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ABSTRACT

A common model used in addressing today’s overwhelming amount of data is the OLAP Cube. 
The OLAP community has proposed several cube algebras, although a standard has still not been 
nominated. This study focuses on a recent addition to the cube algebras: the user-centric cube 
algebra query language (CAQL). The study aims to explore the optimization potential of this 
algebra by applying logical rewriting inspired by classic relational algebra and parallelism. The lack 
of standard algebra is often cited as a problem in such discussions. Thus, the significance of this 
work is that of strengthening the position of this algebra within the OLAP algebras by addressing 
implementation details. The modern open-source PostgreSQL relational engine is used to encode 
the CAQL abstraction. A query workload based on a well-known dataset is adopted, and CAQL and 
SQL implementations are compared. Finally, the quality of the query created is evaluated through 
the observed performance characteristics of the query. Results show strong improvements over the 
baseline case of the unoptimized query.
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INTRODUCTION

The availability of massive amounts of data in every domain and application has led researchers to 
develop innovative techniques for representing and handling data, e.g., time-series data (Fu, 2011; 
Esling & Agon, 2012). Within the database field, such techniques are categorized under Online 
Transaction Processing (OLTP), dealing with voluminous transactions, and Online Analytical 
Processing (OLAP), addressing sophisticated data analysis over large and varied data sources.

In more detail, the OLAP field is concerned with keeping insightful analysis intuitive and related 
computation efficient. The OLAP Council (1995), although currently inactive, has provided the 
following OLAP requirements: (a) modelling across dimensions and through data hierarchies; (b) 
trend analysis over sequential time periods; (c) slicing subsets for data visualizations, and (d) drilling 
down to deeper levels for consolidation. Such requirements emphasize the importance of performance 
and the need for an adequate data model.
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The prevailing data model for OLAP is the data cube. Several OLAP database algebras have been 
proposed in the literature, suggesting the need for thinking in this data model. Romero and Abelló 
(2007) survey several OLAP algebras, observing that such algebras express the same fundamental 
OLAP operations differently, i.e., through different formalisms and semantics to interact with the 
OLAP cube abstraction. Although interest in this area for its potential of logical optimization and 
reaching a consensus on modelling issues exists, work in this aspect has been lacking. A standard 
algebra has yet to be nominated despite being indicated as important for facilitating future research.

A recent development in the algebras is the Cube Algebra Query Language (CAQL) by Ciferri 
et al. (2013). The focus here is on a data model which is more straightforward and more intuitive for 
the end-user than comparable models proposed in the past. Thus, this study provides an overview of 
several algebras to clarify this point. This work aims to build on CAQL by exploring and commenting 
on the optimization potential of querying through this algebra, specifically by applying parallelism 
and logical optimization. The main contributions of this article are:

1. The identification and application of several optimization methods which are applicable for this 
type of algebra based on parallel computing and logical rewriting.

2. The adoption of a query workload and its application to the cube algebra domain, together with 
an evaluation that focuses on the quality of the query generated. The observed performance 
characteristics of the executed query are the metric used for evaluation.

3. The strengthening of CAQL’s position by addressing implementation details when several OLAP 
algebras exist, but a standard is lacking.

4. The identification of a database engine that adequately implements the data cube abstraction. The 
DBMS must be extensible, allowing for seamless entrenchment of this algebra.

It is not within the scope of this article to study the extension of the cube algebras, e.g., through 
the proposal of new operators. Moreover, the algebra’s expressiveness and its relationship with the 
relational algebra’s expressiveness are not within this article’s scope.

The remainder of this article is structured as follows. The following section discusses related 
work in cube data models and algebras. Then, the article describes the main optimization techniques 
used in this study. Following this section, the performance and experimental analysis of the techniques 
used are presented using a case study. The article then concludes with final remarks on this study 
and ideas for future research related to this work.

BACKGROUND
In interpreting data, the main tasks undertaken by data analysts are the summarization of data and the 
extraction of trends and patterns. Such workloads are analytical and require interaction with entire 
datasets, consolidating data from various sources for trend discovery or decision support. Within this 
domain, OLAP tools represent the datasets in n-dimensional space, with the prevailing data model 
for such OLAP requirements being the data cube model. Thus, this type of workload often involves 
long-running and complex queries, with the modelling of such queries and improving their response 
times being a significant challenge within the area.

A central and extensive survey on cube and data warehousing models carried out by Ciferri 
et al. (2013) give an overview of twenty related models. They classify existing models into three: 
conceptual models using extensions of the Entity-Relationship (ER) Model (Chen, 1976), conceptual 
models which extend the Unified Modeling Language (UML), and models based on a view of data 
as a cube. Each model is based on different formalisms and semantics.

Romero and Abelló review ten OLAP models in detail, observing that all are trying to express 
the same fundamental operations. The emphasis is on the need for a reference set of operators to help 
research in the area by facilitating the development of design methodologies focused on improving 
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querying, indexing techniques and query optimization. There is an overlap of the models reviewed 
by Ciferri et al. (2013) and Romero and Abelló (2007).

An earlier survey by Vassiliadis and Sellis (1999) also suggests a wide variety of models, that 
reaching consensus on a standard is essential, and that results on optimization through the use of 
a generic logical model would prove helpful.Since the survey in Ciferri et al.’s work, several other 
algebras have been proposed (e.g. Kuijpers & Vaisman, 2016; Banerjee et al., 2021).

In the following subsection, the standard cube data model is introduced in more detail. Then, 
the ensuing subsections focus on the main algebras in the literature, which are defined over the cube 
view and provide an algebra without extending existing models.

The Cube Data Model
The data cube is the de facto standard data model used in OLAP systems to provide intuitive and 
flexible multidimensional analysis. Data is structured as a hypercube, a multidimensional construct 
defined in n-dimensional space through the dimension modeler’s measure and specifications. 
Conceptually, the data cube allows users to view data from different perspectives and at varying 
levels of detail. As an abstraction, it is independent of the physical layer. Its implementation can take 
many forms, such as arrays or relations, with several SQL additions available (Gray et al., 1996). In 
addition, MultiDimensional eXpressions (MDX) (Microsoft Corporation, 2021) is a popular query 
language for direct querying an OLAP data cube and makes use of keywords similar to those in SQL 
but introducing constructs that are natural to the cube, such as selecting measures and dimension 
hierarchies. However, MDX has received criticism for not having a solid theoretical background, 
overloading presentational issues with computational issues (Vassiliadis, 1999), not having clearly 
defined semantics, and being cryptic and unintuitive (Ciferri et al., 2013).

A dimension’s level indicates the granularity for which a measured value is being shown. In Figure 
1, the sales data is being viewed at the levels of Month, City and Category, of the Time, Customer 
and Product dimensions, respectively. Each dimension is made up of a set of aggregation levels that 
are hierarchical in nature. The ALL level is the most general level of detail for a dimension, flattening 
the dimension into a single instance. Each value shown in a cell of the data cube represents a measure 
relative to the cube’s dimensions, e.g. total sales for Month, City and Category. Measured values 
can change as the data cube is being manipulated, and a data cube can contain several such measures.

Typical operations on the cube (Vassiliadis & Sellis, 1999) include rolling-up, which is the 
aggregation along the specified dimension hierarchy, dicing and slicing, which is the selection of 

Figure 1. A data cube with dimensions Product, Time and Customer, and measure Quantity. Time dimension hierarchy (left).
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specific parts of a cube, and pivoting the cube - a reorientation of the cube. Operations on the cube 
can also include transforming the cube’s contents and linking multiple cubes together, drilling across 
for more detail.

The discussion on the appropriate physical model for OLAP has focused on two views - either 
the Multidimensional OLAP (MOLAP) approach or the Relational OLAP (ROLAP) approach. 
MOLAP systems are associated with using multidimensional arrays in a Multidimensional DBMS 
(MDBMS) as the underlying data model, as well as populating each possible entry in the defined 
multidimensional space. This is vulnerable to the curse of dimensionality problem (Donoho, 2000); 
as the dimensions increase, there is an explosion in the size of this dimensional space, with the actual 
grouped data being very sparse. Sparsity in data is present through there being only an entry for each 
recorded observation.

Furthermore, MOLAP systems focus on improving performance by reducing data size using 
the precomputation of possible aggregations. However, this approach introduces the overhead of 
propagating any changes in data to these pre-computed datasets.

Meanwhile, in ROLAP-based systems, a Relational DBMS (RDBMS) is at the core of OLAP 
operations: a table abstraction is used to perform OLAP operations. In addition, the limitations of 
the ROLAP approach are characterized by the limitations of the underlying RDBMS. As ROLAP 
systems are closer to the operational data source than MOLAP systems, ROLAP systems can allow 
any operational data source already in an RDBMS to be queried, whereas, in MOLAP, data has to be 
exported and then loaded in the MOLAP’s environment and structures. As a result, ROLAP has an 
advantage in flexibility for applications without predefined query requirements. Modern RDBMSs 
with the support of materialized views and triggers can implement similar precomputation techniques 
to MOLAP; thus, there can be an overlap between approaches, i.e. Hybrid OLAP (HOLAP).

Agrawal et al.’s Data Model
Agrawal et al. (1997) propose a data model focused on the symmetric treatment of dimensions and 
measures. Symmetric in this context refers to the ability to apply operations typically associated 
with dimensions on measures. Thus, similarly to how one can aggregate to a monthly level in a Time 
dimension, the ranges of a Quantity measure can also become candidates for aggregation, e.g., 
aggregating over the groups of Quantity 0-999, 1000-1999 and so on.

The proposed algebraic operators are closed - they are defined on cubes and produce a cube 
as output. The operators can be composed, creating a query expression model and introducing 
optimization options such as disregarding intermediate cubes which are not of interest to the user. 
Agrawal et al. also remark that the operators are minimal such that one cannot be expressed in terms 
of the other, and dropping one will lead to reduced functionality. Through this algebra, Agrawal et 
al. emphasize an approach to stay as close to relational algebra as possible, to benefit translation and 
compatibility to SQL.

The logical cube data model is based on the following elements. The model has k dimensions, 
where each dimension has a name Di and a domain domi from which values are taken. Elements are 
defined as a mapping E(C) from dom1 ´  ´  domk to 0, 1, or an n-tuple. An element of 0 or 1 
indicates whether the value exists or not, and the n-tuple indicates that additional information is 
available for that combination of dimension values. They also define a set of basic operators: push, 
pull, restriction, destroy dimension and join, described in Table 1. Using these operators, Agrawal 
et al. build higher-level operations such as roll-up, drill-down, and star join.
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The authors describe their algebra as at least as powerful as relational algebra. However, they 
point out that a precise indication of the expressive power of the proposed model is an open problem. 
In addition, a related open question is that of defining the formal notation of completeness for 
multidimensional queries and evaluating how complete their algebra is through this notation.

The authors also discuss the implementation aspect in their proposal. They remark that translation 
of each proposed operator to SQL is possible and that it is unclear what the expected performance 
can be. The authors comment that such algebraic operators can also be implemented on a specialized 
engine and a relational one.

Vassiliadis Base Cube Data Model
In the multidimensional data model proposed by Vassiliadis (1998), the author defines the concepts 
of dimension and cube while addressing challenges with hierarchies e.g. the de-aggregation of data. 
A particular contribution of this work is the use of the base cube, core to some of this algebra’s 
operators. The basic operations in this cube model (shown in Table 2) are level climbing, packing, 
function application, projection, and dicing. Navigation and slicing are then defined on top of these 
basic operators.

Vassiliadis defines a cube Cb as a 3-tuple <Db, Lb, Rb>, where Db is a list of dimensions 
representing the measures, Lb is a list of dimension levels, and Rb is a set of cell data (the data of the 
cube containing elements of the dimension and measure values) at the lowest dimension levels. The 
definition of a cube is then altered to define a cube as the base cube of itself with Cb as a 4-tuple <Db, 

Table 1. Agrawal et al.’s (1997) proposed core operators

Operator Description

Push Convert dimensions into elements that can be manipulated using a function.

Pull The converse of the push operator. Creates a new dimension for a specific element, converting an 
element into a dimension.

Destroy 
Dimension

Reduces the dimensionality of the cube through removing a dimension which only has a single value 
in its domain. A dimension that has multiple values cannot be directly destroyed because the elements 
might not be functionally determined by dimension values in that scenario.

Restriction Operates on a dimension of a cube, removing the cube values from the dimension that do not satisfy a 
provided condition.

Join Relates the information across two cubes. Both cubes need not have the same number of dimensions 
and a mapping function is used for mapping the dimension being joined to the resulting dimension.

Table 2. Vassiliadis’s (1998) cube operators

Operator Description

Level Climbing Replaces all values of a set of dimensions with values of dimension levels of a higher 
level.

Packing Merges multiple data instances having the same dimension values into one.

Projection Removing specific dimensions from both the cube and its base cube entry.

Function Application Applies a specific function to the measure of a cube.

Dicing Selects data to satisfy a given expression. It is applied to both cube and base cube.
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Lb, Cb, Rb>. This definition of the base cube enables a direct and correct evaluation of operations. 
As a cube is aggregated, a challenge is presented with regard to specific operations. One example 
of this is getting the average sales per year from a cube whose measurements have been aggregated 
using a count function, i.e., going from count data to average data. Related to this problem is also 
de-aggregation operations. Once the data is aggregated through going up the dimension hierarchy, 
one might be interested in going back down. For example, after aggregating up from a daily to a 
yearly level and then manipulating the cube, one might be interested in interacting with the data at 
the daily level. Vassiliadis remarks that not only does the base cube definition provide a mechanism 
to preserve data in such a series of operations, and avoids the possibility of using expensive join 
operations to try answering such queries, i.e., a performance implication.

The mapping of this algebra to a relational model is done based on two mapping functions. One 
maps a dimension level to an attribute of a relation, and the other maps an attribute to a dimension 
level. A dimension level can be mapped to more than one attribute, e.g. a dimension level may be 
expressed in two columns, possibly across two relations. In addition, mapping to a multidimensional 
array is said to be trivial, following the work of Cabbibo and Torlone (1997).

Vassiliadis indicates that the optimization challenges of this algebra are related to the execution 
of operations and suggests the application of view usability (Levy et al., 1995) techniques. Workloads 
change the volume of the cube; therefore, it is of interest to weigh computing directly from this base 
cube against computing from an intermediate result.

Ciferri et al.’s Cube Algebra
Ciferri et al. (2013) present the Cube Algebra Query Language (CAQL). Its main characteristics are 
that it focuses on the view of a cube and on providing an intuitive set of operators to general users 
(such as managers) by which to manipulate a cube.

The model in this algebra is based on cube and dimension definitions which the user specifies 
through the language’s proposed Cube Algebra Definition Language (CADL). A cube schema in 
this model is defined as a 3-tuple <nameCS, D, M> with nameCS being the name of the cube, D is 
a set of dimension levels, and M is a set of measures. Meanwhile, a dimension schema is a 3-tuple 
<nameDS, L®> with nameDS being the name of the dimension, L is a set of pairs of the form <l, 
A> such that l is a level and A is a set of attributes describing a level. There is a particular level <All,
q >, and an attribute in A identifies a member in level l. ®  is a partial order on the levels, creating 
a hierarchy and defining a graph described by the attributes in A.® also has a unique bottom level.

The algebra is based on four core operators: roll-up (with drill-down as its inverse), slice, 
dice, and drill-across, and is extended with the map operator. The authors remark that this set of 
operators can be extended further in practice. Additional details on these operators are provided in 
the following list:

•	  Dice: Returns a cube containing only the cells satisfying an expression over dimension levels 
and measures.

• 	 Slice: Removes a selected dimension from a cube, returning a cube with n-1 dimensions. The 
dimension to be removed must be a singleton; if the dimension has more than one value, one 
must either apply a roll-up to the ALL level or apply a dice operator prior to slicing.

• 	 Roll-up: Aggregates measures according to the dimension hierarchy. An aggregate function 
must be specified for each measure. This operator reduces the numerosity of the data rather than 
the number of dimensions.

• 	 Drill-down: Undoes the aggregation of a cube in an aggregated state. The authors suggest 
implementing it through tracking the paths followed during a roll-up operation.

•	  Drill-across: Given two cubes, compose a single consolidated cube with a new cube structure. 
This operation is subject to cube compatibility as two cubes can be related, but their structure 
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can differ. In those cases, the authors recommend controlling the granularity of the cubes before 
using this operator or applying a mapping function.

• 	 Map: Applies a mapping function to a measure such that the resulting cube contains the updated 
measure.

Discussion and Other Related Work
Up until this point, the well-established OLAP algebras in the literature have been presented. The 
essential themes in this review are that (a) implementation and optimization details have remained 
relatively unexplored, despite the indication that they are indeed possible and necessary, (b) that a 
lack of standard data model is present, and (c) that OLAP algebras seem to have, over time, prioritized 
having user-intuitive operators, with the latter being the primary justification of the authors of this 
work for choosing CAQL. A number of more novel algebras have been proposed in the area and will 
also be covered next in this section.

Kuijpers and Vaisman (2016) propose a formal OLAP algebra, emphasizing that this formalization 
is required within the Big Data landscape to perform real-time OLAP operations. In their contribution, 
the common operators manipulating a data cube have their semantics clearly defined, and a formal 
proof showing that operators can be composed is provided. The authors claim that their work is the 
first to provide formal proof in the area due to work, at the time, lacking formalism or applicability.

Banerjee et al. (2021) propose a formal OLAP algebra for NoSQL systems. They highlight that 
the lack of a common OLAP specification is also a problem within the NoSQL world, and therefore, 
data warehousing portability is limited. In their work, a uniform syntax for different OLAP operations 
is proposed. A key insight is that the operators proposed are independent of the physical level and 
can therefore work on NoSQL systems as a result.

ADDRESSING OPTIMIZATION IN THE CUBE ALGEBRA QUERY LANGUAGE
As OLAP queries are expected to be very intensive and complex, often having to interact with 
extensive and varied datasets, careful consideration of their response time is crucial. Other OLAP 
algebras have briefly referred to the optimization potential of their algebra. Namely, Agrawal et al. 
(1997) identified that the use of a query expression model which can disregard intermediate result 
sets introduces optimization options. Vassiliadis (1998) has also emphasized that the optimization 
challenges of this algebra are related to the execution of operations and has suggested the use of 
views within the implementation.

As a large number of cube representations exist, the application of a technique is not guaranteed 
to be directly transferable to another model. Romero and Abelló (2007), as well as Vassiliadis and 
Sellis (1998) have already indicated that there is a wide variety of models and that discussion on 
optimization through the use of a generic logical model would prove useful. Hence, the authors are 
restricting this work to CAQL, which has already been established for a number of years and has 
been designed to be user-centric.

Cube algebras are sometimes compared to the relational model as a possible target for translation 
into such a model. Through their multidimensional algebra, Agrawal et al. (1997) emphasize the 
similarity to relational algebra, where this connection can assist in translation and compatibility to 
SQL. Ciferri et al. (2013), when discussing CAQL consider the drill-across operator as similar to 
the relational natural join, the dice operator as analogous to the relational selection and the slice as 
comparable to the relational projection. In this section, optimization for CAQL is discussed using 
this relationship to relational algebra.

Logical Rewriting
CAQL, as an algebra, can have its expressions rewritten based on logical equivalences. Due to its 
similarity to relational algebra, the authors of this work aim to show that it is possible to leverage 
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well-known relational logical equivalences (Ullman et al., 2008) for CAQL expression rewriting. In 
this section, two such examples are discussed to highlight this point. However close this similarity 
might be, some CAQL operators have certain nuances distinguishing them from the relational model 
(e.g., a slice operator can optionally be combined with a roll-up to the level all). Finally, the authors 
emphasize that although the relational model is being consulted to identify and apply rewriting, the 
implementation does not necessarily have to be a relational one, i.e., these rules are expected to find 
application in specialized OLAP engines as well.

One rule is the pushing down of the dice operator across the drill-across operator. Looking at 
relational algebra, the related identity is that the relational select (s ) can be distributed over the 
natural join (¥ ), so long as the attributes in q  exist in both input relations E1 and E2:

s s s¸ ¸ ¸E E E E
1 2 1 2
∞ ∞( ) = ( ) ( ) 	 (1) 

In the case of the drill-across, its specification states that the result of the drill-across operator 
will have the same dimensions as both input cubes. Then, this means that a reference in the dice 

expression to a dimension can be pushed down to both sides. Meanwhile, pushing down a measure 
in this scenario would require first identifying which input cube it came from.	

Pushing down the slice under a drill-across will relax the join condition, subsequently producing 
a different output. Consider a join between two cubes and pushing down a slice to remove a dimension. 
Then the rewriting effect of such a rule will result in instead joining on one dimension less: a different 
join condition that can be expected to alter the answer of the query. In addition, unlike the relational 
projection, one would need to consider that the slice operator can include a roll-up to the level all.

The second rule being used in this work is an application of the relational identity, which says 
that sequences of the relational project (P ) can be omitted, up until the last projection:

Π Π Π Π
L L L Ln

E E
1 2

1
(...( ( )) ( )( ) = 	 (2)

The inverse nature of the relational projection (state which attributes are desired) to the slice 
(state which dimension attributes are not desired) makes the compatibility across data models precise. 
Thus, in the CAQL model, this can be implemented through merging all contiguous slice operations 
(as in Figure 2) so long as the result of the merged output is compatible with all parent instances.

Figure 2. Merging of multiple slice operators in a query graph, input (a) resulting in (b)
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The idea behind the selected rules is to push down the operators closer to the data sources, as 
a result reducing the amount of intermediate space produced for all subsequent operations such that 
they can be performed on smaller-sized data (e.g., perform drill-across over less voluminous cubes). 
For simplicity, in this work, it is assumed that such rewriting will always yield a performance benefit, 
although this might not always be the case with other rules such as interactions between slice and 
dice (i.e., is it worth reducing the volume of the cube through reducing its dimensionality or through 
filtering the data first?). Thus, one would have to consider more contrived solutions to guide the 
rewriting process the more identities that are identified, e.g., applying a cost function from collected 
statistics about the cubes.

Parallel Execution
A query graph, other than illustrating how the query is to be resolved, also indicates which parts 
are safe to be executed concurrently. In a relational environment, the underlying CAQL operator is 
compatible with the relational engine, i.e. is a translation to SQL, with each operator providing input 
for another operator. Thus, one can achieve parallelism at SQL level here by controlling the numbers 
of workers allocated to each operator.

The main challenge in this approach is the compilation of an SQL query in isolation from each 
other; if two or more translated operators were compiled together, there would have been additional 
information supplied to the SQL optimizer, enabling it to make a more informed decision. Additionally, 
it is a form of bulk execution: an entire table is being supplied to the other operator at once, as opposed 
to streaming (i.e. Volcano’s tuple-at-a-time execution (Graefe, 1994)).

Thus, an alternative approach that addresses these concerns is to rewrite the translated operators 
under a single SQL query. In contrast, the limitation of this approach is that the final query will be 
substantial in size, which may result in too much time planning or missing potential optimization 
opportunities if planning is stopped prematurely due to a time-out attached to the SQL engine’s 
optimization effort. Furthermore, as a single SQL query, then execution can be streamed (as opposed 
to executed in bulk as several SQL queries), should the underlying engine support such kind of 
processing. Keeping in mind that parallel workers are allocated on a per-query basis, then in this 
technique, the control of the allocation of resources is delegated to the underlying engine.

This technique of rewriting the operators under a single SQL query can be implemented through 
Common Table Expressions (CTEs). When dealing with CTEs, one must account for the Materialized 
parameter: taking the PostgreSQL DBMS as an example, up until PostgreSQL 12 (2020), CTE 
execution has always been materialized, and this has been referred to as an optimization fence with 
such a query not being executed in parallel. This has been addressed in PostgreSQL 12 by introducing 
the Not Materialized option for CTEs, which inlines the inner CTE queries into the outer query 
allowing the SQL query optimizer to then to be able to be optimized further in this manner and also 
supports parallel execution.

So far, the discussion on parallel execution has been focused on executing a single SQL statement 
in parallel (i.e. intra-node parallelism). In effect, the simplest strategy is that of allocating all 
available resources to the current operator being executed. However, at the abstract level of CAQL, 
it is possible to execute multiple operators in parallel, i.e. allocating resources over several SQL 
statements, resulting in inter-node parallelism. Using this technique, the sequential component of 
query planning is alleviated through planning several SQL queries simultaneously. The challenge 
behind this technique is finding a policy by which to distribute resources across operators such that 
minimal processor idle time is observed.

EXPERIMENTAL EVALUATION
This section evaluates CAQL from a performance standpoint. The testing setup used is covered first. 
What follows is an explanation of the baseline comparisons and a presentation of the query workload. 
Finally, the section concludes with a discussion on the results observed.
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Test Setup
All testing is performed on an i5-2500k 4-cores 3.3GHz CPU, with 16GB DDR3 RAM and a 512GB 
SSD computer setup running the Manjaro 18.1 (4.19 Linux Kernel) OS. The PostgreSQL 12 DBMS 
is used as the underlying engine for the experiment, mainly due to its open-source nature, wide 
adoption, and focus on extensibility (Stonebraker et al., 1987). It has been compiled with the -O2 
flag and has the following configurations:

•	  Shared_buffers - 6GB
• 	 Effective_cache_size - 12GB
•	  Work_mem - 2GB
•	  Random_page_cost - 1.1

A tool was written to translate CAQL and CADL statements into SQL, i.e., a translation to 
the relational model. In addition, this tool is used to facilitate the application of the optimizations 
discussed in this work. Throughout this experiment, cubes are implemented using tables which are 
unlogged (PostgreSQL, 2020), to reduce disk interactions, and the CTEs used are not materialized, 
which allow the DBMS to optimize the translated query further.

Variance in results can be attributed to the many intricacies of the background DBMS and OS 
processes. For this reason, each test is performed ten times in total, and the mean is taken. An additional 
warm-up phase is performed at the start of the experiment to ensure that the system caches are not cold.

Baseline Comparison
For the first experiment, a query is first executed without the application of logical rewriting, 
without CTE translation and with just one worker assigned to both cases. This is being referred to 
as the baseline case. Then, the query is executed with the logical rewriting effect for both CTE and 
non-CTE translations. This demonstrates the improvements that are achievable at the logical level. 
The following experiment introduces parallelism through varying the number of parallel resources 
allocated, demonstrating the expected speedup benefit. The term bulk used here refers to how the 
available parallel workers were allocated: all were allocated to one operator at a time. Finally, the 
third experiment compares the baseline against an SQL implementation’s execution time, thus 
highlighting the difference between a query expressed in CAQL and in the widely adopted SQL. 
The query processor configuration settings are set to default for SQL execution, i.e., parallelism was 
not forced in this case.

Workload
The dataset used in this project is the Star Schema Benchmark (SSB) (O’Neil et al., 2007). It is a 
widely used benchmark (Sanchez, 2016) for star schema models in an OLAP environment. The SSB 
was scaled with the configuration of scale factor = 1.

A Simple Moving Average (SMA) query, a query common for several users (Nadler & Kros, 
2005), was used on this dataset. Its specification, in both CAQL and SQL, is provided in the Appendix. 
The result of both CAQL and SQL queries have been matched against each other to ensure that the 
queries being executed are at least producing the same output.
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Discussion of Results
Figure 3 shows a difference in the effect of rows processed using rule rewriting for both CTE and 
non-CTE modes, with the CTE mode showing a less dramatic difference. This suggests two things: 
(a) that rule rewriting can reduce the workload in both CTE and non-CTE scenarios by a substantial 
amount and (b) that a seemingly better effect, by the metric of rows processed, is produced in the 
non-CTE translation.

Adding workers to the query with query rewriting (as shown in Figure 4) results in the bulk 
execution method being parallelized and the CTE execution to not benefit from parallelism. The lack 
of a linear speedup is expected due to the disk interactions. The lack of a speedup as far as CTE is 

Figure 3. Total rows processed by one worker for a Simple Moving Average query with the rewriting effect on, and off.

Figure 4. Parallelism speedup potential against the number of workers for each execution mode, comparing a single worker with 
an increasing number of workers for a Simple Moving Average type query.
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concerned suggests that the functions (i.e. window functions) used to express the query hijack the 
parallelism of the entire query.

A clear improvement can be seen when comparing the unoptimized CAQL with the alternative 
optimization techniques in Figure 5. The CTE is the least appealing of the alternatives; this can be 
explained through the lack of parallelism discussed previously. It is interesting that the gap between 
the bulk and SQL execution methods is minimal, suggesting that the optimizations brought CAQL 
execution to a reasonable level of performance.

CONCLUSION
Several algebras have been proposed for working with multidimensional data in an OLAP environment, 
but a standard algebra has not yet been established, even if this is considered to be beneficial. Of these 
multidimensional algebras, a number focus on operating directly over the view of data as a cube, but 
discussions on optimization remain relatively unexplored.

In this work, the authors focus on a well-established and intuitive addition to these set of algebras 
and apply several optimization ideas. These ideas focus on exploring parallelism and logical rule 
rewriting at a conceptual level, showing that ideas from the relational model are also applicable in 
this domain. The open-source PostgreSQL was used to work with this algebra at a physical level. 
Although this is a post-relational engine, these ideas are expected to find application in specialized 
OLAP engines as well. A Simple Moving Average style query was presented to demonstrate the effect 
of these ideas, with up to a 16´  improvement over the baseline case having been observed. This 
result is also close to that of an SQL implementation of the query.

Future research is possible in a number of areas. First, an extensive set of logical equivalences, 
in addition to those proposed in this work, can be identified and expressed formally. Second, the 
parallelism in this work involved using all available resources on a single operator at a time; future 
work can explore different ways of allocating resources. As the number of identified optimization 
techniques increases, then it is of interest to explore the problem of choosing an optimized plan from 
many alternatives in a reasonable amount of time, e.g., through a cost function tailored for the OLAP 

Figure 5. Comparing CAQL execution modes against the SQL implementation for a Simple Moving Average type query 
implementation.
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algebra environment. Finally, as this OLAP algebra becomes more common, it would be interesting 
to see the addition of CAQL queries and case studies, as well as a standard benchmark test tailored 
to this algebra.
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APPENDIX A - SIMPLE MOVING AVERAGE STYLE QUERY

A manager is interested in comparing monthly operations between the first half of the years 1992, 
1993 and 1994. He sees that there is variation and is interested in smoothening out this data. His 
initial attempt consists of applying a 3-month lagging Simple Moving Average.

Using CAQL

c1:= SLICE(LineOrder_Cube, Customer, ROLL-UP{SUM});
c2:= SLICE(c1, Part, ROLL-UP{SUM});
c3:= SLICE(c2, Supplier, ROLL-UP{SUM});
c4:= SLICE(c3, Day_View, ROLL-UP{SUM});
c5:= ROLL-UP(c4, Time->Month, {(quantity, SUM)});
c6:= SLICE(c5, Time, ROLL-UP{SUM});
c7:= MAP(c6, {(qty_lag_sma_3,SUM_quantity,month_year_lag_sma(3))});
c8:= DICE(c7,”Year_View.Year.value”=1992);
c9:= SLICE(c8, Year_View);
c10:= DICE(c7,”Year_View.Year.value”=1993);
c11:= SLICE(c10, Year_View);
c12:= DICE(c7,”Year_View.Year.value”=1994);
c13:= SLICE(c12, Year_View);
c14:= DRILL-ACROSS(c9,c11);
c15:= DRILL-ACROSS(c13,c14);
c16:= DICE(c15, text_to_month(“Month_View.Month.value”) <= 6);

Figure 6. Query rewriting, input query (a) producing (b)
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Using SQL
WITH sma AS

(
-- calculate a 3-SMA over ordered months
SELECT “Time.Year.value”,”Time.Month.value”, sum_quantity,
((sum_quantity + COALESCE(LAG(sum_quantity,1)
OVER (ORDER BY “Time.Year.value”,”Time.Month.value”),0)
-- + ...
) / 3) AS sma
FROM
(
-- rollup to Time.Month with sum of quantity (measure)
SELECT “Time.Year.value”, “Time.Month.value”, SUM(quantity) 
FROM
(
SELECT “Time.Year.value”, “Time.Month.value”, quantity
FROM lineorder_cube
) y_m_q
GROUP BY “Time.Year.value”, “Time.Month.value”
) y_m_sum_q
)
SELECT sma.”Time.Month.value”, sma.sma -- project remaining attributes
-- get the sma of each year from 1992 to 1994 and join them on month
FROM sma, sma sma1, sma sma2
WHERE sma.”Time.Year.value” = 1992 AND sma1.”Time.Year.value” = 1993
AND sma2.”Time.Year.value” = 1994
AND sma.”Time.Month.value” = sma1.”Time.Month.value”
AND sma.”Time.Month.value” = sma2.”Time.Month.value”
-- get first half of year
AND text_to_month(sma.”Time.Month.value”) <= 6


