miner7). The automated process outperforms the manual way of copying and pasting the required 
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content from the web sources, as it takes less time and effort to do the same task. It helps in scraping 
the data from the web pages (here, we have scraped the news articles from E-Papers) and caters output 
in CSV file format. In this study, we have collected the 6347 news articles printed on the front page of 
two prominent and reputed Indian newspapers (The Hindustan Times and The Times of India) from 
July 2019 to June 2020. Data Miner uses Xpath, JQuery, and CSS Selector to identify the information 
on the HTML web page. The data is fetched by creating recipes or by using the already available 
recipes. For extraction, we have created our recipes. The recipes are created in the following steps:

• By choosing the type of the page List page or detailed page. In this extraction, we have used the 
List page as we want multiple rows to be extracted.

• Specifying the column names under which the data is to be stored. The data under different 
columns can be selected using the Find tool. In this case, we have defined two columns first one 
extracts the headlines and the other column extracts the detailed news from the e-paper.

• The recipe is then saved and run. After which it will automatically extract the news headlines 
and the detailed news into the respective columns.

The number of articles scrapped from the e-paper’s front page for the pre-Covid-19 and peri-
Covid-19 period is presented in Table 1.

Figure 2 and Figure 3 presents the number of articles that were printed on the front page of the 
e-paper during the pre-and- peri Covid-19 period. All segments of the front page are extracted for 
analysis purpose. The results show that number of articles printed on the front page of the Times of 
India was more than the Hindustan Times. The number of articles printed on the front page for the 
peri-Covid-19 was more as compared to the pre-Covid-19 period for both the E-papers.

2.2. Data Preprocessing
The data processing step involves removing the noise from the data. It is one of the most important 
tasks if not performed properly can lead to errors in the results (Garcia et al., 2015). The preprocessing 
involves the following main steps8:

• Segmentation: This process involves breaking down the larger strings into smaller chunks 
called tokens.

Figure 1. Data Analysis and Methodology

Table 1. Total number of news articles collected for pre-and-peri Covid-19 period

Newspaper July-December (2019) January-June (2020)

1. Times of India 1628 2107

2. The Hindustan Times 1300 1312
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Figure 2. Month-wise articles for a Pre-Covid-19 period

Figure 3. Month-wise articles for a Peri-Covid-19 period
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• Cleaning: It involves removing stop words and dealing with the capital letters and various other 
characters.

• Normalization: It consists of the mapping of scheme terms or linguistic reductions via stemming, 
lemmatization.

• Annotations: It includes labeling, adding markups, or part-of-speech tagging.
• Analysis: It involves a generalization of the dataset for feature analysis which is further used for 

finding the relationship between words.

In this study, the preprocessing of the news articles is done using RStudio. For performing 
preprocessing “tm” package is used9. Firstly, the corpus is created using the function “Corpus”. 
After creating the corpus, the “tm_map” function is used for the preprocessing. Using the “tm_map” 
function the news articles are converted into lower case, punctuations, stopword and numeric values 
are removed. Further, stemming is performed that reduces the words to unify across the documents. 
Extra blank spaces which are also known as white spaces are being expunged during pre-processing. 
A separate CSV file is created after pre-processing for further analysis.

2.3. Topic Modeling
In Natural language processing, Topic modeling is an unsupervised machine learning approach that 
can scan various documents, identify the words and similarities between them, and automatically 
cluster together similar words that best describe the documents10. The clusters are known as the topics 
which provide the abstract view of the documents. There are four main methods to implements topic 
modeling which consist of Latent Semantic Analysis (Deerwester, 1990), Probabilistic Latent Semantic 
Analysis (Hofmann, 1999), Latent Dirichlet Allocation (LDA), and Correlated Topic Model. In this 
study, we have incorporated the LDA technique as it performs better than the other topic modeling 
techniques (Chehal et al., 2020).

2.3.1. Latent Dirichlet Allocations (LDA)
Latent Dirichlet allocation (LDA) is considered to be a generative probabilistic model of a corpus 
(Blei, 2003). It is a three-level hierarchical Bayesian mixture model in which the main goal is to 
map documents present in the corpus to an appropriate topic that covers plenty of words present 
in the document. The topics are represented as the mixture of underlying topic probabilities which 
provides the explicit representation of the documents. The functioning of LDA is defined in Figure 
4 (Hidayatullah et al., 2019).

The basic notation used to represent the LDA model is given below:

• T denotes the number of documents in a given corpus.
• N is the number of words in a given document (document i has words).
• α is the parameter of the Dirichlet prior on the per-document topic distributions.
• β is the parameter of the Dirichlet prior on the per-topic word distribution.
• θi is the topic distribution for the document i.
• ψk is the word distribution for topic k.
• xij is the topic for the jth word in document i.
• wij is a specific word.

The generative model of LDA can be achieved in three main stages:

1.  Choose θi ~ Dir(α) where i belongs to {1,…., T} and Dir(α) is Dirichlet distribution with 
symmetric parameter α.

2.  Choose ψk ~ Dir(β) where k belongs to {1,…., N}.
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3.  For each word position i, j where i belongs to {1,…, M} and j belongs to {1,…, N}:
a.  Choose topic xij ~ Multinomial(θi)
b.  Choose a word wij ~ Multinimial(ψzi,j)

One of the researchers has specified that the LDA is an appropriate method to study news 
media coverage (Daud et al., 2010). Another study has used this method for the identification of 16 
frames from European refugee crisis news across five countries (Heidenreich et al., 2019). One of 
the researchers (Poirier et al., 2020) has performed the LDA to identify six news frames (Chinese 
outbreak, economic crisis, health crisis, helping Canadians, social impact, Western deterioration) 
from 12 Canadian media sources. The LDA topic modeling method is applied in this research as it 
helps in identifying the prominent topics covered in the newspapers.

2.3.2. The Optimal Number of Topics
For the appropriate implication of the LDA algorithm, it is important to identify a meaningful 
number of topics (Arun et al., 2010). A low value of K (number of topics) can result in few or broad 
topics, whereas a high value of K results in uninterruptable topics. We have used the topic coherence 
method to find the optimal number of topics. Topic coherence measures the score of a single topic 
by measuring the degree of semantic similarity between the high-scoring words in the topic. In this 
study, the CV coherence method (Roder et al., 2015) has been used which is considered to have the 
highest correlation with the human interpretation. Topic coherence is achieved through four stages.

• Segmentation: In this case, splitting of the top-n words into pairs. The segmentation is defined 
as in Eq. 1:

Figure 4. Functioning of LDA
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S= {(W’, W*) | W’ = {wu}; wu ∈ W; W* = W} (1)

• Probability Estimation method: This method defines how probabilities can be derived from 
the given data source. In this case, the Boolean sliding window methods in which words are 
counted using the sliding window. The windows move from documents to documents one word 
token per step and with each movement, a new virtual document is created of size s.

• Confirmation Measure: For every segmented pair confirmation measure (φ) is calculated that 
measures how W* and W’ are correlated with each other that is based on the similarity of W’ 
and W* concerning all words in W. The similarity is calculated using the vectors � �

v W andv′( )   
(W*) that is represented in Eq. 2. Further, normalized pointwise mutual information (NPMI) is 
calculated is to check the agreement between wi and wj as exemplified in Eq. 3. Finally, 
confirmation measure (φ) for all segmented pairs (Si) is calculated via cosine vector similarity 
of all context vectors as equated in Eq. 4:
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Algorithm 1. Working of the LDA

Input: Training Data W, number of topic K, hyperparameters α, β 
Output: topic assignment matrix X, topic-document matrix Y, Topic-word matrix Z 
1. Initialize Y, Z to zero. 
2. for document pÎ[1, D] do 
3. for token position s in document p do 
4. Xps= k~MUL(1/K)
5. Ykp +=1, Zwk +=1
6. end for 
7. end for 
8. repeat 
9. for document pÎ[1, D] do 
10. for token position s in document p do 
11. Ykp = -1, Zwk = -1
12. Xps= k’~p(Xps =k|rest)
13. Yk’p +=1, Zwk’ +=1
14. end for 
15. end for 
16. Until convergence
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• Aggregation: The final coherence score is the arithmetic mean of all confirmation measures Φ.

In this study, the “genismr” library is used under which the ‘c_v’ metric is implemented for 
calculating the coherence score. The coherence score is observed for the different number of topics. 
Further, the plot is drawn for coherence score vs a total number of topics to find the optimal number 
of topics.

2.3.3. Visualization of Topics
The topic visualization is another important aspect of topic modeling to understand the documents. 
In this study, the visualization of topics is achieved using library LDAvis (Sievert and Shirley, 2014) 
in the R studio. This library is designed such that it helps in the interpretation of the topics and the 
information is extracted from the fitted LDA topic model to interactive web-based visualization11 (Fig. 
5). The visualization of topics has two important aspects that play an important role in interpreting 
the topics. The left panel of the visualization represents the global view of the topic. The topics are 
represented in the form of circles in a 2-D multidimensional plane in which the center is depicted by 
calculating the distance between the topics as presented in Figure 5. Topic importance is calculated 
by using the area of the circle. Topics with a larger area are the most prevalent topics. On the other 
hand, the right panel represents the bar chart in which bars represent the frequencies of the terms that 
helps in depicting the topics. The red bars depict the topic-specific frequency of the terms whereas the 
bluish-grey bar represents the corpus-wide frequency of the terms. The useful terms are interpreted 
using a metric known as relevance which is denoted by λ. Relevance (Sievert and Shirley, 2014) is 
defined as the degree to which a term appears in the topic in exclusion to the other terms. The “optimal” 
value of λ was tested for 0.6, and it resulted in an estimated 70% probability of correct identification 
(Sievert and Shirley, 2014). For values of λ near 0 and 1, the correct value was estimated to be near 
about 53% and 63% respectively. So in our study, we have taken the value of λ as 0.6.

Figure 5. Sample LDAvis output
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2.4. Sentiment Analysis
Sentiment Analysis in the field of Natural Processing Language (NLP) is used to extract the sentiments 
aroused from the opinions or reviews of a particular matter12. Opinion mining, sentiment extraction, and 
subjectivity analysis (Chandni et al., 2015) are the terms used interchangeably for sentiment analysis. 
Sentiment analysis is classified into seven dimensions which include subjectivity classification, 
sentiment classification, review usefulness measurement, opinion spam detection, lexicon creation, 
aspect extraction, and polarity determination (Ravi and Ravi, 2015). Polarity determination deals 
with finding the polarity of the sentence whether a sentence is positive, negative, or neutral which is 
carried out in our study and is of the utmost importance as it helps in analyzing people’s behavior. 
Polarity analysis is performed using the “sentiment” library in Rstudio13. The “sentimentr” library 
provides better results than a simple dictionary lookup approach. The other advantage of using this 
library is that it is very simple to implement as it can be achieved with few lines of code. Moreover, 
It compensates for inversions14. It relies on the list of words and phrases with positive and negative 
connotations. Sentimentr library works on valence shifters that include negators, amplifiers, 
deamplifiers, and adversative conjunctions. A sentiment dictionary is used by the algorithm which 
uses an equation to assign value to the polarity of each sentence fist to tag polarized words15. The 
notations used in this algorithm are shown as follows in Table 2.

Each paragraph Pi consists of the sentences as equated in Eq. 5:

P S S S
n

= { }……1 2
,

.
 (5)

Every sentence is further broken down into words represented by W as in Eq. 6:

S W W W
i j n, , .
= { }……1 2�

 (6)

The polarity of the sentence is calculated using Eq.7:

Table 2. Notations and meaning

Notations Meaning

P Paragraph

S Sentence

Δ Unbounded polarity score

C
i j,
'

Cluster of words

W
amp Amplified words

W
deamp Deamplified words

w
adversative conjunction Adversative conjugate
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The main reason to opt for polarity analysis is to observe the change in the sentiments aroused 
from the news articles for the pre-and- peri Covid-19 period.

3. ReSULTS

3.1 Change in Health Issues Coverage Printed on the e-Paper’s Front Page During 
the Pre- and-Peri Coronavirus Period Using the LDA Topic Modeling Technique
The issues which are prominent on the front page of the newspaper during the pre-and-peri coronavirus 
period are illustrating using the Latent Dirichlet Allocation. The analysis of the newspaper is divided 
into two parts which include the pre-coronavirus period (July 2019 – Dec 2019) and the peri-
coronavirus period (Jan 2020 - June 2020).

• Pre-Coronavirus Period:
 ◦ The optimal number of the topic: For the pre-Covid-19 dataset, the best number of topics 

predicted using topic coherence is 15 as illuminated in Figure 6. Higher coherence will result 
in the best optimal number of topics. From the graph, it can be observed that there is a drastic 
increase in the coherence at K=15 and after that, the value of coherence decreases constantly.

 ◦ Topics Visualization: The visualization of the topics is exhibited in Figure 7 in form of 
circles and the prevalent terms in bar graphs are illustrating the overall picture of the pre-
coronavirus matters. The overall topics from 1 to 15 covers the following matters labeled as 
“Political parties”, “Criminal Cases”, “Economy”, “Maharashtra election”, “Court Cases”, 
“External matters”, “Health Education”, “Chidambaram case”, “Weather”, “Accidents”, 
“Terrorism”, “Election”, “Chandryaan mission”, “CAA bill”, “Ram mandir” respectively. 
The labels of the topics are decided according to the frequent terms occurring in the topics 
(refer to Table 3). During the pre-COVID-19 period, less emphasis was laid on health-related 
issues on the front page of the newspapers as the results predicted only one topic related to 
the field of health field which is labeled as “Health Education”. The leading topics during 
the pre-coronavirus period were politics, crime, and court cases.
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Figure 6. Optimal number of topics for the PRE COVID-19

Figure 7. Visualization of PRE COVID-19 topics
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• Peri-Coronavirus period:
 ◦ Optimal Number of Topics: The optimal number of topics is represented in Figure 8. 

From the visualization, it is clear that K=25 is the best number of topics as there is a drastic 
increase in the topic coherence at K=25. After that value of topic coherence increases but 
the change is very minor. If the number of topics will be considered higher than 25 then the 
terms will repeat which will lead to similar topics.

 ◦ Visualizing Topics: Visualization of topics are illuminated in Figure 9 in the form of circles 
on the left-hand side and the most prevalent terms on the right-hand side The prevalence 
of the topic is shown by the area of the circle. Topic 1 has the largest area so it is a highly 
prevalent topic and the least contribution is of topic 25 as it has the least area of a circle. The 
topics labels are decided according to the frequent terms occurring in it (refer to Table 4). 
“Government”, “Covid-19 cases”, “Economy”, ”Lockdown”, ”Medical Facilities” “India-
China Conflict”, “Criminal Cases”, ”Indian Cities”, “PM Modi”,” Political parties”, ”Migrant 
Workers”, “Tablighi Jamaat”, ”Court Cases”, “COVID-19 outbreak”, “Covid-19 Testing”, 
“Delhi government”, “International News”, Weather”, “Covid-19 treatment”, “Technology”, 
“Protestors”, “Airlines”, “Terrorism”, “Defense”, “Parliament session” these are the labels 
of topics 1 to 25 respectively. Topic 2, Topic 4, Topic 5, Topic 9, Topic 11, Topic 13, Topic 
14, Topic 15, Topic 19 these all represent the Coronavirus related matter which consists of 
testing, cases, lockdown, vaccine development, plasma treatment, migrant workers during 
the lockdown, Tablighi jamaat COVID-19 case, health care facilities. Even some part of 
Topic 1 and Topic 3 discusses the coronavirus situation as it includes the steps taken by the 
government and the effect on the economy during a lockdown. So from the visualization in 
which nearly 40% of the topics are covered about COVID-19 and its impacts that indicate the 

Table 3. Topics and frequent terms for PRE COVID-19 period

Topics Top 10 frequent words

Topic1: Political parties Modi, government, congress, Gandhi, opposition, political, session, shah, Rahul, 
lok

Topic 2: Criminal Cases Police, man, woman, hospital, murder, incident, allegedly, found, Delhi, arrested

Topic 3: Economy Growth, tax, crore, bank, economy, GST, rs, rbi, GDP, lakhs

Topic 4: Maharashtra election Sena, NCP, BJP, Pawar, congress, Fadnavis, Maharashtra, MLAs, Ajit, governor

Topic 5: Court Cases Court, bench, justice, supreme, sc, petition, order, act, hearing, judges

Topic 6: External matters India, trump, trade, Modi, China, summit, countries, world, deal, prime

Topic 7: Health Education Heath, education, students, medical, number, million, colleges, hospital, children, 
cancer

Topic 8: Chidambaram case Case, Chidambaram, court, bail, CBI, ed, accused, custody, jail, arrest

Topic 9: Weather Pollution, monsoon, imd, rainfall, air, temperature, cold, rain, weather, climate

Topic 10: Accidents Fire, building, people, road, Mumbai, BMC, traffic, trees, rescue, city

Topic 11: Terrorism Pakistan, Kashmir, Jammu, terror, army, khan, Abdullah, Islamabad, valley, 
security

Topic 12: Election BJP, party, congress, Jharkhand, AAP, polls, election, won, campaign, voters,

Topic 13: Chandryan mission Flight, aircraft, space, lander, ISRO, mission, Chandrayaan, lunar, aviation, air

Topic 14: CAA bill Citizenship, NRC, CAA, bill, protests, Assam, NPR, amendment, law, Jamia

Topic 15: Ram mandir Ram, Ayodhya, temple, Muslim, court, waqf, disputed, board, mediation, the 
verdict
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Figure 8. Optimal number of topics for PERI Covid-19

Figure 9. Visualization of PERI COVID-19 topics
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focus of newspapers have now shifted to warning people about the health-related problems 
as the situation is very alarming around the globe with the outbreak.

3.2. examining the Change in the Sentiments Aroused From News Articles 
During the Pre- and Peri-Covid-19 era Using Sentiment Analysis
Sentiment analysis is examined using the polarity score of the news articles of the pre- (Figure 10) 
and peri- (Figure 11) coronavirus period. The sentiments are quantified into three categories named 
positive, negative, or neutral values. The total polarity score of more than 0 is considered positive, with 
less than 0 being considered negative, while the polarity score of 0 is considered neutral (Kawathekar 

Table 4. Topics and frequent terms for PERI COVID-19 period

Topics Top 10 frequent words

Topic 1:Government Government, time, official, secretary, minister, COVID, center, people, report, ensure

Topic 2: COVID-19 Cases Cases, death, COVID, reported, number, day, Delhi, Maharashtra, India, total

Topic 3: Economy Rs, crore, India, lakh, economy, growth, lockdown, financial, rate, RBI

Topic 4: Lockdown Lockdown, allowed, Delhi, guidelines, zones, essential, open, shops, restrictions, 
distancing

Topic 5: Medical Facilities COVID, hospitals, patients, beds, health, private, doctors, positive, treatment, 
facilities

Topic 6: India-China Conflict Chinese, Indian, border, LAC, Ladakh, troops, army, military, Galwan, valley

Topic 7: Criminal Cases Police, year, man, death, officer, district, fire, body, allegedly, jail

Topic 8: Indian Cities Noida, family, home, Delhi, lockdown, border, district, time, traffic, Ghaziabad

Topic 9: PM Modi PM, Modi, minister, COVID, lockdown, India, Narendra, country, pandemic, people

Topic 10: Political parties BJP, party, Congress, Government, minister, state, leader, chief, CAA, opposition

Topic 11: Migrant Workers workers, states, migrant, trains, home, special, back, train, bihar, railways

Topic 12: Court Cases Court, supreme, bench, justice, exams, hearing, judge, SC, HC, petition

Topic 13: Tablighi Jamaat Containment, jamaat, zones, Tablighi, Nizamuddin, people, positive, districts, areas, 
tested

Topic 14: COVID-19 outbreak Virus, outbreak, Wuhan, medical, coronavirus, China, people, Italy, infected, disease

Topic 15: Covid-19 Testing Testing, kits, ICMR, rapid, samples, PCR, antibody, results, labs, health

Topic 16: Delhi government Delhi, Kejriwal, Arvind, minister, government, CM, Sisodia, capital, chief, LG

Topic 17: International News Trump, India, Nepal, China, president, countries, trade, map, oil, Washington

Topic 18: Weather Cyclone, IMD, monsoon, temperature, Normal, ran, storm, wind, Bengal, maximum

Topic 19: Covid-19 treatment Vaccine, drug, plasma, trials, therapy, clinical, study, COVID, drugs, research

Topic 20: Technology Users, mobile, company, Facebook, platform, JIO, Google, RIL, products, app

Topic 21: Protestors Police, violence, students, protestors, bagh, shaheen, Jamia, videos, riots, alleged

Topic 22: Airlines Flights, passenger, aviation, air, airlines, Indians, aircraft, domestic, Indigo, 
International

Topic 23: Terrorism Kashmir, Pakistan, terrorists, Jammu, Abdullah, detention, encounter, security, 
Pulwama, Jaish

Topic 24: Defense Defense, air, missile, military, IAF, nuclear, weapons, mission, fighters, drones

Topic 25: Parliament Session Sabha, parliament, speakers, MPs, sessions, temple, Lok, Rajya, caste, budget
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and Kshirsagar, 2012). For the pre-coronavirus period, negative polarity is represented by red color 
diamonds whereas positive polarity is shown by a green-colored rectangle. Neutral polarity is specified 
by the blue triangle. The main reasons for the positive polarity among the news articles were due 
to the topics Chandryan mission, Economy, Health Education, Political Parties, and Ram mandir 
establishment in Ayodhya whereas negative sentiment due to Terrorism, Protests against the CAA 
bill, Crime, Accidents. The neutral sentiment is invoked by topics labeled as Weather, Maharashtra, 
and Jharkhand election, and external matters.

On the other hand, the negative polarity for the peri-coronavirus period is highlighted with a 
diamond of mute red color. The positive polarity is pointed by the rectangles of the middle green. 
The zero polarity is represented using a purple-colored triangle. During the peri- coronavirus period, 
the negative sentiment is due to the topics related to COVID-19 which include an increase in the 
tally of active cases, the effect of the lockdown on the economy of India, effects on the daily wage 
workers. Other factors for the arousal of negative sentiments are the India-China conflict, criminal 
cases, and protestors. The positive polarity is indicated by the various topics which consist of PM 
Modi, Medical facilities, Technology, Defense, International news, Delhi government. The neutral 
sentiment is the result of the topics named Weather, Parliament session.

Further, the total change in the sentiment is carefully observed for the topics of the pre- and-peri 
COVID-19 periods to analyze the change in sentiments (Figure 12). About 54% of the polarity score is 
greater than zero for the pre-COVID-19 topics. On the other hand, the graph shows a decrease in the 
positive polarity score to 46% in the peri-coronavirus period. Similarly, the negative polarity shows 
a higher value for the peri-coronavirus topics that is near about 53% whereas the pre-coronavirus 
topics experience a downfall of up to 44%. The neutral polarity score contributes the least for the 

Figure 10. PRE COVID-19 Polarity Analysis
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pre-and-peri coronavirus topics having values of 0.8% and 0.5% respectively. The main cause of the 
increase in the negative sentiment during the coronavirus period is due to sudden breakdown, increase 
in deaths, and the restriction imposed during lockdown (refer to Table 5) such as social distancing 
(Mishra and Majumdar, 2020). From Table 5 it is clear that most negative polarity is due to the 

Figure 11. PERI COVID-19 Polarity Analysis

Figure 12. Polarity score comparison
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Covid-related news. These results implicate the need for formulation of the policies for improving 
the health sector of India as a lack of awareness can be observed.

4. DISCUSSION

In this work, we have performed the analysis of the change in health issues coverage through two Indian 
newspapers for the pre and peri coronavirus period. The front-page news articles for July 2019- June 
2020 are collected and the LDA topic modeling technique is applied. The topics interpreted by the 
LDA topic modeling technique show that less stress was laid on awaring people about the various 
health issues during the pre-coronavirus period (Fig. 13). News covered during this period was of 
politics, court cases, crimes, economy, etc. Only 6% of news articles were laying stress on health 
education. On the other hand, the peri-coronavirus period covers nearly 40% of health-related issues 
which shows that the emphasis is now laid on warning people. As most of the topics were about the 
COVID-19 pandemic which includes COVID-19 outbreak, COVID-19 cases, COVID-19 testing, 
Medical facilities, Lockdown, and also includes various guidelines imposed by the government to 
overcome the pandemic. These observations implicate that now the health of the people is given more 
priority as the awareness is being spread and proper actions are also taken to control the pandemic.

The results indicate that health issues are in limelight during critical times on the front page. In 
both the periods’ politics, crime is covered to a greater extent as it is covered under various topics 
named “Political parties”, “Maharashtra election”, “Election”, “Government”, “Delhi Government”, 

Table 5. News and its sentiment score

News Sentiment score

Prisoners freed to decongest Tihar return to crime -2.69191

Delhi: Woman kills spouse, says he died of Covid-19 -1.83037

Pilot on his way to Delhi airport looted near IIT -1.77076

Voice sampling leads cops clad in PPE to blind woman’s rapist -1.76637

Coronavirus death toll hits 400,000 worldwide -1.5906

Corporate bosses in Delhi fall prey to honeytraps on gay dating app -1.58245

Two killed in bomb attack on anti –caa rally in W Bengal -1.48681

Parliament opens today, turbulent session on cards -1.4865

10th Covid death in Bhopal, all gas victims -1.24146

Delhi declares coronavirus epidemic as first Indian dies in Karnataka -1.22454

Coronavirus killed thousands in secret too, countries now revising Covid-19 death toll -1.19445

Covid-19: 295 deaths, highest in single day, across India -1.18851

Destruction in Odisha, West Bengal as cyclone Amphan strikes -1.18015

Why death rates vary widely in states: Testing could be key -1.16163

Donald Trump calls slain Iran general Qassem Soleimani No.1 terrorist -1.1567

7 Congress MPs suspended amid Parliament ruckus -1.15239

Coronavirus: India crosses 50k cases; hits new peak of 3600 cases in a day -1.14375

Mystery virus toll rises, mutation fears emerge -1.14217

Moody’s downgrades India rating for 1st time in 22 yrs -1.13198

Newlywed fireman dies in factory blaze in Delhi’s Peeragarhi -1.13371
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“Parliament session”, “CAA Bill”, “PM Modi”. Even for the crime “Criminal cases” is a common 
topic in both periods (refer to Table 3 and Table 4). Moreover, terrorism-related news is also given 
priority as it can be found in both the periods under the topic ”Terrorism”. The media should also 
give equal priority to the health issues coverage which will ultimately lead to the improvisation 
of the Indian healthcare system as people will be more aware. The government should formulate 
some initiatives to improve the health care system of India. Further, the change in sentiments for 
both periods is observed using the polarity score. The results revealed that the negative sentiment 
is now prominent in the peri-coronavirus period. About 52% of the polarity score is negative in the 
peri-coronavirus period whereas it was 46% during the pre-coronavirus time. The main cause of 
the increase in negative polarity score is due to the restrictions are imposed on the people such as a 
sudden breakdown of the virus, social distancing, wearing masks, and lockdown period when people 
were made to live at their homes. The outbreak of the virus is sudden and people are in a state of fear 
and get mentally disturbed. Since the negative sentiment has increased in the peri-Covid-19 period 
which implicates that the media should decipher some suitable headlines for covering the spread of 
the Covid-19 which will lay less mental stress on the people.

In the previous work, Gupta and Sinha (2010) inspected health coverage in mass media. The 
analysis is done manually which takes a lot of time. The limitation of this study is overcome by our 
study as we have used the LDA topic modeling to carry out the analysis which automatically extracts 
the topics covered. The approach used by our study is comparatively faster.

Liu et al. (2020) analyzed the role of media in the on-going COVID-19 crisis is analyzed. The main 
drawback of this study was that it covers news related to the COVID-19 and only contains Chinese 
news articles that were scraped from the WiseSearch mass media. Also, it lacks the sentiment analysis 
of news articles. The drawbacks of this study are overcome by our research as we have collected 
news articles from the front page of the e-papers which contains national as well as international 
news. Further, the news articles collected for our study are from different areas that include politics, 
business, government, court-cases, etc. Moreover, we have analyzed the change in the sentiments 
aroused from the news articles.

Figure 13. Change in health-issues coverage for pre-and-peri COVID-19
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5. CONCLUSION

The healthcare sector of India is considered unfit when compared with other country’s medical 
facilities due to the lack of awareness among the public. In this study, we have analyzed the change 
in health issues coverage through the front page of two Indian newspapers viz. The Hindustan Times 
and the Times of India for pre-and- peri coronavirus periods. The results show that the newspapers 
have now focused on warning the people about the pandemic by providing the total number of active 
cases, providing prevention guidelines, and various other articles are also covered to aware people 
of the alarming situation that has devastated the whole world. Further, the sentiment analysis of the 
news articles of the pre-and-peri COVID-19 period shows an increase in the negative sentiment during 
the peri- coronavirus period which indicates fear due to the sudden breakdown of the pandemic. The 
theoretical implication of this research includes: the study fills in the gaps in empirical knowledge 
about the factors that trigger sentiments of the people. It also indicates the psychological effects which 
implicate how news can bring behavioral change. Moreover, the study proposes practical implications 
for researchers, health workers, the government who are interested in using the news media for 
disseminating knowledge about the various health-issues. Further, it will help the government in 
improving the Indian health sector and to initiate different programs for people to help them come 
out of this pandemic situation as people are at high risk of getting mental illness. In the future, we 
would like to combine the various social media platforms such as Facebook, Instagram, Twitter posts, 
and news articles from different e-papers to analyze the situation. Also, we would like to analyze the 
state-wise pandemic situation in India. Further, we would like to consider news articles for the whole 
newspaper rather than focusing on the front page only.
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