
DOI: 10.4018/IJDWM.299016

International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Initial Optimization Techniques for the
Cube Algebra Query Language:
The Relational Model as a Target
Thomas Mercieca, University of Malta, Malta*

Joseph G. Vella, University of Malta, Malta

Kevin Vella, University of Malta, Malta

ABSTRACT

A common model used in addressing today’s overwhelming amount of data is the OLAP Cube.
The OLAP community has proposed several cube algebras, although a standard has still not been
nominated. This study focuses on a recent addition to the cube algebras: the user-centric cube
algebra query language (CAQL). The study aims to explore the optimization potential of this
algebra by applying logical rewriting inspired by classic relational algebra and parallelism. The lack
of standard algebra is often cited as a problem in such discussions. Thus, the significance of this
work is that of strengthening the position of this algebra within the OLAP algebras by addressing
implementation details. The modern open-source PostgreSQL relational engine is used to encode
the CAQL abstraction. A query workload based on a well-known dataset is adopted, and CAQL and
SQL implementations are compared. Finally, the quality of the query created is evaluated through
the observed performance characteristics of the query. Results show strong improvements over the
baseline case of the unoptimized query.

Keywords
Abstraction, Algebra, Analytics, Cube, MDX, OLAP, Optimization, Query Language, Relational Model, SQL

INTRODUCTION

The availability of massive amounts of data in every domain and application has led researchers to
develop innovative techniques for representing and handling data, e.g., time-series data (Fu, 2011;
Esling & Agon, 2012). Within the database field, such techniques are categorized under Online
Transaction Processing (OLTP), dealing with voluminous transactions, and Online Analytical
Processing (OLAP), addressing sophisticated data analysis over large and varied data sources.

In more detail, the OLAP field is concerned with keeping insightful analysis intuitive and related
computation efficient. The OLAP Council (1995), although currently inactive, has provided the
following OLAP requirements: (a) modelling across dimensions and through data hierarchies; (b)
trend analysis over sequential time periods; (c) slicing subsets for data visualizations, and (d) drilling
down to deeper levels for consolidation. Such requirements emphasize the importance of performance
and the need for an adequate data model.

International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

2

The prevailing data model for OLAP is the data cube. Several OLAP database algebras have been
proposed in the literature, suggesting the need for thinking in this data model. Romero and Abelló
(2007) survey several OLAP algebras, observing that such algebras express the same fundamental
OLAP operations differently, i.e., through different formalisms and semantics to interact with the
OLAP cube abstraction. Although interest in this area for its potential of logical optimization and
reaching a consensus on modelling issues exists, work in this aspect has been lacking. A standard
algebra has yet to be nominated despite being indicated as important for facilitating future research.

A recent development in the algebras is the Cube Algebra Query Language (CAQL) by Ciferri
et al. (2013). The focus here is on a data model which is more straightforward and more intuitive for
the end-user than comparable models proposed in the past. Thus, this study provides an overview of
several algebras to clarify this point. This work aims to build on CAQL by exploring and commenting
on the optimization potential of querying through this algebra, specifically by applying parallelism
and logical optimization. The main contributions of this article are:

1. The identification and application of several optimization methods which are applicable for this
type of algebra based on parallel computing and logical rewriting.

2. The adoption of a query workload and its application to the cube algebra domain, together with
an evaluation that focuses on the quality of the query generated. The observed performance
characteristics of the executed query are the metric used for evaluation.

3. The strengthening of CAQL’s position by addressing implementation details when several OLAP
algebras exist, but a standard is lacking.

4. The identification of a database engine that adequately implements the data cube abstraction. The
DBMS must be extensible, allowing for seamless entrenchment of this algebra.

It is not within the scope of this article to study the extension of the cube algebras, e.g., through
the proposal of new operators. Moreover, the algebra’s expressiveness and its relationship with the
relational algebra’s expressiveness are not within this article’s scope.

The remainder of this article is structured as follows. The following section discusses related
work in cube data models and algebras. Then, the article describes the main optimization techniques
used in this study. Following this section, the performance and experimental analysis of the techniques
used are presented using a case study. The article then concludes with final remarks on this study
and ideas for future research related to this work.

BACKGROUND
In interpreting data, the main tasks undertaken by data analysts are the summarization of data and the
extraction of trends and patterns. Such workloads are analytical and require interaction with entire
datasets, consolidating data from various sources for trend discovery or decision support. Within this
domain, OLAP tools represent the datasets in n-dimensional space, with the prevailing data model
for such OLAP requirements being the data cube model. Thus, this type of workload often involves
long-running and complex queries, with the modelling of such queries and improving their response
times being a significant challenge within the area.

A central and extensive survey on cube and data warehousing models carried out by Ciferri
et al. (2013) give an overview of twenty related models. They classify existing models into three:
conceptual models using extensions of the Entity-Relationship (ER) Model (Chen, 1976), conceptual
models which extend the Unified Modeling Language (UML), and models based on a view of data
as a cube. Each model is based on different formalisms and semantics.

Romero and Abelló review ten OLAP models in detail, observing that all are trying to express
the same fundamental operations. The emphasis is on the need for a reference set of operators to help
research in the area by facilitating the development of design methodologies focused on improving

International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

3

querying, indexing techniques and query optimization. There is an overlap of the models reviewed
by Ciferri et al. (2013) and Romero and Abelló (2007).

An earlier survey by Vassiliadis and Sellis (1999) also suggests a wide variety of models, that
reaching consensus on a standard is essential, and that results on optimization through the use of
a generic logical model would prove helpful.Since the survey in Ciferri et al.’s work, several other
algebras have been proposed (e.g. Kuijpers & Vaisman, 2016; Banerjee et al., 2021).

In the following subsection, the standard cube data model is introduced in more detail. Then,
the ensuing subsections focus on the main algebras in the literature, which are defined over the cube
view and provide an algebra without extending existing models.

The Cube Data Model
The data cube is the de facto standard data model used in OLAP systems to provide intuitive and
flexible multidimensional analysis. Data is structured as a hypercube, a multidimensional construct
defined in n-dimensional space through the dimension modeler’s measure and specifications.
Conceptually, the data cube allows users to view data from different perspectives and at varying
levels of detail. As an abstraction, it is independent of the physical layer. Its implementation can take
many forms, such as arrays or relations, with several SQL additions available (Gray et al., 1996). In
addition, MultiDimensional eXpressions (MDX) (Microsoft Corporation, 2021) is a popular query
language for direct querying an OLAP data cube and makes use of keywords similar to those in SQL
but introducing constructs that are natural to the cube, such as selecting measures and dimension
hierarchies. However, MDX has received criticism for not having a solid theoretical background,
overloading presentational issues with computational issues (Vassiliadis, 1999), not having clearly
defined semantics, and being cryptic and unintuitive (Ciferri et al., 2013).

A dimension’s level indicates the granularity for which a measured value is being shown. In Figure
1, the sales data is being viewed at the levels of Month, City and Category, of the Time, Customer
and Product dimensions, respectively. Each dimension is made up of a set of aggregation levels that
are hierarchical in nature. The ALL level is the most general level of detail for a dimension, flattening
the dimension into a single instance. Each value shown in a cell of the data cube represents a measure
relative to the cube’s dimensions, e.g. total sales for Month, City and Category. Measured values
can change as the data cube is being manipulated, and a data cube can contain several such measures.

Typical operations on the cube (Vassiliadis & Sellis, 1999) include rolling-up, which is the
aggregation along the specified dimension hierarchy, dicing and slicing, which is the selection of

Figure 1. A data cube with dimensions Product, Time and Customer, and measure Quantity. Time dimension hierarchy (left).

International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

4

specific parts of a cube, and pivoting the cube - a reorientation of the cube. Operations on the cube
can also include transforming the cube’s contents and linking multiple cubes together, drilling across
for more detail.

The discussion on the appropriate physical model for OLAP has focused on two views - either
the Multidimensional OLAP (MOLAP) approach or the Relational OLAP (ROLAP) approach.
MOLAP systems are associated with using multidimensional arrays in a Multidimensional DBMS
(MDBMS) as the underlying data model, as well as populating each possible entry in the defined
multidimensional space. This is vulnerable to the curse of dimensionality problem (Donoho, 2000);
as the dimensions increase, there is an explosion in the size of this dimensional space, with the actual
grouped data being very sparse. Sparsity in data is present through there being only an entry for each
recorded observation.

Furthermore, MOLAP systems focus on improving performance by reducing data size using
the precomputation of possible aggregations. However, this approach introduces the overhead of
propagating any changes in data to these pre-computed datasets.

Meanwhile, in ROLAP-based systems, a Relational DBMS (RDBMS) is at the core of OLAP
operations: a table abstraction is used to perform OLAP operations. In addition, the limitations of
the ROLAP approach are characterized by the limitations of the underlying RDBMS. As ROLAP
systems are closer to the operational data source than MOLAP systems, ROLAP systems can allow
any operational data source already in an RDBMS to be queried, whereas, in MOLAP, data has to be
exported and then loaded in the MOLAP’s environment and structures. As a result, ROLAP has an
advantage in flexibility for applications without predefined query requirements. Modern RDBMSs
with the support of materialized views and triggers can implement similar precomputation techniques
to MOLAP; thus, there can be an overlap between approaches, i.e. Hybrid OLAP (HOLAP).

Agrawal et al.’s Data Model
Agrawal et al. (1997) propose a data model focused on the symmetric treatment of dimensions and
measures. Symmetric in this context refers to the ability to apply operations typically associated
with dimensions on measures. Thus, similarly to how one can aggregate to a monthly level in a Time
dimension, the ranges of a Quantity measure can also become candidates for aggregation, e.g.,
aggregating over the groups of Quantity 0-999, 1000-1999 and so on.

The proposed algebraic operators are closed - they are defined on cubes and produce a cube
as output. The operators can be composed, creating a query expression model and introducing
optimization options such as disregarding intermediate cubes which are not of interest to the user.
Agrawal et al. also remark that the operators are minimal such that one cannot be expressed in terms
of the other, and dropping one will lead to reduced functionality. Through this algebra, Agrawal et
al. emphasize an approach to stay as close to relational algebra as possible, to benefit translation and
compatibility to SQL.

The logical cube data model is based on the following elements. The model has k dimensions,
where each dimension has a name Di and a domain domi from which values are taken. Elements are
defined as a mapping E(C) from dom1 ´ ´ domk to 0, 1, or an n-tuple. An element of 0 or 1
indicates whether the value exists or not, and the n-tuple indicates that additional information is
available for that combination of dimension values. They also define a set of basic operators: push,
pull, restriction, destroy dimension and join, described in Table 1. Using these operators, Agrawal
et al. build higher-level operations such as roll-up, drill-down, and star join.

International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

5

The authors describe their algebra as at least as powerful as relational algebra. However, they
point out that a precise indication of the expressive power of the proposed model is an open problem.
In addition, a related open question is that of defining the formal notation of completeness for
multidimensional queries and evaluating how complete their algebra is through this notation.

The authors also discuss the implementation aspect in their proposal. They remark that translation
of each proposed operator to SQL is possible and that it is unclear what the expected performance
can be. The authors comment that such algebraic operators can also be implemented on a specialized
engine and a relational one.

Vassiliadis Base Cube Data Model
In the multidimensional data model proposed by Vassiliadis (1998), the author defines the concepts
of dimension and cube while addressing challenges with hierarchies e.g. the de-aggregation of data.
A particular contribution of this work is the use of the base cube, core to some of this algebra’s
operators. The basic operations in this cube model (shown in Table 2) are level climbing, packing,
function application, projection, and dicing. Navigation and slicing are then defined on top of these
basic operators.

Vassiliadis defines a cube Cb as a 3-tuple <Db, Lb, Rb>, where Db is a list of dimensions
representing the measures, Lb is a list of dimension levels, and Rb is a set of cell data (the data of the
cube containing elements of the dimension and measure values) at the lowest dimension levels. The
definition of a cube is then altered to define a cube as the base cube of itself with Cb as a 4-tuple <Db,

Table 1. Agrawal et al.’s (1997) proposed core operators

Operator Description

Push Convert dimensions into elements that can be manipulated using a function.

Pull The converse of the push operator. Creates a new dimension for a specific element, converting an
element into a dimension.

Destroy
Dimension

Reduces the dimensionality of the cube through removing a dimension which only has a single value
in its domain. A dimension that has multiple values cannot be directly destroyed because the elements
might not be functionally determined by dimension values in that scenario.

Restriction Operates on a dimension of a cube, removing the cube values from the dimension that do not satisfy a
provided condition.

Join Relates the information across two cubes. Both cubes need not have the same number of dimensions
and a mapping function is used for mapping the dimension being joined to the resulting dimension.

Table 2. Vassiliadis’s (1998) cube operators

Operator Description

Level Climbing Replaces all values of a set of dimensions with values of dimension levels of a higher
level.

Packing Merges multiple data instances having the same dimension values into one.

Projection Removing specific dimensions from both the cube and its base cube entry.

Function Application Applies a specific function to the measure of a cube.

Dicing Selects data to satisfy a given expression. It is applied to both cube and base cube.

International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

6

Lb, Cb, Rb>. This definition of the base cube enables a direct and correct evaluation of operations.
As a cube is aggregated, a challenge is presented with regard to specific operations. One example
of this is getting the average sales per year from a cube whose measurements have been aggregated
using a count function, i.e., going from count data to average data. Related to this problem is also
de-aggregation operations. Once the data is aggregated through going up the dimension hierarchy,
one might be interested in going back down. For example, after aggregating up from a daily to a
yearly level and then manipulating the cube, one might be interested in interacting with the data at
the daily level. Vassiliadis remarks that not only does the base cube definition provide a mechanism
to preserve data in such a series of operations, and avoids the possibility of using expensive join
operations to try answering such queries, i.e., a performance implication.

The mapping of this algebra to a relational model is done based on two mapping functions. One
maps a dimension level to an attribute of a relation, and the other maps an attribute to a dimension
level. A dimension level can be mapped to more than one attribute, e.g. a dimension level may be
expressed in two columns, possibly across two relations. In addition, mapping to a multidimensional
array is said to be trivial, following the work of Cabbibo and Torlone (1997).

Vassiliadis indicates that the optimization challenges of this algebra are related to the execution
of operations and suggests the application of view usability (Levy et al., 1995) techniques. Workloads
change the volume of the cube; therefore, it is of interest to weigh computing directly from this base
cube against computing from an intermediate result.

Ciferri et al.’s Cube Algebra
Ciferri et al. (2013) present the Cube Algebra Query Language (CAQL). Its main characteristics are
that it focuses on the view of a cube and on providing an intuitive set of operators to general users
(such as managers) by which to manipulate a cube.

The model in this algebra is based on cube and dimension definitions which the user specifies
through the language’s proposed Cube Algebra Definition Language (CADL). A cube schema in
this model is defined as a 3-tuple <nameCS, D, M> with nameCS being the name of the cube, D is
a set of dimension levels, and M is a set of measures. Meanwhile, a dimension schema is a 3-tuple
<nameDS, L®> with nameDS being the name of the dimension, L is a set of pairs of the form <l,
A> such that l is a level and A is a set of attributes describing a level. There is a particular level <All,
q >, and an attribute in A identifies a member in level l. ® is a partial order on the levels, creating
a hierarchy and defining a graph described by the attributes in A.® also has a unique bottom level.

The algebra is based on four core operators: roll-up (with drill-down as its inverse), slice,
dice, and drill-across, and is extended with the map operator. The authors remark that this set of
operators can be extended further in practice. Additional details on these operators are provided in
the following list:

•	 Dice: Returns a cube containing only the cells satisfying an expression over dimension levels
and measures.

• 	 Slice: Removes a selected dimension from a cube, returning a cube with n-1 dimensions. The
dimension to be removed must be a singleton; if the dimension has more than one value, one
must either apply a roll-up to the ALL level or apply a dice operator prior to slicing.

• 	 Roll-up: Aggregates measures according to the dimension hierarchy. An aggregate function
must be specified for each measure. This operator reduces the numerosity of the data rather than
the number of dimensions.

• 	 Drill-down: Undoes the aggregation of a cube in an aggregated state. The authors suggest
implementing it through tracking the paths followed during a roll-up operation.

•	 Drill-across: Given two cubes, compose a single consolidated cube with a new cube structure.
This operation is subject to cube compatibility as two cubes can be related, but their structure

International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

7

can differ. In those cases, the authors recommend controlling the granularity of the cubes before
using this operator or applying a mapping function.

• 	 Map: Applies a mapping function to a measure such that the resulting cube contains the updated
measure.

Discussion and Other Related Work
Up until this point, the well-established OLAP algebras in the literature have been presented. The
essential themes in this review are that (a) implementation and optimization details have remained
relatively unexplored, despite the indication that they are indeed possible and necessary, (b) that a
lack of standard data model is present, and (c) that OLAP algebras seem to have, over time, prioritized
having user-intuitive operators, with the latter being the primary justification of the authors of this
work for choosing CAQL. A number of more novel algebras have been proposed in the area and will
also be covered next in this section.

Kuijpers and Vaisman (2016) propose a formal OLAP algebra, emphasizing that this formalization
is required within the Big Data landscape to perform real-time OLAP operations. In their contribution,
the common operators manipulating a data cube have their semantics clearly defined, and a formal
proof showing that operators can be composed is provided. The authors claim that their work is the
first to provide formal proof in the area due to work, at the time, lacking formalism or applicability.

Banerjee et al. (2021) propose a formal OLAP algebra for NoSQL systems. They highlight that
the lack of a common OLAP specification is also a problem within the NoSQL world, and therefore,
data warehousing portability is limited. In their work, a uniform syntax for different OLAP operations
is proposed. A key insight is that the operators proposed are independent of the physical level and
can therefore work on NoSQL systems as a result.

ADDRESSING OPTIMIZATION IN THE CUBE ALGEBRA QUERY LANGUAGE
As OLAP queries are expected to be very intensive and complex, often having to interact with
extensive and varied datasets, careful consideration of their response time is crucial. Other OLAP
algebras have briefly referred to the optimization potential of their algebra. Namely, Agrawal et al.
(1997) identified that the use of a query expression model which can disregard intermediate result
sets introduces optimization options. Vassiliadis (1998) has also emphasized that the optimization
challenges of this algebra are related to the execution of operations and has suggested the use of
views within the implementation.

As a large number of cube representations exist, the application of a technique is not guaranteed
to be directly transferable to another model. Romero and Abelló (2007), as well as Vassiliadis and
Sellis (1998) have already indicated that there is a wide variety of models and that discussion on
optimization through the use of a generic logical model would prove useful. Hence, the authors are
restricting this work to CAQL, which has already been established for a number of years and has
been designed to be user-centric.

Cube algebras are sometimes compared to the relational model as a possible target for translation
into such a model. Through their multidimensional algebra, Agrawal et al. (1997) emphasize the
similarity to relational algebra, where this connection can assist in translation and compatibility to
SQL. Ciferri et al. (2013), when discussing CAQL consider the drill-across operator as similar to
the relational natural join, the dice operator as analogous to the relational selection and the slice as
comparable to the relational projection. In this section, optimization for CAQL is discussed using
this relationship to relational algebra.

Logical Rewriting
CAQL, as an algebra, can have its expressions rewritten based on logical equivalences. Due to its
similarity to relational algebra, the authors of this work aim to show that it is possible to leverage

International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

8

well-known relational logical equivalences (Ullman et al., 2008) for CAQL expression rewriting. In
this section, two such examples are discussed to highlight this point. However close this similarity
might be, some CAQL operators have certain nuances distinguishing them from the relational model
(e.g., a slice operator can optionally be combined with a roll-up to the level all). Finally, the authors
emphasize that although the relational model is being consulted to identify and apply rewriting, the
implementation does not necessarily have to be a relational one, i.e., these rules are expected to find
application in specialized OLAP engines as well.

One rule is the pushing down of the dice operator across the drill-across operator. Looking at
relational algebra, the related identity is that the relational select (s) can be distributed over the
natural join (¥), so long as the attributes in q exist in both input relations E1 and E2:

s s s¸ ¸ ¸E E E E
1 2 1 2
∞ ∞() = () () 	 (1)

In the case of the drill-across, its specification states that the result of the drill-across operator
will have the same dimensions as both input cubes. Then, this means that a reference in the dice

expression to a dimension can be pushed down to both sides. Meanwhile, pushing down a measure
in this scenario would require first identifying which input cube it came from.	

Pushing down the slice under a drill-across will relax the join condition, subsequently producing
a different output. Consider a join between two cubes and pushing down a slice to remove a dimension.
Then the rewriting effect of such a rule will result in instead joining on one dimension less: a different
join condition that can be expected to alter the answer of the query. In addition, unlike the relational
projection, one would need to consider that the slice operator can include a roll-up to the level all.

The second rule being used in this work is an application of the relational identity, which says
that sequences of the relational project (P) can be omitted, up until the last projection:

Π Π Π Π
L L L Ln

E E
1 2

1
(...(()) ()() = 	 (2)

The inverse nature of the relational projection (state which attributes are desired) to the slice
(state which dimension attributes are not desired) makes the compatibility across data models precise.
Thus, in the CAQL model, this can be implemented through merging all contiguous slice operations
(as in Figure 2) so long as the result of the merged output is compatible with all parent instances.

Figure 2. Merging of multiple slice operators in a query graph, input (a) resulting in (b)

International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

9

The idea behind the selected rules is to push down the operators closer to the data sources, as
a result reducing the amount of intermediate space produced for all subsequent operations such that
they can be performed on smaller-sized data (e.g., perform drill-across over less voluminous cubes).
For simplicity, in this work, it is assumed that such rewriting will always yield a performance benefit,
although this might not always be the case with other rules such as interactions between slice and
dice (i.e., is it worth reducing the volume of the cube through reducing its dimensionality or through
filtering the data first?). Thus, one would have to consider more contrived solutions to guide the
rewriting process the more identities that are identified, e.g., applying a cost function from collected
statistics about the cubes.

Parallel Execution
A query graph, other than illustrating how the query is to be resolved, also indicates which parts
are safe to be executed concurrently. In a relational environment, the underlying CAQL operator is
compatible with the relational engine, i.e. is a translation to SQL, with each operator providing input
for another operator. Thus, one can achieve parallelism at SQL level here by controlling the numbers
of workers allocated to each operator.

The main challenge in this approach is the compilation of an SQL query in isolation from each
other; if two or more translated operators were compiled together, there would have been additional
information supplied to the SQL optimizer, enabling it to make a more informed decision. Additionally,
it is a form of bulk execution: an entire table is being supplied to the other operator at once, as opposed
to streaming (i.e. Volcano’s tuple-at-a-time execution (Graefe, 1994)).

Thus, an alternative approach that addresses these concerns is to rewrite the translated operators
under a single SQL query. In contrast, the limitation of this approach is that the final query will be
substantial in size, which may result in too much time planning or missing potential optimization
opportunities if planning is stopped prematurely due to a time-out attached to the SQL engine’s
optimization effort. Furthermore, as a single SQL query, then execution can be streamed (as opposed
to executed in bulk as several SQL queries), should the underlying engine support such kind of
processing. Keeping in mind that parallel workers are allocated on a per-query basis, then in this
technique, the control of the allocation of resources is delegated to the underlying engine.

This technique of rewriting the operators under a single SQL query can be implemented through
Common Table Expressions (CTEs). When dealing with CTEs, one must account for the Materialized
parameter: taking the PostgreSQL DBMS as an example, up until PostgreSQL 12 (2020), CTE
execution has always been materialized, and this has been referred to as an optimization fence with
such a query not being executed in parallel. This has been addressed in PostgreSQL 12 by introducing
the Not Materialized option for CTEs, which inlines the inner CTE queries into the outer query
allowing the SQL query optimizer to then to be able to be optimized further in this manner and also
supports parallel execution.

So far, the discussion on parallel execution has been focused on executing a single SQL statement
in parallel (i.e. intra-node parallelism). In effect, the simplest strategy is that of allocating all
available resources to the current operator being executed. However, at the abstract level of CAQL,
it is possible to execute multiple operators in parallel, i.e. allocating resources over several SQL
statements, resulting in inter-node parallelism. Using this technique, the sequential component of
query planning is alleviated through planning several SQL queries simultaneously. The challenge
behind this technique is finding a policy by which to distribute resources across operators such that
minimal processor idle time is observed.

EXPERIMENTAL EVALUATION
This section evaluates CAQL from a performance standpoint. The testing setup used is covered first.
What follows is an explanation of the baseline comparisons and a presentation of the query workload.
Finally, the section concludes with a discussion on the results observed.

International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

10

Test Setup
All testing is performed on an i5-2500k 4-cores 3.3GHz CPU, with 16GB DDR3 RAM and a 512GB
SSD computer setup running the Manjaro 18.1 (4.19 Linux Kernel) OS. The PostgreSQL 12 DBMS
is used as the underlying engine for the experiment, mainly due to its open-source nature, wide
adoption, and focus on extensibility (Stonebraker et al., 1987). It has been compiled with the -O2
flag and has the following configurations:

•	 Shared_buffers - 6GB
• 	 Effective_cache_size - 12GB
•	 Work_mem - 2GB
•	 Random_page_cost - 1.1

A tool was written to translate CAQL and CADL statements into SQL, i.e., a translation to
the relational model. In addition, this tool is used to facilitate the application of the optimizations
discussed in this work. Throughout this experiment, cubes are implemented using tables which are
unlogged (PostgreSQL, 2020), to reduce disk interactions, and the CTEs used are not materialized,
which allow the DBMS to optimize the translated query further.

Variance in results can be attributed to the many intricacies of the background DBMS and OS
processes. For this reason, each test is performed ten times in total, and the mean is taken. An additional
warm-up phase is performed at the start of the experiment to ensure that the system caches are not cold.

Baseline Comparison
For the first experiment, a query is first executed without the application of logical rewriting,
without CTE translation and with just one worker assigned to both cases. This is being referred to
as the baseline case. Then, the query is executed with the logical rewriting effect for both CTE and
non-CTE translations. This demonstrates the improvements that are achievable at the logical level.
The following experiment introduces parallelism through varying the number of parallel resources
allocated, demonstrating the expected speedup benefit. The term bulk used here refers to how the
available parallel workers were allocated: all were allocated to one operator at a time. Finally, the
third experiment compares the baseline against an SQL implementation’s execution time, thus
highlighting the difference between a query expressed in CAQL and in the widely adopted SQL.
The query processor configuration settings are set to default for SQL execution, i.e., parallelism was
not forced in this case.

Workload
The dataset used in this project is the Star Schema Benchmark (SSB) (O’Neil et al., 2007). It is a
widely used benchmark (Sanchez, 2016) for star schema models in an OLAP environment. The SSB
was scaled with the configuration of scale factor = 1.

A Simple Moving Average (SMA) query, a query common for several users (Nadler & Kros,
2005), was used on this dataset. Its specification, in both CAQL and SQL, is provided in the Appendix.
The result of both CAQL and SQL queries have been matched against each other to ensure that the
queries being executed are at least producing the same output.

International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

11

Discussion of Results
Figure 3 shows a difference in the effect of rows processed using rule rewriting for both CTE and
non-CTE modes, with the CTE mode showing a less dramatic difference. This suggests two things:
(a) that rule rewriting can reduce the workload in both CTE and non-CTE scenarios by a substantial
amount and (b) that a seemingly better effect, by the metric of rows processed, is produced in the
non-CTE translation.

Adding workers to the query with query rewriting (as shown in Figure 4) results in the bulk
execution method being parallelized and the CTE execution to not benefit from parallelism. The lack
of a linear speedup is expected due to the disk interactions. The lack of a speedup as far as CTE is

Figure 3. Total rows processed by one worker for a Simple Moving Average query with the rewriting effect on, and off.

Figure 4. Parallelism speedup potential against the number of workers for each execution mode, comparing a single worker with
an increasing number of workers for a Simple Moving Average type query.

International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

12

concerned suggests that the functions (i.e. window functions) used to express the query hijack the
parallelism of the entire query.

A clear improvement can be seen when comparing the unoptimized CAQL with the alternative
optimization techniques in Figure 5. The CTE is the least appealing of the alternatives; this can be
explained through the lack of parallelism discussed previously. It is interesting that the gap between
the bulk and SQL execution methods is minimal, suggesting that the optimizations brought CAQL
execution to a reasonable level of performance.

CONCLUSION
Several algebras have been proposed for working with multidimensional data in an OLAP environment,
but a standard algebra has not yet been established, even if this is considered to be beneficial. Of these
multidimensional algebras, a number focus on operating directly over the view of data as a cube, but
discussions on optimization remain relatively unexplored.

In this work, the authors focus on a well-established and intuitive addition to these set of algebras
and apply several optimization ideas. These ideas focus on exploring parallelism and logical rule
rewriting at a conceptual level, showing that ideas from the relational model are also applicable in
this domain. The open-source PostgreSQL was used to work with this algebra at a physical level.
Although this is a post-relational engine, these ideas are expected to find application in specialized
OLAP engines as well. A Simple Moving Average style query was presented to demonstrate the effect
of these ideas, with up to a 16´ improvement over the baseline case having been observed. This
result is also close to that of an SQL implementation of the query.

Future research is possible in a number of areas. First, an extensive set of logical equivalences,
in addition to those proposed in this work, can be identified and expressed formally. Second, the
parallelism in this work involved using all available resources on a single operator at a time; future
work can explore different ways of allocating resources. As the number of identified optimization
techniques increases, then it is of interest to explore the problem of choosing an optimized plan from
many alternatives in a reasonable amount of time, e.g., through a cost function tailored for the OLAP

Figure 5. Comparing CAQL execution modes against the SQL implementation for a Simple Moving Average type query
implementation.

International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

13

algebra environment. Finally, as this OLAP algebra becomes more common, it would be interesting
to see the addition of CAQL queries and case studies, as well as a standard benchmark test tailored
to this algebra.

ACKNOWLEDGMENT

This research was supported by the Malta Council of Science & Technology (MCST) [R&I-2016-
013T].

FUNDING AGENCY
The publisher has waived the Open Access Processing fee for this article.

International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

14

REFERENCES

Agrawal, R., Gupta, A., & Sarawagi, S. (1997). Modeling multidimensional databases. Proceedings 13th
International Conference on Data Engineering. doi:10.1109/ICDE.1997.581777

Banerjee, S., Bhaskar, S., Sarkar, A., & Debnath, N. (2021). A formal OLAP algebra for NoSQL based Data
Warehouses. Annals Of Emerging Technologies In Computing, 5(5), 154–161. doi:10.33166/AETiC.2021.05.019

Cabibbo, L., & Torlone, R. (1998). A logical approach to multidimensional databases. Proceedings of the 6th
International Conference on Extending Database Technology: Advances in Database Technology, 183–197.

Chen, P. P.-S. (1976). The entity-relationship model—Toward a unified view of data. ACM Transactions on
Database Systems, 1(1), 9–36. doi:10.1145/320434.320440

Ciferri, C., Ciferri, R., Gómez, L., Schneider, M., Vaisman, A., & Zimányi, E. (2013). Cube Algebra: A generic
user-centric model and query language for OLAP cubes. International Journal of Data Warehousing and Mining,
9(2), 39–65. doi:10.4018/jdwm.2013040103

Datta, A., & Thomas, H. (1999). The cube data model: A conceptual model and algebra for on-line analytical
processing in data warehouses. Decision Support Systems, 27(3), 289–301. doi:10.1016/S0167-9236(99)00052-4

Donoho, D. L. (2000). High-dimensional data analysis: The curses and blessings of dimensionality. AMS Math
Challenges Lecture, 1-32.

Esling, P., & Agon, C. (2012). Time-series data mining. ACM Computing Surveys, 45(1), 1–34.
doi:10.1145/2379776.2379788

Fu, T. (2011). A review on time series data mining. Engineering Applications of Artificial Intelligence, 24(1),
164–181. doi:10.1016/j.engappai.2010.09.007

Garcia-Molina, H., Ullman, J. D., & Widom, J. (2008). Database systems: The complete book. Prentice Hall Press.

Graefe, G. (1994). Volcano-an extensible and parallel query evaluation system. IEEE Transactions on Knowledge
and Data Engineering, 6(1), 120–135. doi:10.1109/69.273032

Gray, J., Bosworth, A., Lyaman, A., & Pirahesh, H. (1996). Data cube: a relational aggregation operator
generalizing GROUP-BY, CROSS-TAB, and SUB-TOTALS. Proceedings of the Twelfth International Conference
on Data Engineering. doi:10.1109/ICDE.1996.492099

Kuijpers, B., & Vaisman, A. (2017). An algebra for OLAP. Intelligent Data Analysis, 21(5), 1267–1300.
doi:10.3233/IDA-163161

Levy, A. Y., Mendelzon, A. O., & Yehoshua, S. (1995). Answering queries using views. Proceedings
of the Fourteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems.
doi:10.1145/212433.220198

Microsoft Corporation. (2021). Multidimensional expressions (MDX) reference. http://msdn.microsoft.com/
en-us/library/ms145506.aspx

Nadler, S., & Kros, J. F. (2007). Forecasting with excel: Suggestions for managers. Spreadsheets in Education, 2(2).

O’Neil, P., O’Neil, B., & Chen, X. (2007). The Star Schema Benchmark (SSB). https://www.cs.umb.edu/~poneil/
StarSchemaB.pdf

OLAP Council. (1995). OLAP and OLAP server definitions. Research Technology. http://www.olapcouncil.
org/research/glossaryly.htm

Postgre, S. Q. L. (2020). CREATE TABLE. PostgreSQL Documentation. https://www.postgresql.org/docs/12/
sql-createtable.html

Postgre, S. Q. L. (2020). WITH queries (Common Table Expressions). PostgreSQL Documentation. https://
www.postgresql.org/docs/12/queries-with.html

Rizzi, S. (2007). Conceptual modeling solutions for the Data Warehouse. Data Warehouses and OLAP: Concepts,
Architectures and Solutions, 1–26.

http://dx.doi.org/10.1109/ICDE.1997.581777
http://dx.doi.org/10.33166/AETiC.2021.05.019
http://dx.doi.org/10.1145/320434.320440
http://dx.doi.org/10.4018/jdwm.2013040103
http://dx.doi.org/10.1016/S0167-9236(99)00052-4
http://dx.doi.org/10.1145/2379776.2379788
http://dx.doi.org/10.1016/j.engappai.2010.09.007
http://dx.doi.org/10.1109/69.273032
http://dx.doi.org/10.1109/ICDE.1996.492099
http://dx.doi.org/10.3233/IDA-163161
http://dx.doi.org/10.1145/212433.220198
http://msdn.microsoft.com/en-us/library/ms145506.aspx
http://msdn.microsoft.com/en-us/library/ms145506.aspx
https://www.cs.umb.edu/~poneil/StarSchemaB.pdf
https://www.cs.umb.edu/~poneil/StarSchemaB.pdf
http://www.olapcouncil.org/research/glossaryly.htm
http://www.olapcouncil.org/research/glossaryly.htm
https://www.postgresql.org/docs/12/sql-createtable.html
https://www.postgresql.org/docs/12/sql-createtable.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html

International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

15

Romero, O., & Abelló, A. (2007). On the need of a reference algebra for OLAP. International Conference on
Data Warehousing and Knowledge Discovery, 99–110. doi:10.1007/978-3-540-74553-2_10

Salley, C. T., Codd, E. F., & Codd, S. B. (1993). Providing OLAP to user-analysts: An IT mandate. Academic Press.

Sanchez, J. (2016). A review of Star Schema Benchmark. Computing Research Repository.

Sellis, T. K., Tsois, A., & Karayannidis, N. (2001). MAC: conceptual data modeling for OLAP. Proceedings of
the International Workshop on Design and Management of Data Warehouses, 39(5).

Stonebraker, M., Anton, J., & Hirohama, M. (1987). Extendability in Postgres. A Quarterly Bulletin of the
Computer Society of the IEEE Technical Committee on Data Engineering, 10, 16–23.

Vassiliadis, P. (1998). Modeling multidimensional databases, cubes and cube operations. Tenth International
Conference on Scientific and Statistical Database Management. doi:10.1109/SSDM.1998.688111

Vassiliadis, P., & Sellis, T. (1999). A survey of logical models for OLAP databases. SIGMOD Record, 28(4),
64–69. doi:10.1145/344816.344869

Joseph G. Vella lectures and researches in the areas of database technology at the University of Malta. His first
degree was a BSc in Mathematics and Computing (UM) and a doctoral degree from the University of Sheffield
Engineering Faculty. Dr Vella has participated in numerous projects at national and EU levels mainly dealing with
data integration and consolidation for data warehousing, data science, and cloud services.

Kevin Vella is an Associate Professor of Computer Science at the University of Malta’s Faculty of ICT. His teaching
and research activities focus on the scientific and technical aspects of concurrent and distributed computing,
operating systems, and programming languages. He holds a PhD in Computer Science from the University of
Kent, UK, and a BSc in Mathematics and Computing from the University of Malta.

http://dx.doi.org/10.1007/978-3-540-74553-2_10
http://dx.doi.org/10.1109/SSDM.1998.688111
http://dx.doi.org/10.1145/344816.344869

International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

16

APPENDIX A - SIMPLE MOVING AVERAGE STYLE QUERY

A manager is interested in comparing monthly operations between the first half of the years 1992,
1993 and 1994. He sees that there is variation and is interested in smoothening out this data. His
initial attempt consists of applying a 3-month lagging Simple Moving Average.

Using CAQL

c1:= SLICE(LineOrder_Cube, Customer, ROLL-UP{SUM});
c2:= SLICE(c1, Part, ROLL-UP{SUM});
c3:= SLICE(c2, Supplier, ROLL-UP{SUM});
c4:= SLICE(c3, Day_View, ROLL-UP{SUM});
c5:= ROLL-UP(c4, Time->Month, {(quantity, SUM)});
c6:= SLICE(c5, Time, ROLL-UP{SUM});
c7:= MAP(c6, {(qty_lag_sma_3,SUM_quantity,month_year_lag_sma(3))});
c8:= DICE(c7,”Year_View.Year.value”=1992);
c9:= SLICE(c8, Year_View);
c10:= DICE(c7,”Year_View.Year.value”=1993);
c11:= SLICE(c10, Year_View);
c12:= DICE(c7,”Year_View.Year.value”=1994);
c13:= SLICE(c12, Year_View);
c14:= DRILL-ACROSS(c9,c11);
c15:= DRILL-ACROSS(c13,c14);
c16:= DICE(c15, text_to_month(“Month_View.Month.value”) <= 6);

Figure 6. Query rewriting, input query (a) producing (b)

International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

17

Using SQL
WITH sma AS

(
-- calculate a 3-SMA over ordered months
SELECT “Time.Year.value”,”Time.Month.value”, sum_quantity,
((sum_quantity + COALESCE(LAG(sum_quantity,1)
OVER (ORDER BY “Time.Year.value”,”Time.Month.value”),0)
-- + ...
) / 3) AS sma
FROM
(
-- rollup to Time.Month with sum of quantity (measure)
SELECT “Time.Year.value”, “Time.Month.value”, SUM(quantity)
FROM
(
SELECT “Time.Year.value”, “Time.Month.value”, quantity
FROM lineorder_cube
) y_m_q
GROUP BY “Time.Year.value”, “Time.Month.value”
) y_m_sum_q
)
SELECT sma.”Time.Month.value”, sma.sma -- project remaining attributes
-- get the sma of each year from 1992 to 1994 and join them on month
FROM sma, sma sma1, sma sma2
WHERE sma.”Time.Year.value” = 1992 AND sma1.”Time.Year.value” = 1993
AND sma2.”Time.Year.value” = 1994
AND sma.”Time.Month.value” = sma1.”Time.Month.value”
AND sma.”Time.Month.value” = sma2.”Time.Month.value”
-- get first half of year
AND text_to_month(sma.”Time.Month.value”) <= 6

